1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
/* cjhtextregionbtree.h
*
* Copyright 2021 Christian Hergert <chergert@redhat.com>
*
* This file is free software; you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the Free
* Software Foundation; either version 2.1 of the License, or (at your option)
* any later version.
*
* This file is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*/
#pragma once
#include "cjhtextregionprivate.h"
G_BEGIN_DECLS
/* The following set of macros are used to create a queue similar to a
* double-ended linked list but using integers as indexes for items within the
* queue. Doing so allows for inserting or removing items from a b+tree node
* without having to memmove() data to maintain sorting orders.
*/
#define VAL_QUEUE_INVALID(Node) ((glib_typeof((Node)->head))-1)
#define VAL_QUEUE_LENGTH(Node) ((Node)->length)
#define VAL_QUEUE_EMPTY(Node) ((Node)->head == VAL_QUEUE_INVALID(Node))
#define VAL_QUEUE_PEEK_HEAD(Node) ((Node)->head)
#define VAL_QUEUE_PEEK_TAIL(Node) ((Node)->tail)
#define VAL_QUEUE_IS_VALID(Node, ID) ((ID) != VAL_QUEUE_INVALID(Node))
#define VAL_QUEUE_NODE(Type, N_Items) \
struct { \
Type length; \
Type head; \
Type tail; \
struct { \
Type prev; \
Type next; \
} items[N_Items]; \
}
#define VAL_QUEUE_INIT(Node) \
G_STMT_START { \
(Node)->length = 0; \
(Node)->head = VAL_QUEUE_INVALID(Node); \
(Node)->tail = VAL_QUEUE_INVALID(Node); \
for (guint _i = 0; _i < G_N_ELEMENTS ((Node)->items); _i++) \
{ \
(Node)->items[_i].next = VAL_QUEUE_INVALID(Node); \
(Node)->items[_i].prev = VAL_QUEUE_INVALID(Node); \
} \
} G_STMT_END
#ifndef G_DISABLE_ASSERT
# define _VAL_QUEUE_VALIDATE(Node) \
G_STMT_START { \
glib_typeof((Node)->head) count = 0; \
\
if ((Node)->tail != VAL_QUEUE_INVALID(Node)) \
g_assert_cmpint((Node)->items[(Node)->tail].next, ==, VAL_QUEUE_INVALID(Node)); \
if ((Node)->head != VAL_QUEUE_INVALID(Node)) \
g_assert_cmpint((Node)->items[(Node)->head].prev , ==, VAL_QUEUE_INVALID(Node)); \
\
for (glib_typeof((Node)->head) _viter = (Node)->head; \
VAL_QUEUE_IS_VALID(Node, _viter); \
_viter = (Node)->items[_viter].next) \
{ \
count++; \
} \
\
g_assert_cmpint(count, ==, (Node)->length); \
} G_STMT_END
#else
# define _VAL_QUEUE_VALIDATE(Node) G_STMT_START { } G_STMT_END
#endif
#define VAL_QUEUE_PUSH_HEAD(Node, ID) \
G_STMT_START { \
(Node)->items[ID].prev = VAL_QUEUE_INVALID(Node); \
(Node)->items[ID].next = (Node)->head; \
if (VAL_QUEUE_IS_VALID(Node, (Node)->head)) \
(Node)->items[(Node)->head].prev = ID; \
(Node)->head = ID; \
if (!VAL_QUEUE_IS_VALID(Node, (Node)->tail)) \
(Node)->tail = ID; \
(Node)->length++; \
_VAL_QUEUE_VALIDATE(Node); \
} G_STMT_END
