1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
/*############################################################################*/
/*# #*/
/*# Ambisonic C++ Library #*/
/*# CAmbisonicProcessor - Ambisonic Processor #*/
/*# Copyright © 2007 Aristotel Digenis #*/
/*# Copyright © 2017 Videolabs #*/
/*# #*/
/*# Filename: AmbisonicProcessor.cpp #*/
/*# Version: 0.2 #*/
/*# Date: 19/05/2007 #*/
/*# Author(s): Aristotel Digenis, Peter Stitt #*/
/*# Licence: LGPL #*/
/*# #*/
/*############################################################################*/
#include "AmbisonicProcessor.h"
#include <iostream>
CAmbisonicProcessor::CAmbisonicProcessor()
: m_orientation(0, 0, 0)
{
m_pfTempSample = nullptr;
m_pfScratchBufferA = nullptr;
m_pFFT_psych_cfg = nullptr;
m_pIFFT_psych_cfg = nullptr;
m_ppcpPsychFilters = nullptr;
m_pcpScratch = nullptr;
m_pfOverlap = nullptr;
}
CAmbisonicProcessor::~CAmbisonicProcessor()
{
if(m_pfTempSample)
delete [] m_pfTempSample;
if(m_pfScratchBufferA)
delete [] m_pfScratchBufferA;
if(m_pFFT_psych_cfg)
kiss_fftr_free(m_pFFT_psych_cfg);
if(m_pIFFT_psych_cfg)
kiss_fftr_free(m_pIFFT_psych_cfg);
if (m_ppcpPsychFilters)
{
for(unsigned i=0; i<=m_nOrder; i++)
if(m_ppcpPsychFilters[i])
delete [] m_ppcpPsychFilters[i];
delete [] m_ppcpPsychFilters;
}
if(m_pcpScratch)
delete [] m_pcpScratch;
if(m_pfOverlap){
for(unsigned i=0; i<m_nChannelCount; i++)
if(m_pfOverlap[i])
delete [] m_pfOverlap[i];
delete [] m_pfOverlap;
}
}
bool CAmbisonicProcessor::Configure(unsigned nOrder, bool b3D, unsigned nBlockSize, unsigned nMisc)
{
bool success = CAmbisonicBase::Configure(nOrder, b3D, nMisc);
if(!success)
return false;
if(m_pfTempSample)
delete [] m_pfTempSample;
m_pfTempSample = new float[m_nChannelCount];
memset(m_pfTempSample, 0, m_nChannelCount * sizeof(float));
/* This bool should be set as a user option to turn optimisation on and off*/
m_bOpt = true;
// All optimisation filters have the same number of taps so take from the first order 3D impulse response arbitrarily
unsigned nbTaps = sizeof(first_order_3D[0]) / sizeof(int16_t);
m_nBlockSize = nBlockSize;
m_nTaps = nbTaps;
//What will the overlap size be?
