1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
/*############################################################################*/
/*# #*/
/*# Ambisonic C++ Library #*/
/*# CAmbisonicBinauralizer - Ambisonic Binauralizer #*/
/*# Copyright © 2007 Aristotel Digenis #*/
/*# Copyright © 2017 Videolabs #*/
/*# #*/
/*# Filename: AmbisonicBinauralizer.cpp #*/
/*# Version: 0.2 #*/
/*# Date: 19/05/2007 #*/
/*# Author(s): Aristotel Digenis, Peter Stitt #*/
/*# Licence: LGPL #*/
/*# #*/
/*############################################################################*/
#include "config.h"
#include <iostream>
#include "AmbisonicBinauralizer.h"
CAmbisonicBinauralizer::CAmbisonicBinauralizer()
: m_pFFT_cfg(nullptr, kiss_fftr_free)
, m_pIFFT_cfg(nullptr, kiss_fftr_free)
{
m_nBlockSize = 0;
m_nTaps = 0;
m_nFFTSize = 0;
m_nFFTBins = 0;
m_fFFTScaler = 0.f;
m_nOverlapLength = 0;
}
bool CAmbisonicBinauralizer::Configure(unsigned nOrder,
bool b3D,
unsigned nSampleRate,
unsigned nBlockSize,
unsigned& tailLength,
std::string HRTFPath)
{
//Iterators
unsigned niEar = 0;
unsigned niChannel = 0;
unsigned niSpeaker = 0;
unsigned niTap = 0;
HRTF *p_hrtf = getHRTF(nSampleRate, HRTFPath);
if (p_hrtf == nullptr)
return false;
tailLength = m_nTaps = p_hrtf->getHRTFLen();
m_nBlockSize = nBlockSize;
//What will the overlap size be?
m_nOverlapLength = m_nBlockSize < m_nTaps ? m_nBlockSize - 1 : m_nTaps - 1;
//How large does the FFT need to be
m_nFFTSize = 1;
while(m_nFFTSize < (m_nBlockSize + m_nTaps + m_nOverlapLength))
m_nFFTSize <<= 1;
//How many bins is that
m_nFFTBins = m_nFFTSize / 2 + 1;
//What do we need to scale the result of the iFFT by
m_fFFTScaler = 1.f / m_nFFTSize;
CAmbisonicBase::Configure(nOrder, b3D, 0);
//Position speakers and recalculate coefficients
ArrangeSpeakers();
unsigned nSpeakers = m_AmbDecoder.GetSpeakerCount();
//Allocate buffers with new settings
AllocateBuffers();
//Allocate temporary buffers for retrieving taps from mit_hrtf_lib
float* pfHRTF[2];
for(niEar = 0; niEar < 2; niEar++)
pfHRTF[niEar] = new float[m_nTaps];
//Allocate buffers for HRTF accumulators
float** ppfAccumulator[2];
for(niEar = 0; niEar < 2; niEar++)
{
ppfAccumulator[niEar] = new float*[m_nChannelCount];
for(niChannel = 0; niChannel < m_nChannelCount; niChannel++)
ppfAccumulator[niEar][niChannel] = new float[m_nTaps]();
}
for(niChannel = 0; niChannel < m_nChannelCount; niChannel++)
{
for(niSpeaker = 0; niSpeaker < nSpeakers; niSpeaker++)
{
//What is the position of the current speaker
PolarPoint position = m_AmbDecoder.GetPosition(niSpeaker);
bool b_found = p_hrtf->get(position.fAzimuth, position.fElevation, pfHRTF);
if (!b_found)
return false;
//Scale the HRTFs by the coefficient of the current channel/component
// The spherical harmonic coefficients are multiplied by (2*order + 1) to provide the correct decoder
// for SN3D normalised Ambisonic inputs.