#define VAL_QUEUE_PUSH_TAIL(Node, ID) \
G_STMT_START { \
(Node)->items[ID].prev = (Node)->tail; \
(Node)->items[ID].next = VAL_QUEUE_INVALID(Node); \
if (VAL_QUEUE_IS_VALID (Node, (Node)->tail)) \
(Node)->items[(Node)->tail].next = ID; \
(Node)->tail = ID; \
if (!VAL_QUEUE_IS_VALID(Node, (Node)->head)) \
(Node)->head = ID; \
(Node)->length++; \
_VAL_QUEUE_VALIDATE(Node); \
} G_STMT_END
#define VAL_QUEUE_INSERT(Node, Nth, Val) \
G_STMT_START { \
g_assert_cmpint (VAL_QUEUE_LENGTH(Node),<,G_N_ELEMENTS((Node)->items)); \
\
if ((Nth) == 0) \
{ \
VAL_QUEUE_PUSH_HEAD(Node, Val); \
} \
else if ((Nth) == (Node)->length) \
{ \
VAL_QUEUE_PUSH_TAIL(Node, Val); \
} \
else \
{ \
glib_typeof((Node)->head) ID; \
glib_typeof((Node)->head) _nth; \
\
g_assert_cmpint (VAL_QUEUE_LENGTH(Node), >, 0); \
g_assert (VAL_QUEUE_IS_VALID(Node, (Node)->head)); \
g_assert (VAL_QUEUE_IS_VALID(Node, (Node)->tail)); \
\
for (ID = (Node)->head, _nth = 0; \
_nth < (Nth) && VAL_QUEUE_IS_VALID(Node, ID); \
ID = (Node)->items[ID].next, ++_nth) \
{ /* Do Nothing */ } \
\
g_assert (VAL_QUEUE_IS_VALID(Node, ID)); \
g_assert (VAL_QUEUE_IS_VALID(Node, (Node)->items[ID].prev)); \
\
(Node)->items[Val].prev = (Node)->items[ID].prev; \
(Node)->items[Val].next = ID; \
(Node)->items[(Node)->items[ID].prev].next = Val; \
(Node)->items[ID].prev = Val; \
\
(Node)->length++; \
\
_VAL_QUEUE_VALIDATE(Node); \
} \
} G_STMT_END
#define VAL_QUEUE_POP_HEAD(Node,_pos) VAL_QUEUE_POP_NTH((Node), 0, _pos)
#define VAL_QUEUE_POP_TAIL(Node,_pos) VAL_QUEUE_POP_NTH((Node), (Node)->length - 1, _pos)
#define VAL_QUEUE_POP_AT(Node, _pos) \
G_STMT_START { \
g_assert (_pos != VAL_QUEUE_INVALID(Node)); \
g_assert (_pos < G_N_ELEMENTS ((Node)->items)); \
\
if ((Node)->items[_pos].prev != VAL_QUEUE_INVALID(Node)) \
(Node)->items[(Node)->items[_pos].prev].next = (Node)->items[_pos].next; \
if ((Node)->items[_pos].next != VAL_QUEUE_INVALID(Node)) \
(Node)->items[(Node)->items[_pos].next].prev = (Node)->items[_pos].prev; \
if ((Node)->head == _pos) \
(Node)->head = (Node)->items[_pos].next; \
if ((Node)->tail == _pos) \
(Node)->tail = (Node)->items[_pos].prev; \
\
(Node)->items[_pos].prev = VAL_QUEUE_INVALID((Node)); \
(Node)->items[_pos].next = VAL_QUEUE_INVALID((Node)); \
\
(Node)->length--; \
\
_VAL_QUEUE_VALIDATE(Node); \
} G_STMT_END
#define VAL_QUEUE_POP_NTH(Node, Nth, _pos) \
G_STMT_START { \
_pos = VAL_QUEUE_INVALID(Node); \
\
if (Nth == 0) \
_pos = (Node)->head; \
else if (Nth >= (((Node)->length) - 1)) \
_pos = (Node)->tail; \
else \
VAL_QUEUE_NTH (Node, Nth, _pos); \
\
if (_pos != VAL_QUEUE_INVALID(Node)) \
VAL_QUEUE_POP_AT (Node, _pos); \
} G_STMT_END
#define VAL_QUEUE_NTH(Node, Nth, _iter) \
G_STMT_START { \