m_nOverlapLength = m_nBlockSize < m_nTaps ? m_nBlockSize - 1 : m_nTaps - 1;
//How large does the FFT need to be
m_nFFTSize = 1;
while(m_nFFTSize < (m_nBlockSize + m_nTaps + m_nOverlapLength))
m_nFFTSize <<= 1;
//How many bins is that
m_nFFTBins = m_nFFTSize / 2 + 1;
//What do we need to scale the result of the iFFT by
m_fFFTScaler = 1.f / m_nFFTSize;
//Allocate buffers
m_pfOverlap = new float*[m_nChannelCount];
for(unsigned i=0; i<m_nChannelCount; i++)
m_pfOverlap[i] = new float[m_nOverlapLength];
m_pfScratchBufferA = new float[m_nFFTSize];
m_ppcpPsychFilters = new kiss_fft_cpx*[m_nOrder+1];
for(unsigned i = 0; i <= m_nOrder; i++)
m_ppcpPsychFilters[i] = new kiss_fft_cpx[m_nFFTBins];
m_pcpScratch = new kiss_fft_cpx[m_nFFTBins];
//Allocate temporary buffers for retrieving taps of psychoacoustic opimisation filters
std::vector<std::unique_ptr<float[]>> pfPsychIR;
for(unsigned i = 0; i <= m_nOrder; i++)
{
pfPsychIR.emplace_back(new float[m_nTaps]);
}
Reset();
//Allocate FFT and iFFT for new size
m_pFFT_psych_cfg = kiss_fftr_alloc(m_nFFTSize, 0, 0, 0);
m_pIFFT_psych_cfg = kiss_fftr_alloc(m_nFFTSize, 1, 0, 0);
// get impulse responses for psychoacoustic optimisation based on playback system (2D or 3D) and playback order (1 to 3)
//Convert from short to float representation
for (unsigned i_m = 0; i_m <= m_nOrder; i_m++){
for(unsigned i = 0; i < m_nTaps; i++)
if(m_b3D){
switch(m_nOrder){
case 1: pfPsychIR[i_m][i] = 2.f*first_order_3D[i_m][i] / 32767.f; break;
case 2: pfPsychIR[i_m][i] = 2.f*second_order_3D[i_m][i] / 32767.f; break;
case 3: pfPsychIR[i_m][i] = 2.f*third_order_3D[i_m][i] / 32767.f; break;
}
}
else{
switch(m_nOrder){
case 1: pfPsychIR[i_m][i] = 2.f*first_order_2D[i_m][i] / 32767.f; break;
case 2: pfPsychIR[i_m][i] = 2.f*second_order_2D[i_m][i] / 32767.f; break;
case 3: pfPsychIR[i_m][i] = 2.f*third_order_2D[i_m][i] / 32767.f; break;
}
}
// Convert the impulse responses to the frequency domain
memcpy(m_pfScratchBufferA, pfPsychIR[i_m].get(), m_nTaps * sizeof(float));
memset(&m_pfScratchBufferA[m_nTaps], 0, (m_nFFTSize - m_nTaps) * sizeof(float));
kiss_fftr(m_pFFT_psych_cfg, m_pfScratchBufferA, m_ppcpPsychFilters[i_m]);