float fCoefficient = m_AmbDecoder.GetCoefficient(niSpeaker, niChannel) * (2*floor(sqrt(niChannel)) + 1);
for(niTap = 0; niTap < m_nTaps; niTap++)
{
pfHRTF[0][niTap] *= fCoefficient;
pfHRTF[1][niTap] *= fCoefficient;
}
//Accumulate channel/component HRTF
for(niTap = 0; niTap < m_nTaps; niTap++)
{
ppfAccumulator[0][niChannel][niTap] += pfHRTF[0][niTap];
ppfAccumulator[1][niChannel][niTap] += pfHRTF[1][niTap];
}
}
}
delete p_hrtf;
//Find the maximum tap
float fMax = 0;
// encode a source at azimuth 90deg and elevation 0
CAmbisonicEncoder myEncoder;
myEncoder.Configure(m_nOrder, true, 0);
PolarPoint position90;
position90.fAzimuth = DegreesToRadians(90.f);
position90.fElevation = 0.f;
position90.fDistance = 5.f;
myEncoder.SetPosition(position90);
myEncoder.Refresh();
float* pfLeftEar90;
pfLeftEar90 = new float[m_nTaps]();
for(niChannel = 0; niChannel < m_nChannelCount; niChannel++)
for(niTap = 0; niTap < m_nTaps; niTap++)
pfLeftEar90[niTap] += myEncoder.GetCoefficient(niChannel) * ppfAccumulator[0][niChannel][niTap];
//Find the maximum value for a source encoded at 90degrees
for(niTap = 0; niTap < m_nTaps; niTap++)
{
float val = fabs(pfLeftEar90[niTap]);
fMax = val > fMax ? val : fMax;
}
//Normalize to pre-defined value
float fUpperSample = 1.f;
float fScaler = fUpperSample / fMax;
fScaler *= 0.35f;
for(niEar = 0; niEar < 2; niEar++)
{
for(niChannel = 0; niChannel < m_nChannelCount; niChannel++)
{
for(niTap = 0; niTap < m_nTaps; niTap++)
{
ppfAccumulator[niEar][niChannel][niTap] *= fScaler;
}
}
}
//Convert frequency domain filters
for(niEar = 0; niEar < 2; niEar++)
{
for(niChannel = 0; niChannel < m_nChannelCount; niChannel++)
{
memcpy(m_pfScratchBufferA.data(), ppfAccumulator[niEar][niChannel], m_nTaps * sizeof(float));
memset(&m_pfScratchBufferA[m_nTaps], 0, (m_nFFTSize - m_nTaps) * sizeof(float));
kiss_fftr(m_pFFT_cfg.get(), m_pfScratchBufferA.data(), m_ppcpFilters[niEar][niChannel].get());
}
}
for(niEar = 0; niEar < 2; niEar++)
delete [] pfHRTF[niEar];
for(niEar = 0; niEar < 2; niEar++)
{
for(niChannel = 0; niChannel < m_nChannelCount; niChannel++)
delete [] ppfAccumulator[niEar][niChannel];
delete [] ppfAccumulator[niEar];
}
delete[] pfLeftEar90;
return true;
}
void CAmbisonicBinauralizer::Reset()
{
memset(m_pfOverlap[0].data(), 0, m_nOverlapLength * sizeof(float));
memset(m_pfOverlap[1].data(), 0, m_nOverlapLength * sizeof(float));
}
void CAmbisonicBinauralizer::Refresh()
{
}
void CAmbisonicBinauralizer::Process(CBFormat* pBFSrc,
float** ppfDst)
{
unsigned niEar = 0;
unsigned niChannel = 0;
unsigned ni = 0;
kiss_fft_cpx cpTemp;
/* If CPU load needs to be reduced then perform the convolution for each of the Ambisonics/spherical harmonic
decompositions of the loudspeakers HRTFs for the left ear. For the left ear the results of these convolutions
are summed to give the ear signal. For the right ear signal, the properties of the spherical harmonic decomposition
can be use to to create the ear signal. This is done by either adding or subtracting the correct channels.
Channels 1, 4, 5, 9, 10 and 11 are subtracted from the accumulated signal. All others are added.
For example, for a first order signal the ears are generated from:
SignalL = W x HRTF_W + Y x HRTF_Y + Z x HRTF_Z + X x HRTF_X
SignalR = W x HRTF_W - Y x HRTF_Y + Z x HRTF_Z + X x HRTF_X
where 'x' is a convolution, W/Y/Z/X are the Ambisonic signal channels and HRTF_x are the spherical harmonic
decompositions of the virtual loudspeaker array HRTFs.