glib_typeof((Node)->head) _nth; \
if (Nth == 0) \
_iter = (Node)->head; \
else if (Nth >= (((Node)->length) - 1)) \
_iter = (Node)->tail; \
else \
{ \
for (_iter = (Node)->head, _nth = 0; \
_nth < (Nth); \
_iter = (Node)->items[_iter].next, ++_nth) \
{ \
/* Do Nothing */ \
g_assert (_iter != VAL_QUEUE_INVALID(Node)); \
} \
} \
} G_STMT_END
#define _VAL_QUEUE_MOVE(Node, Old, New) \
G_STMT_START { \
(Node)->items[New] = (Node)->items[Old]; \
if ((Node)->items[New].prev != VAL_QUEUE_INVALID(Node)) \
(Node)->items[(Node)->items[New].prev].next = New; \
if ((Node)->items[New].next != VAL_QUEUE_INVALID(Node)) \
(Node)->items[(Node)->items[New].next].prev = New; \
if ((Node)->head == Old) \
(Node)->head = New; \
if ((Node)->tail == Old) \
(Node)->tail = New; \
} G_STMT_END
/*
* SORTED_ARRAY_FIELD:
* @TYPE: The type of the structure used by elements in the array
* @N_ITEMS: The maximum number of items in the array
*
* This creates a new inline structure that can be embedded within
* other super-structures.
*
* @N_ITEMS must be <= 254 or this macro will fail.
*/
#define SORTED_ARRAY_FIELD(TYPE,N_ITEMS) \
struct { \
TYPE items[N_ITEMS]; \
VAL_QUEUE_NODE(guint8, N_ITEMS) q; \
}
/*
* SORTED_ARRAY_INIT:
* @FIELD: A pointer to a SortedArray
*
* This will initialize a node that has been previously registered
* using %SORTED_ARRAY_FIELD(). You must call this macro before
* using the SortedArray structure.
*/
#define SORTED_ARRAY_INIT(FIELD) \
G_STMT_START { \
G_STATIC_ASSERT (G_N_ELEMENTS((FIELD)->items) < 255); \
VAL_QUEUE_INIT(&(FIELD)->q); \
} G_STMT_END
/*
* SORTED_ARRAY_LENGTH:
* @FIELD: A pointer to the SortedArray field.
*
* This macro will evaluate to the number of items inserted into
* the SortedArray.
*/
#define SORTED_ARRAY_LENGTH(FIELD) (VAL_QUEUE_LENGTH(&(FIELD)->q))
/*
* SORTED_ARRAY_CAPACITY:
* @FIELD: A pointer to the SortedArray field.
*
* This macro will evaluate to the number of elements in the SortedArray.
* This is dependent on how the SortedArray was instantiated using
* the %SORTED_ARRAY_FIELD() macro.
*/
#define SORTED_ARRAY_CAPACITY(FIELD) (G_N_ELEMENTS((FIELD)->items))
/*
* SORTED_ARRAY_IS_FULL:
* @FIELD: A pointer to the SortedArray field.
*
* This macro will evaluate to 1 if the SortedArray is at capacity.
* Otherwise, the macro will evaluate to 0.
*/
#define SORTED_ARRAY_IS_FULL(FIELD) (SORTED_ARRAY_LENGTH(FIELD) == SORTED_ARRAY_CAPACITY(FIELD))
/*
* SORTED_ARRAY_IS_EMPTY:
* @FIELD: A SortedArray field
*
* This macro will evaluate to 1 if the SortedArray contains zero children.
*/
#define SORTED_ARRAY_IS_EMPTY(FIELD) (SORTED_ARRAY_LENGTH(FIELD) == 0)
/*
* SORTED_ARRAY_INSERT_VAL:
* @FIELD: A pointer to a SortedArray field.