}
return true;
}
void CAmbisonicProcessor::Reset()
{
for(unsigned i=0; i<m_nChannelCount; i++)
memset(m_pfOverlap[i], 0, m_nOverlapLength * sizeof(float));
}
void CAmbisonicProcessor::Refresh()
{
// Trig terms used multiple times in rotation equations
m_fCosAlpha = cosf(m_orientation.fAlpha);
m_fSinAlpha = sinf(m_orientation.fAlpha);
m_fCosBeta = cosf(m_orientation.fBeta);
m_fSinBeta = sinf(m_orientation.fBeta);
m_fCosGamma = cosf(m_orientation.fGamma);
m_fSinGamma = sinf(m_orientation.fGamma);
m_fCos2Alpha = cosf(2.f * m_orientation.fAlpha);
m_fSin2Alpha = sinf(2.f * m_orientation.fAlpha);
m_fCos2Beta = cosf(2.f * m_orientation.fBeta);
m_fSin2Beta = sinf(2.f * m_orientation.fBeta);
m_fCos2Gamma = cosf(2.f * m_orientation.fGamma);
m_fSin2Gamma = sinf(2.f * m_orientation.fGamma);
m_fCos3Alpha = cosf(3.f * m_orientation.fAlpha);
m_fSin3Alpha = sinf(3.f * m_orientation.fAlpha);
m_fCos3Beta = cosf(3.f * m_orientation.fBeta);
m_fSin3Beta = sinf(3.f * m_orientation.fBeta);
m_fCos3Gamma = cosf(3.f * m_orientation.fGamma);
m_fSin3Gamma = sinf(3.f * m_orientation.fGamma);
}
void CAmbisonicProcessor::SetOrientation(Orientation orientation)
{
m_orientation = orientation;
}
Orientation CAmbisonicProcessor::GetOrientation()
{
return m_orientation;
}
void CAmbisonicProcessor::Process(CBFormat* pBFSrcDst, unsigned nSamples)
{
/* Rotate the sound scene based on the rotation angle from the 360 video*/
/* Before the rotation we apply the psychoacoustic optimisation filters */
if(m_bOpt)
{
ShelfFilterOrder(pBFSrcDst, nSamples);
}
else
{
// No filtering required
}
/* 3D Ambisonics input expected so perform 3D rotations */
if(m_nOrder >= 1)
ProcessOrder1_3D(pBFSrcDst, nSamples);
if(m_nOrder >= 2)
ProcessOrder2_3D(pBFSrcDst, nSamples);
if(m_nOrder >= 3)
ProcessOrder3_3D(pBFSrcDst, nSamples);
}
void CAmbisonicProcessor::ProcessOrder1_3D(CBFormat* pBFSrcDst, unsigned nSamples)
{
/* Rotations are performed in the following order:
1 - rotation around the z-axis
2 - rotation around the *new* y-axis (y')
3 - rotation around the new z-axis (z'')
This is different to the rotations obtained from the video, which are around z, y' then x''.
