
1

SPHINX: A Password Store that Perfectly Hides
Passwords from Itself

Maliheh Shirvanian∗, Stanislaw Jarecki†, Hugo Krawczyk‡ and Nitesh Saxena∗
∗University of Alabama at Birmingham Email: maliheh@uab.edu , saxena@uab.edu

†University of California at Irvine Email: stasio@ics.uci.edu ‡IBM Research Email:hugo@ee.technion.ac.il

Abstract—Password managers (aka stores or vaults) allows a
user to store and retrieve (usually high-entropy) passwords for
her multiple password-protected services by interacting with a
“device” serving the role of the manager (e.g., a smartphone
or an online third-party service) on the basis of a single
memorable (low-entropy) master password. Existing password
managers work well to defeat offline dictionary attacks upon web
service compromise, assuming the use of high-entropy passwords
is enforced. However, they are vulnerable to leakage of all
passwords in the event the device is compromised or malicious,
due to the need to store the passwords encrypted under master
password and/or the need to input the master password to
the device (as in smartphone managers). Evidence exists that
password managers can be attractive attack targets.

In this paper, we introduce a novel approach to password
management, called SPHINX, which remains secure even when the
password manager itself has been compromised. In SPHINX, the
information stored on the device is information theoretically in-
dependent of the user’s master password — an attacker breaking
into the device learns no information about the master password
or the user’s individual passwords. Moreover, an attacker with
full control of the device, even at the time the user interacts with
it, learns nothing about the master password — the password
is not entered into the device in plaintext form or in any other
way that may leak information on it. Unlike existing managers,
SPHINX produces strictly high-entropy passwords and makes it
compulsory for the users to register these randomized passwords
with the web services, hence fully defeating offline dictionary at-
tack upon service compromise. As an important added advantage
over existing managers, that require some form of secure channels
between the device and the client machine from which the user
logs in, SPHINX can work with non-confidential channels. The
design and security of SPHINX is based on the device-enhanced
PAKE model of Jarecki et al. that provides the theoretical basis
for this construction and is backed by cryptographic proofs of
security.

While SPHINX is suitable for different device platforms, in
this paper, we report on its concrete instantiation on smartphones
given their popularity and trustworthiness as password managers
(or even two-factor authentication). We present the design,
implementation and performance evaluation of SPHINX, offering
prototype browser plugins, smartphone apps and transparent
device-client communication. Based on our inspection analysis,
the overall user experience of SPHINX is better than the current
smartphone managers. We also report on a lab-based usability
study of SPHINX, which indicates that users’ perception of
SPHINX security and usability is high and satisfactory when
compared to regular password-based authentication. Finally, we
discuss how SPHINX may be extended to an online service for
the purpose of back-up or as an independent password manager.

This document is an extension to a paper published in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). This
version provides more details on the protocol and expands information on the
usability study as presented in the appendix.

I. INTRODUCTION

The central role of passwords for authentication and for
gaining access to resources, from casual website visits to
national security, is well known. Equally well known are the
major security vulnerabilities of such mechanisms spawned
by the limitations of human memory and the consequent low
entropy of passwords (e.g., [15], [18], [36], [41]). Such low-
entropy passwords are vulnerable to both online guessing and
offline dictionary attacks that build on password dictionaries
from which a significant portion of passwords are chosen.
Candidate passwords for authenticating a user to a server can
be tested by an attacker through online interactions with the
server. Even more seriously, an attacker breaking into a server
can mount an offline attack that uses information stored on the
server to test the different passwords in the dictionary. Such
offline dictionary attacks are an increasingly important concern
(see, e.g. [12], [13]), especially in light of frequent attacks
against major commercial vendors, as recently experienced,
e.g., by PayPal [2], LinkedIn [7], Blizzard [3] and Gmail
[6]. The offline attacks are particularly devastating as a single
server break-in may lead to extraordinary numbers of com-
promised passwords [5], [14]. Furthermore, since many users
re-use their passwords across multiple services, compromising
one service often compromises user accounts at other services.

Numerous approaches have been proposed by researchers
and practitioners to improve the security of passwords from
the client-side or user-side alone (i.e., without making any
changes to a persistent server that uses traditional password-
based authentication). One broad class of such approaches is
referred to as password managers (also known as password
stores or vaults) and forms the central focus of this paper.

Traditional password managers (e.g., [1], [11]) allow the
user to store and retrieve (usually high-entropy) passwords,
denoted by rwd, for her multiple password-protected services
by interacting with a “device” serving the role of the manager
(a smartphone or an online third-party service)1 on the basis of
a single (low-entropy) master password, denoted pwd. These
rwd’s are usually stored on the device encrypted under pwd.
In case of online password managers, the user provides pwd
to the service, which then unlocks and sends rwd to the user
(over a protected channel). In case of smartphone managers,
the user enters pwd directly on the device, the device unlocks

1Password managers that store rwd’s on the client machine (browser) itself
(e.g., [10]), make it very hard for the user to move from one client to another;
and if syncing of stored passwords across multiple clients through an online
server is enabled, they may actually be equivalent to online managers.

2

rwd and displays it on the screen, and the user then manually
copies pwd over to the client machine.