* @POSITION: the logical position at which to insert
* @ELEMENT: The element to insert
*
* This will insert a new item into the array. It is invalid API use
* to call this function while the SortedArray is at capacity. Check
* SORTED_ARRAY_IS_FULL() before using this function to be certain.
*/
#define SORTED_ARRAY_INSERT_VAL(FIELD,POSITION,ELEMENT) \
G_STMT_START { \
guint8 _pos; \
\
g_assert (POSITION <= SORTED_ARRAY_LENGTH(FIELD)); \
\
_pos = VAL_QUEUE_LENGTH(&(FIELD)->q); \
g_assert (_pos != VAL_QUEUE_INVALID(&(FIELD)->q)); \
(FIELD)->items[_pos] = ELEMENT; \
VAL_QUEUE_INSERT(&(FIELD)->q, POSITION, _pos); \
} G_STMT_END
#define SORTED_ARRAY_REMOVE_INDEX(FIELD,POSITION,_ele) \
G_STMT_START { \
guint8 _pos; \
guint8 _len; \
\
VAL_QUEUE_POP_NTH(&(FIELD)->q, POSITION, _pos); \
if (_pos == VAL_QUEUE_INVALID(&(FIELD)->q)) \
{ \
g_assert_not_reached (); \
break; \
} \
\
_ele = (FIELD)->items[_pos]; \
_len = VAL_QUEUE_LENGTH(&(FIELD)->q); \
\
/* We must preserve our invariant of having no empty gaps \
* in the array so that se can place new items always at the \
* end (to avoid scanning for an empty spot). \
* Therefore we move our tail item into the removed slot and \
* adjust the iqueue positions (which are all O(1). \
*/ \
\
if (_pos < _len) \
{ \
(FIELD)->items[_pos] = (FIELD)->items[_len]; \
_VAL_QUEUE_MOVE(&(FIELD)->q, _len, _pos); \
} \
} G_STMT_END
/* SORTED_ARRAY_FOREACH_REMOVE:
*
* This a form of SORTED_ARRAY_REMOVE_INDEX but to be used when you
* are within a SORTED_ARRAY_FOREACH() to avoid extra scanning.
*/
#define SORTED_ARRAY_FOREACH_REMOVE(FIELD) \
G_STMT_START { \
guint8 _pos = _current; \
guint8 _len = VAL_QUEUE_LENGTH(&(FIELD)->q); \
\
g_assert (_len > 0); \
g_assert (_pos < _len); \
VAL_QUEUE_POP_AT(&(FIELD)->q, _pos); \
g_assert (VAL_QUEUE_LENGTH(&(FIELD)->q) == _len-1); \
_len--; \
\
/* We must preserve our invariant of having no empty gaps \
* in the array so that se can place new items always at the \
* end (to avoid scanning for an empty spot). \
* Therefore we move our tail item into the removed slot and \
* adjust the iqueue positions (which are all O(1). \
*/ \
\
if (_pos < _len) \
{ \
(FIELD)->items[_pos] = (FIELD)->items[_len]; \
_VAL_QUEUE_MOVE(&(FIELD)->q, _len, _pos); \
\
/* We might need to change the iter if next position moved */ \
if (_aiter == _len) \
_aiter = _pos; \
} \
\
} G_STMT_END
/*
* SORTED_ARRAY_FOREACH:
* @FIELD: A pointer to a SortedArray
* @Element: The type of the elements in @FIELD
* @Name: the name for a pointer of type @Element
* @LABlock: a {} tyle block to execute for each item. You may use
* "break" to exit the foreach.
*
* Calls @Block for every element stored in @FIELD. A pointer to
* each element will be provided as a variable named @Name.