The rotation equations used here work for third order. However, for higher orders a recursive algorithm
should be considered.*/
for(unsigned niSample = 0; niSample < nSamples; niSample++)
{
// Alpha rotation
m_pfTempSample[kY] = -pBFSrcDst->m_ppfChannels[kX][niSample] * m_fSinAlpha
+ pBFSrcDst->m_ppfChannels[kY][niSample] * m_fCosAlpha;
m_pfTempSample[kZ] = pBFSrcDst->m_ppfChannels[kZ][niSample];
m_pfTempSample[kX] = pBFSrcDst->m_ppfChannels[kX][niSample] * m_fCosAlpha
+ pBFSrcDst->m_ppfChannels[kY][niSample] * m_fSinAlpha;
// Beta rotation
pBFSrcDst->m_ppfChannels[kY][niSample] = m_pfTempSample[kY];
pBFSrcDst->m_ppfChannels[kZ][niSample] = m_pfTempSample[kZ] * m_fCosBeta
+ m_pfTempSample[kX] * m_fSinBeta;
pBFSrcDst->m_ppfChannels[kX][niSample] = m_pfTempSample[kX] * m_fCosBeta
- m_pfTempSample[kZ] * m_fSinBeta;
// Gamma rotation
m_pfTempSample[kY] = -pBFSrcDst->m_ppfChannels[kX][niSample] * m_fSinGamma
+ pBFSrcDst->m_ppfChannels[kY][niSample] * m_fCosGamma;
m_pfTempSample[kZ] = pBFSrcDst->m_ppfChannels[kZ][niSample];
m_pfTempSample[kX] = pBFSrcDst->m_ppfChannels[kX][niSample] * m_fCosGamma
+ pBFSrcDst->m_ppfChannels[kY][niSample] * m_fSinGamma;
pBFSrcDst->m_ppfChannels[kX][niSample] = m_pfTempSample[kX];
pBFSrcDst->m_ppfChannels[kY][niSample] = m_pfTempSample[kY];
pBFSrcDst->m_ppfChannels[kZ][niSample] = m_pfTempSample[kZ];
}
}
void CAmbisonicProcessor::ProcessOrder2_3D(CBFormat* pBFSrcDst, unsigned nSamples)
{
float fSqrt3 = sqrt(3.f);
for(unsigned niSample = 0; niSample < nSamples; niSample++)
{
// Alpha rotation
m_pfTempSample[kV] = - pBFSrcDst->m_ppfChannels[kU][niSample] * m_fSin2Alpha
+ pBFSrcDst->m_ppfChannels[kV][niSample] * m_fCos2Alpha;
m_pfTempSample[kT] = - pBFSrcDst->m_ppfChannels[kS][niSample] * m_fSinAlpha
+ pBFSrcDst->m_ppfChannels[kT][niSample] * m_fCosAlpha;
m_pfTempSample[kR] = pBFSrcDst->m_ppfChannels[kR][niSample];
m_pfTempSample[kS] = pBFSrcDst->m_ppfChannels[kS][niSample] * m_fCosAlpha
+ pBFSrcDst->m_ppfChannels[kT][niSample] * m_fSinAlpha;
m_pfTempSample[kU] = pBFSrcDst->m_ppfChannels[kU][niSample] * m_fCos2Alpha
+ pBFSrcDst->m_ppfChannels[kV][niSample] * m_fSin2Alpha;
// Beta rotation
pBFSrcDst->m_ppfChannels[kV][niSample] = -m_fSinBeta * m_pfTempSample[kT]
+ m_fCosBeta * m_pfTempSample[kV];
pBFSrcDst->m_ppfChannels[kT][niSample] = -m_fCosBeta * m_pfTempSample[kT]
+ m_fSinBeta * m_pfTempSample[kV];
pBFSrcDst->m_ppfChannels[kR][niSample] = (0.75f * m_fCos2Beta + 0.25f) * m_pfTempSample[kR]
+ (0.5 * fSqrt3 * pow(m_fSinBeta,2.0) ) * m_pfTempSample[kU]
+ (fSqrt3 * m_fSinBeta * m_fCosBeta) * m_pfTempSample[kS];
pBFSrcDst->m_ppfChannels[kS][niSample] = m_fCos2Beta * m_pfTempSample[kS]
- fSqrt3 * m_fCosBeta * m_fSinBeta * m_pfTempSample[kR]
+ m_fCosBeta * m_fSinBeta * m_pfTempSample[kU];
pBFSrcDst->m_ppfChannels[kU][niSample] = (0.25f * m_fCos2Beta + 0.75f) * m_pfTempSample[kU]