This has the effect of assuming a completel symmetric head. */
/* TODO: This bool flag should be either an automatic or user option depending on CPU. It should be 'true' if
CPU load needs to be limited */
bool bLowCPU = true;
if(bLowCPU){
// Perform the convolutions for the left ear and generate the right ear from a modified accumulation of these channels
niEar = 0;
memset(m_pfScratchBufferA.data(), 0, m_nFFTSize * sizeof(float));
memset(m_pfScratchBufferC.data(), 0, m_nFFTSize * sizeof(float));
for(niChannel = 0; niChannel < m_nChannelCount; niChannel++)
{
memcpy(m_pfScratchBufferB.data(), pBFSrc->m_ppfChannels[niChannel], m_nBlockSize * sizeof(float));
memset(&m_pfScratchBufferB[m_nBlockSize], 0, (m_nFFTSize - m_nBlockSize) * sizeof(float));
kiss_fftr(m_pFFT_cfg.get(), m_pfScratchBufferB.data(), m_pcpScratch.get());
for(ni = 0; ni < m_nFFTBins; ni++)
{
cpTemp.r = m_pcpScratch[ni].r * m_ppcpFilters[niEar][niChannel][ni].r
- m_pcpScratch[ni].i * m_ppcpFilters[niEar][niChannel][ni].i;
cpTemp.i = m_pcpScratch[ni].r * m_ppcpFilters[niEar][niChannel][ni].i
+ m_pcpScratch[ni].i * m_ppcpFilters[niEar][niChannel][ni].r;
m_pcpScratch[ni] = cpTemp;
}
kiss_fftri(m_pIFFT_cfg.get(), m_pcpScratch.get(), m_pfScratchBufferB.data());
for(ni = 0; ni < m_nFFTSize; ni++)
m_pfScratchBufferA[ni] += m_pfScratchBufferB[ni];
for(ni = 0; ni < m_nFFTSize; ni++){
// Subtract certain channels (such as Y) to generate right ear.
if((niChannel==1) || (niChannel==4) || (niChannel==5) ||
(niChannel==9) || (niChannel==10)|| (niChannel==11))
{
m_pfScratchBufferC[ni] -= m_pfScratchBufferB[ni];
}
else{
m_pfScratchBufferC[ni] += m_pfScratchBufferB[ni];
}
}
}
for(ni = 0; ni < m_nFFTSize; ni++){
m_pfScratchBufferA[ni] *= m_fFFTScaler;
m_pfScratchBufferC[ni] *= m_fFFTScaler;
}
memcpy(ppfDst[0], m_pfScratchBufferA.data(), m_nBlockSize * sizeof(float));
memcpy(ppfDst[1], m_pfScratchBufferC.data(), m_nBlockSize * sizeof(float));
for(ni = 0; ni < m_nOverlapLength; ni++){
ppfDst[0][ni] += m_pfOverlap[0][ni];
ppfDst[1][ni] += m_pfOverlap[1][ni];
}
memcpy(m_pfOverlap[0].data(), &m_pfScratchBufferA[m_nBlockSize], m_nOverlapLength * sizeof(float));
memcpy(m_pfOverlap[1].data(), &m_pfScratchBufferC[m_nBlockSize], m_nOverlapLength * sizeof(float));
}
else
{
// Perform the convolution on both ears. Potentially more realistic results but requires double the number of
// convolutions.