*/
#define SORTED_ARRAY_FOREACH(FIELD, Element, Name, LABlock) \
G_STMT_START { \
for (glib_typeof((FIELD)->q.head) _aiter = (FIELD)->q.head; \
_aiter != VAL_QUEUE_INVALID(&(FIELD)->q); \
/* Do Nothing */) \
{ \
G_GNUC_UNUSED glib_typeof((FIELD)->q.head) _current = _aiter; \
Element * Name = &(FIELD)->items[_aiter]; \
_aiter = (FIELD)->q.items[_aiter].next; \
LABlock \
} \
} G_STMT_END
#define SORTED_ARRAY_FOREACH_REVERSE(FIELD, Element, Name, LABlock) \
G_STMT_START { \
for (glib_typeof((FIELD)->q.head) _aiter = (FIELD)->q.tail; \
_aiter != VAL_QUEUE_INVALID(&(FIELD)->q); \
/* Do Nothing */) \
{ \
G_GNUC_UNUSED glib_typeof((FIELD)->q.head) _current = _aiter; \
Element * Name = &(FIELD)->items[_aiter]; \
_aiter = (FIELD)->q.items[_aiter].prev; \
LABlock \
} \
} G_STMT_END
#define SORTED_ARRAY_FOREACH_PEEK(FIELD) \
(((FIELD)->q.items[_current].next != VAL_QUEUE_INVALID(&(FIELD)->q)) \
? &(FIELD)->items[(FIELD)->q.items[_current].next] : NULL)
#define SORTED_ARRAY_SPLIT(FIELD, SPLIT) \
G_STMT_START { \
guint8 _mid; \
\
SORTED_ARRAY_INIT(SPLIT); \
\
_mid = SORTED_ARRAY_LENGTH(FIELD) / 2; \
\
for (guint8 _z = 0; _z < _mid; _z++) \
{ \
glib_typeof((FIELD)->items[0]) ele; \
SORTED_ARRAY_POP_TAIL(FIELD, ele); \
SORTED_ARRAY_PUSH_HEAD(SPLIT, ele); \
} \
} G_STMT_END
#define SORTED_ARRAY_SPLIT2(FIELD, LEFT, RIGHT) \
G_STMT_START { \
guint8 mid; \
\
SORTED_ARRAY_INIT(LEFT); \
SORTED_ARRAY_INIT(RIGHT); \
\
mid = SORTED_ARRAY_LENGTH(FIELD) / 2; \
\
for (guint8 i = 0; i < mid; i++) \
{ \
glib_typeof((FIELD)->items[0]) ele; \
SORTED_ARRAY_POP_TAIL(FIELD, ele); \
SORTED_ARRAY_PUSH_HEAD(RIGHT, ele); \
} \
\
while (!SORTED_ARRAY_IS_EMPTY(FIELD)) \
{ \
glib_typeof((FIELD)->items[0]) ele; \
SORTED_ARRAY_POP_TAIL(FIELD, ele); \
SORTED_ARRAY_PUSH_HEAD(LEFT, ele); \
} \
} G_STMT_END
#define SORTED_ARRAY_PEEK_HEAD(FIELD) ((FIELD)->items[VAL_QUEUE_PEEK_HEAD(&(FIELD)->q)])
#define SORTED_ARRAY_POP_HEAD(FIELD,_ele) SORTED_ARRAY_REMOVE_INDEX(FIELD, 0, _ele)
#define SORTED_ARRAY_POP_TAIL(FIELD,_ele) SORTED_ARRAY_REMOVE_INDEX(FIELD, SORTED_ARRAY_LENGTH(FIELD)-1, _ele)
#define SORTED_ARRAY_PUSH_HEAD(FIELD, ele) \
G_STMT_START { \
guint8 _pos = VAL_QUEUE_LENGTH(&(FIELD)->q); \
g_assert_cmpint (_pos, <, G_N_ELEMENTS ((FIELD)->items)); \
(FIELD)->items[_pos] = ele; \
VAL_QUEUE_PUSH_HEAD(&(FIELD)->q, _pos); \
} G_STMT_END
#define SORTED_ARRAY_PUSH_TAIL(FIELD, ele) \
G_STMT_START { \
guint8 _pos = VAL_QUEUE_LENGTH(&(FIELD)->q); \
g_assert_cmpint (_pos, <, G_N_ELEMENTS ((FIELD)->items)); \
(FIELD)->items[_pos] = ele; \
VAL_QUEUE_PUSH_TAIL(&(FIELD)->q, _pos); \
} G_STMT_END
#define CJH_TEXT_REGION_MAX_BRANCHES 26