- m_fCosBeta * m_fSinBeta * m_pfTempSample[kS]
+0.5 * fSqrt3 * pow(m_fSinBeta,2.0) * m_pfTempSample[kR];
// Gamma rotation
m_pfTempSample[kV] = - pBFSrcDst->m_ppfChannels[kU][niSample] * m_fSin2Gamma
+ pBFSrcDst->m_ppfChannels[kV][niSample] * m_fCos2Gamma;
m_pfTempSample[kT] = - pBFSrcDst->m_ppfChannels[kS][niSample] * m_fSinGamma
+ pBFSrcDst->m_ppfChannels[kT][niSample] * m_fCosGamma;
m_pfTempSample[kR] = pBFSrcDst->m_ppfChannels[kR][niSample];
m_pfTempSample[kS] = pBFSrcDst->m_ppfChannels[kS][niSample] * m_fCosGamma
+ pBFSrcDst->m_ppfChannels[kT][niSample] * m_fSinGamma;
m_pfTempSample[kU] = pBFSrcDst->m_ppfChannels[kU][niSample] * m_fCos2Gamma
+ pBFSrcDst->m_ppfChannels[kV][niSample] * m_fSin2Gamma;
pBFSrcDst->m_ppfChannels[kR][niSample] = m_pfTempSample[kR];
pBFSrcDst->m_ppfChannels[kS][niSample] = m_pfTempSample[kS];
pBFSrcDst->m_ppfChannels[kT][niSample] = m_pfTempSample[kT];
pBFSrcDst->m_ppfChannels[kU][niSample] = m_pfTempSample[kU];
pBFSrcDst->m_ppfChannels[kV][niSample] = m_pfTempSample[kV];
}
}
void CAmbisonicProcessor::ProcessOrder3_3D(CBFormat* pBFSrcDst, unsigned nSamples)
{
/* (should move these somewhere that does recompute each time) */
float fSqrt3_2 = sqrt(3.f/2.f);
float fSqrt15 = sqrt(15.f);
float fSqrt5_2 = sqrt(5.f/2.f);
for(unsigned niSample = 0; niSample < nSamples; niSample++)
{
// Alpha rotation
m_pfTempSample[kQ] = - pBFSrcDst->m_ppfChannels[kP][niSample] * m_fSin3Alpha
+ pBFSrcDst->m_ppfChannels[kQ][niSample] * m_fCos3Alpha;
m_pfTempSample[kO] = - pBFSrcDst->m_ppfChannels[kN][niSample] * m_fSin2Alpha
+ pBFSrcDst->m_ppfChannels[kO][niSample] * m_fCos2Alpha;
m_pfTempSample[kM] = - pBFSrcDst->m_ppfChannels[kL][niSample] * m_fSinAlpha
+ pBFSrcDst->m_ppfChannels[kM][niSample] * m_fCosAlpha;
m_pfTempSample[kK] = pBFSrcDst->m_ppfChannels[kK][niSample];
m_pfTempSample[kL] = pBFSrcDst->m_ppfChannels[kL][niSample] * m_fCosAlpha
+ pBFSrcDst->m_ppfChannels[kM][niSample] * m_fSinAlpha;
m_pfTempSample[kN] = pBFSrcDst->m_ppfChannels[kN][niSample] * m_fCos2Alpha
+ pBFSrcDst->m_ppfChannels[kO][niSample] * m_fSin2Alpha;
m_pfTempSample[kP] = pBFSrcDst->m_ppfChannels[kP][niSample] * m_fCos3Alpha
+ pBFSrcDst->m_ppfChannels[kQ][niSample] * m_fSin3Alpha;
// Beta rotation
pBFSrcDst->m_ppfChannels[kQ][niSample] = 0.125f * m_pfTempSample[kQ] * (5.f + 3.f*m_fCos2Beta)
- fSqrt3_2 * m_pfTempSample[kO] *m_fCosBeta * m_fSinBeta
+ 0.25f * fSqrt15 * m_pfTempSample[kM] * pow(m_fSinBeta,2.0f);
pBFSrcDst->m_ppfChannels[kO][niSample] = m_pfTempSample[kO] * m_fCos2Beta
- fSqrt5_2 * m_pfTempSample[kM] * m_fCosBeta * m_fSinBeta
+ fSqrt3_2 * m_pfTempSample[kQ] * m_fCosBeta * m_fSinBeta;
pBFSrcDst->m_ppfChannels[kM][niSample] = 0.125f * m_pfTempSample[kM] * (3.f + 5.f*m_fCos2Beta)
- fSqrt5_2 * m_pfTempSample[kO] *m_fCosBeta * m_fSinBeta
+ 0.25f * fSqrt15 * m_pfTempSample[kQ] * pow(m_fSinBeta,2.0f);