for(niEar = 0; niEar < 2; niEar++)
{
memset(m_pfScratchBufferA.data(), 0, m_nFFTSize * sizeof(float));
for(niChannel = 0; niChannel < m_nChannelCount; niChannel++)
{
memcpy(m_pfScratchBufferB.data(), pBFSrc->m_ppfChannels[niChannel], m_nBlockSize * sizeof(float));
memset(&m_pfScratchBufferB[m_nBlockSize], 0, (m_nFFTSize - m_nBlockSize) * sizeof(float));
kiss_fftr(m_pFFT_cfg.get(), m_pfScratchBufferB.data(), m_pcpScratch.get());
for(ni = 0; ni < m_nFFTBins; ni++)
{
cpTemp.r = m_pcpScratch[ni].r * m_ppcpFilters[niEar][niChannel][ni].r
- m_pcpScratch[ni].i * m_ppcpFilters[niEar][niChannel][ni].i;
cpTemp.i = m_pcpScratch[ni].r * m_ppcpFilters[niEar][niChannel][ni].i
+ m_pcpScratch[ni].i * m_ppcpFilters[niEar][niChannel][ni].r;
m_pcpScratch[ni] = cpTemp;
}
kiss_fftri(m_pIFFT_cfg.get(), m_pcpScratch.get(), m_pfScratchBufferB.data());
for(ni = 0; ni < m_nFFTSize; ni++)
m_pfScratchBufferA[ni] += m_pfScratchBufferB[ni];
}
for(ni = 0; ni < m_nFFTSize; ni++)
m_pfScratchBufferA[ni] *= m_fFFTScaler;
memcpy(ppfDst[niEar], m_pfScratchBufferA.data(), m_nBlockSize * sizeof(float));
for(ni = 0; ni < m_nOverlapLength; ni++)
ppfDst[niEar][ni] += m_pfOverlap[niEar][ni];
memcpy(m_pfOverlap[niEar].data(), &m_pfScratchBufferA[m_nBlockSize], m_nOverlapLength * sizeof(float));
}
}
}
void CAmbisonicBinauralizer::ArrangeSpeakers()
{
unsigned nSpeakerSetUp;
//How many speakers will be needed? Add one for right above the listener
unsigned nSpeakers = OrderToSpeakers(m_nOrder, m_b3D);
//Custom speaker setup
// Select cube layout for first order a dodecahedron for 2nd and 3rd
if (m_nOrder == 1)
{
std::cout << "Getting first order cube" << std::endl;
nSpeakerSetUp = kAmblib_Cube2;
}
else
{
std::cout << "Getting second/third order dodecahedron" << std::endl;
nSpeakerSetUp = kAmblib_Dodecahedron;
}
m_AmbDecoder.Configure(m_nOrder, m_b3D, nSpeakerSetUp, nSpeakers);
//Calculate all the speaker coefficients
m_AmbDecoder.Refresh();
}
HRTF *CAmbisonicBinauralizer::getHRTF(unsigned nSampleRate, std::string HRTFPath)
{
HRTF *p_hrtf;
#ifdef HAVE_MYSOFA
# ifdef HAVE_MIT_HRTF
if (HRTFPath == "")
p_hrtf = new MIT_HRTF(nSampleRate);
else
# endif
p_hrtf = new SOFA_HRTF(HRTFPath, nSampleRate);
#else
# ifdef HAVE_MIT_HRTF
p_hrtf = new MIT_HRTF(nSampleRate);
# else
# error At least MySOFA or MIT_HRTF need to be enabled
# endif
#endif
if (p_hrtf == nullptr)
return nullptr;
if (!p_hrtf->isLoaded())
{
delete p_hrtf;
return nullptr;
}
return p_hrtf;
}
void CAmbisonicBinauralizer::AllocateBuffers()
{
//Allocate scratch buffers
m_pfScratchBufferA.resize(m_nFFTSize);
m_pfScratchBufferB.resize(m_nFFTSize);
m_pfScratchBufferC.resize(m_nFFTSize);
//Allocate overlap-add buffers
m_pfOverlap[0].resize(m_nOverlapLength);
m_pfOverlap[1].resize(m_nOverlapLength);
//Allocate FFT and iFFT for new size
m_pFFT_cfg.reset(kiss_fftr_alloc(m_nFFTSize, 0, 0, 0));
m_pIFFT_cfg.reset(kiss_fftr_alloc(m_nFFTSize, 1, 0, 0));
//Allocate the FFTBins for each channel, for each ear
for(unsigned niEar = 0; niEar < 2; niEar++)
{
m_ppcpFilters[niEar].resize(m_nChannelCount);
for(unsigned niChannel = 0; niChannel < m_nChannelCount; niChannel++)
m_ppcpFilters[niEar][niChannel].reset(new kiss_fft_cpx[m_nFFTBins]);
}
m_pcpScratch.reset(new kiss_fft_cpx[m_nFFTBins]);
}
|