#define CJH_TEXT_REGION_MIN_BRANCHES (CJH_TEXT_REGION_MAX_BRANCHES/3)
#define CJH_TEXT_REGION_MAX_RUNS 26
#define CJH_TEXT_REGION_MIN_RUNS (CJH_TEXT_REGION_MAX_RUNS/3)
typedef union _CjhTextRegionNode CjhTextRegionNode;
typedef struct _CjhTextRegionBranch CjhTextRegionBranch;
typedef struct _CjhTextRegionLeaf CjhTextRegionLeaf;
typedef struct _CjhTextRegionChild CjhTextRegionChild;
struct _CjhTextRegionChild
{
CjhTextRegionNode *node;
gsize length;
};
struct _CjhTextRegionBranch
{
CjhTextRegionNode *tagged_parent;
CjhTextRegionNode *prev;
CjhTextRegionNode *next;
SORTED_ARRAY_FIELD (CjhTextRegionChild, CJH_TEXT_REGION_MAX_BRANCHES) children;
};
struct _CjhTextRegionLeaf
{
CjhTextRegionNode *tagged_parent;
CjhTextRegionNode *prev;
CjhTextRegionNode *next;
SORTED_ARRAY_FIELD (CjhTextRegionRun, CJH_TEXT_REGION_MAX_RUNS) runs;
};
union _CjhTextRegionNode
{
/* pointer to the parent, low bit 0x1 means leaf node */
CjhTextRegionNode *tagged_parent;
struct _CjhTextRegionLeaf leaf;
struct _CjhTextRegionBranch branch;
};
struct _CjhTextRegion
{
CjhTextRegionNode root;
CjhTextRegionJoinFunc join_func;
CjhTextRegionSplitFunc split_func;
gsize length;
CjhTextRegionNode *cached_result;
gsize cached_result_offset;
};
#define TAG(ptr,val) GSIZE_TO_POINTER(GPOINTER_TO_SIZE(ptr)|(gsize)val)
#define UNTAG(ptr) GSIZE_TO_POINTER(GPOINTER_TO_SIZE(ptr) & ~(gsize)1)
static inline CjhTextRegionNode *
cjh_text_region_node_get_parent (CjhTextRegionNode *node)
{
if (node == NULL)
return NULL;
return UNTAG (node->tagged_parent);
}
static inline gboolean
cjh_text_region_node_is_leaf (CjhTextRegionNode *node)
{
CjhTextRegionNode *parent = cjh_text_region_node_get_parent (node);
return parent != NULL && node->tagged_parent != parent;
}
static inline void
cjh_text_region_node_set_parent (CjhTextRegionNode *node,
CjhTextRegionNode *parent)
{
node->tagged_parent = TAG (parent, cjh_text_region_node_is_leaf (node));
}
static inline gsize
cjh_text_region_node_length (CjhTextRegionNode *node)
{
gsize length = 0;
g_assert (node != NULL);
if (cjh_text_region_node_is_leaf (node))
{
SORTED_ARRAY_FOREACH (&node->leaf.runs, CjhTextRegionRun, run, {
length += run->length;
});
}
else
{
SORTED_ARRAY_FOREACH (&node->branch.children, CjhTextRegionChild, child, {
length += child->length;
});
}
return length;
}
static inline CjhTextRegionNode *
_cjh_text_region_get_first_leaf (CjhTextRegion *self)
{
for (CjhTextRegionNode *iter = &self->root;
iter;
iter = SORTED_ARRAY_PEEK_HEAD (&iter->branch.children).node)
{
if (cjh_text_region_node_is_leaf (iter))
return iter;
}
g_assert_not_reached ();
}
G_END_DECLS
|