pBFSrcDst->m_ppfChannels[kK][niSample] = 0.25f * m_pfTempSample[kK] * m_fCosBeta * (-1.f + 15.f*m_fCos2Beta)
+ 0.5f * fSqrt15 * m_pfTempSample[kN] * m_fCosBeta * pow(m_fSinBeta,2.f)
+ 0.5f * fSqrt5_2 * m_pfTempSample[kP] * pow(m_fSinBeta,3.f)
+ 0.125f * fSqrt3_2 * m_pfTempSample[kL] * (m_fSinBeta + 5.f * m_fSin3Beta);
pBFSrcDst->m_ppfChannels[kL][niSample] = 0.0625f * m_pfTempSample[kL] * (m_fCosBeta + 15.f * m_fCos3Beta)
+ 0.25f * fSqrt5_2 * m_pfTempSample[kN] * (1.f + 3.f * m_fCos2Beta) * m_fSinBeta
+ 0.25f * fSqrt15 * m_pfTempSample[kP] * m_fCosBeta * pow(m_fSinBeta,2.f)
- 0.125 * fSqrt3_2 * m_pfTempSample[kK] * (m_fSinBeta + 5.f * m_fSin3Beta);
pBFSrcDst->m_ppfChannels[kN][niSample] = 0.125f * m_pfTempSample[kN] * (5.f * m_fCosBeta + 3.f * m_fCos3Beta)
+ 0.25f * fSqrt3_2 * m_pfTempSample[kP] * (3.f + m_fCos2Beta) * m_fSinBeta
+ 0.5f * fSqrt15 * m_pfTempSample[kK] * m_fCosBeta * pow(m_fSinBeta,2.f)
+ 0.125 * fSqrt5_2 * m_pfTempSample[kL] * (m_fSinBeta - 3.f * m_fSin3Beta);
pBFSrcDst->m_ppfChannels[kP][niSample] = 0.0625f * m_pfTempSample[kP] * (15.f * m_fCosBeta + m_fCos3Beta)
- 0.25f * fSqrt3_2 * m_pfTempSample[kN] * (3.f + m_fCos2Beta) * m_fSinBeta
+ 0.25f * fSqrt15 * m_pfTempSample[kL] * m_fCosBeta * pow(m_fSinBeta,2.f)
- 0.5 * fSqrt5_2 * m_pfTempSample[kK] * pow(m_fSinBeta,3.f);
// Gamma rotation
m_pfTempSample[kQ] = - pBFSrcDst->m_ppfChannels[kP][niSample] * m_fSin3Gamma
+ pBFSrcDst->m_ppfChannels[kQ][niSample] * m_fCos3Gamma;
m_pfTempSample[kO] = - pBFSrcDst->m_ppfChannels[kN][niSample] * m_fSin2Gamma
+ pBFSrcDst->m_ppfChannels[kO][niSample] * m_fCos2Gamma;
m_pfTempSample[kM] = - pBFSrcDst->m_ppfChannels[kL][niSample] * m_fSinGamma
+ pBFSrcDst->m_ppfChannels[kM][niSample] * m_fCosGamma;
m_pfTempSample[kK] = pBFSrcDst->m_ppfChannels[kK][niSample];
m_pfTempSample[kL] = pBFSrcDst->m_ppfChannels[kL][niSample] * m_fCosGamma
+ pBFSrcDst->m_ppfChannels[kM][niSample] * m_fSinGamma;
m_pfTempSample[kN] = pBFSrcDst->m_ppfChannels[kN][niSample] * m_fCos2Gamma
+ pBFSrcDst->m_ppfChannels[kO][niSample] * m_fSin2Gamma;
m_pfTempSample[kP] = pBFSrcDst->m_ppfChannels[kP][niSample] * m_fCos3Gamma
+ pBFSrcDst->m_ppfChannels[kQ][niSample] * m_fSin3Gamma;
pBFSrcDst->m_ppfChannels[kQ][niSample] = m_pfTempSample[kQ];
pBFSrcDst->m_ppfChannels[kO][niSample] = m_pfTempSample[kO];
pBFSrcDst->m_ppfChannels[kM][niSample] = m_pfTempSample[kM];
pBFSrcDst->m_ppfChannels[kK][niSample] = m_pfTempSample[kK];
pBFSrcDst->m_ppfChannels[kL][niSample] = m_pfTempSample[kL];
pBFSrcDst->m_ppfChannels[kN][niSample] = m_pfTempSample[kN];
pBFSrcDst->m_ppfChannels[kP][niSample] = m_pfTempSample[kP];
}
}
// ACN/SN3D is generally only ever produced for 3D Ambisonics.
// If 2D Ambisonics is required then these equations need to be modified (they can be found in the 3D code for the first Z-rotation).
// Generally, 2D-only rotations do not make sense for use with 360 degree videos.
/*
void CAmbisonicProcessor::ProcessOrder1_2D(CBFormat* pBFSrcDst, unsigned nSamples)
{
for(unsigned niSample = 0; niSample < nSamples; niSample++)
{
//Yaw
m_pfTempSample[kX] = pBFSrcDst->m_ppfChannels[kX][niSample] * m_fCosYaw
- pBFSrcDst->m_ppfChannels[kY][niSample] * m_fSinYaw;
m_pfTempSample[kY] = pBFSrcDst->m_ppfChannels[kX][niSample] * m_fSinYaw
+ pBFSrcDst->m_ppfChannels[kY][niSample] * m_fCosYaw;
pBFSrcDst->m_ppfChannels[kX][niSample] = m_pfTempSample[kX];
pBFSrcDst->m_ppfChannels[kY][niSample] = m_pfTempSample[kY];
}
}
void CAmbisonicProcessor::ProcessOrder2_2D(CBFormat* pBFSrcDst, unsigned nSamples)
{
for(unsigned niSample = 0; niSample < nSamples; niSample++)
{
//Yaw
m_pfTempSample[kS] = pBFSrcDst->m_ppfChannels[kS][niSample] * m_fCosYaw
- pBFSrcDst->m_ppfChannels[kT][niSample] * m_fSinYaw;
m_pfTempSample[kT] = pBFSrcDst->m_ppfChannels[kS][niSample] * m_fSinYaw
+ pBFSrcDst->m_ppfChannels[kT][niSample] * m_fCosYaw;
m_pfTempSample[kU] = pBFSrcDst->m_ppfChannels[kU][niSample] * m_fCos2Yaw
- pBFSrcDst->m_ppfChannels[kV][niSample] * m_fSin2Yaw;
m_pfTempSample[kV] = pBFSrcDst->m_ppfChannels[kU][niSample] * m_fSin2Yaw
+ pBFSrcDst->m_ppfChannels[kV][niSample] * m_fCos2Yaw;
pBFSrcDst->m_ppfChannels[kS][niSample] = m_pfTempSample[kS];
pBFSrcDst->m_ppfChannels[kT][niSample] = m_pfTempSample[kT];
pBFSrcDst->m_ppfChannels[kU][niSample] = m_pfTempSample[kU];
pBFSrcDst->m_ppfChannels[kV][niSample] = m_pfTempSample[kV];
}
}
void CAmbisonicProcessor::ProcessOrder3_2D(CBFormat* pBFSrcDst, unsigned nSamples)
{
//TODO
}
*/
void CAmbisonicProcessor::ShelfFilterOrder(CBFormat* pBFSrcDst, unsigned nSamples)
{
kiss_fft_cpx cpTemp;
unsigned iChannelOrder = 0;
// Filter the Ambisonics channels
// All channels are filtered using linear phase FIR filters.
// In the case of the 0th order signal (W channel) this takes the form of a delay
// For all other channels shelf filters are used
memset(m_pfScratchBufferA, 0, m_nFFTSize * sizeof(float));
for(unsigned niChannel = 0; niChannel < m_nChannelCount; niChannel++)
{
iChannelOrder = int(sqrt(niChannel)); //get the order of the current channel
memcpy(m_pfScratchBufferA, pBFSrcDst->m_ppfChannels[niChannel], m_nBlockSize * sizeof(float));
memset(&m_pfScratchBufferA[m_nBlockSize], 0, (m_nFFTSize - m_nBlockSize) * sizeof(float));
kiss_fftr(m_pFFT_psych_cfg, m_pfScratchBufferA, m_pcpScratch);
// Perform the convolution in the frequency domain
for(unsigned ni = 0; ni < m_nFFTBins; ni++)
{
cpTemp.r = m_pcpScratch[ni].r * m_ppcpPsychFilters[iChannelOrder][ni].r
- m_pcpScratch[ni].i * m_ppcpPsychFilters[iChannelOrder][ni].i;
cpTemp.i = m_pcpScratch[ni].r * m_ppcpPsychFilters[iChannelOrder][ni].i
+ m_pcpScratch[ni].i * m_ppcpPsychFilters[iChannelOrder][ni].r;
m_pcpScratch[ni] = cpTemp;
}
// Convert from frequency domain back to time domain
kiss_fftri(m_pIFFT_psych_cfg, m_pcpScratch, m_pfScratchBufferA);
for(unsigned ni = 0; ni < m_nFFTSize; ni++)
m_pfScratchBufferA[ni] *= m_fFFTScaler;
memcpy(pBFSrcDst->m_ppfChannels[niChannel], m_pfScratchBufferA, m_nBlockSize * sizeof(float));
for(unsigned ni = 0; ni < m_nOverlapLength; ni++)
{
pBFSrcDst->m_ppfChannels[niChannel][ni] += m_pfOverlap[niChannel][ni];
}
memcpy(m_pfOverlap[niChannel], &m_pfScratchBufferA[m_nBlockSize], m_nOverlapLength * sizeof(float));
}
}
|