These password managers clearly alleviate the memoriza-
tion burden on the user, and work well to defeat offline
dictionary attacks upon web service compromise, assuming
the use of high-entropy rwd’s is enforced. However, they are
vulnerable to leakage of rwd’s in the event the device is
compromised or is itself malicious, due to: (1) the storing
of the passwords rwd’s encrypted under pwd, and/or (2) the
need to input the master password to the device (smartphone
managers). In the first case, after retrieving encrypted rwd’s
from the storage unit of the manager, the attacker can launch
an offline dictionary attack against pwd. Such attacks are a
serious concern in light of recent breaches against commercial
online managers [40] and exfiltration approaches discussed in
the literature [33]. In the second case, pwd is directly exposed
to the attacker. With the advent of mobile computing, malware
that can compromise devices is becoming a major threat [4],
[9], [43], and thus existing smartphone managers open up a
significant vulnerability of exposing pwd upon entry and/or
leaking rwd’s upon offline dictionary attack.

Password encoding strategies have been proposed in the
literature to render offline dictionary attacks ineffective [20].
They introduce the notion of outputting decoy passwords to
an attacker who compromises the manager and attempts to
decrypt the passwords with a wrong master password. Since
the attacker is not aware of the correct password, any attempt
to login with the decoy passwords can be prevented and raise
an alert. However, such a scheme seems to be vulnerable
to an attack presented in [26], based on differences in the
distribution of the passwords.

Other advanced password management solutions have been
proposed that do not require storage of rwd’s [27], [37], [42].
For example, PwdHash [37], maps pwd to a rwd by hashing
(pwd, domain) pair and registering it as a strong password with
the server. PwdHash deterministically transforms a user’s pass-
word into a more complex password but this transformation
does not protect against dictionary attacks at a compromised
server. Moreover, if a user uses the same memorable password
pwd with PwdHash for different services, the compromise of
a single server leads to the discovery of pwd via an offline
dictionary attack and then to the (deterministic) calculation of
all the user’s passwords derived from pwd.

In this paper, we introduce, build and study SPHINX, a new
password manager that offers a high level of security even in
case the password manager itself is compromised. SPHINX’s
most appealing features are: (1) the information stored in the
device is information theoretically independent of the user’s
master password pwd; hence, an attacker breaking into the
device learns no information on pwd or the user’s individual
passwords rwd’s; and (2) an attacker with full control of the
device, even at the time the user interacts with it, learns
nothing about pwd; pwd is never entered into the device in
plaintext form or in any other way that may leak information
on it. The above properties hold unconditionally, even against
a computationally unbounded attacker.

Moreover, SPHINX produces strictly high-entropy rwd’s
and enforces the users to register these passwords with the web

services, while current managers may let the users choose low-
entropy passwords thereby still opening up the vulnerability
to offline dictionary attacks upon web service compromise.
As an added advantage over existing managers that require
some form of secure channels between the device and the
client machine from which the user logs in, SPHINX can work
with non-confidential channels. In particular, SPHINX does
not rely on PKI, an important advantage given the numerous
vulnerabilities of PKI to certification failures and man-in-the-
middle (MitM) attacks (either due to programmatic errors or
human mistakes), e.g., [22], [25], [38].

The design and security of SPHINX is based on the device-
enhanced password authenticated key exchange (DE-PAKE)
model of Jarecki et al. [29] that provides the theoretical basis
for this construction and is backed by cryptographic proofs
of security. The core technique is the use of an efficient
oblivious pseudo random function (OPRF) scheme [23], [24]
that transforms a human-memorable password into a random
password with the aid of a device without the need to store
the passwords on the device and without the device learning
anything about the password even when computing on it.
Specifically, when using SPHINX, for each service with which
the user has an account, the device stores a unique key k.
This key is used to map the user-memorized password pwd
(input by the user into the client) into a randomized password
rwd = Fk(pwd|domain) using the (oblivious) PRF Fk based
on a simple protocol between the device and the client. The
details of the protocol are described in the next section.

In sum, SPHINX offers the following simultaneous combi-
nation of security features:
1) Resistance to offline dictionary attacks under server com-

promise (or server being malicious), thanks to the use of
high-entropy (pseudo) random rwd.

2) Resistance to phishing attacks, due to the use of website
domain in the computation of rwd.

3) Resistance to offline dictionary attacks under device com-
promise (or device being malicious), in particular hiding
the user’s master password with information theoretic se-
curity.

4) Resistance to eavesdropping and MitM on the device-client
channel without the need to establish a secure channel (the
properties of the OPRF protocol executed over this channel
ensure that no additional protection is needed).

The last two security properties are unique to SPHINX, not
offered by any existing password managers. The first security
property is provided by default in SPHINX, while this property
may or may not be provided by existing managers depending
upon whether or not high-entropy passwords are enforced by
the manager. The contrasts are summarized in Table I.

Security is not the only attractive feature of SPHINX.
SPHINX also strives to provide a level of user experience close
to that of password-only authentication but without the burden
of remembering multiple passwords, and with full-entropy per-
site derived passwords.

Detailed Contributions: While SPHINX is suitable for differ-
ent types of devices, in this paper, we report on its concrete
instantiation developed on personal smartphones given their

3

TABLE I: Security properties of SPHINX in contrast to current managers. Highlighted cells represent the unique advantages offered by SPHINX compared to other managers.

Resistance to: SPHINX Current Managers
Offline dictionary attacks under server compromise
(or server being malicious)

Yes, by enforcing random
independent passwords per site.

Only if manager enforces
high-entropy per-site passwords.

Phishing attacks Yes, by incorporating domain name. Only the hash-based managers [27], [37], [42].
Offline dictionary attacks under device compromise
(or device being malicious)

Yes, perfect security
(information theoretic secrecy).

No, passwords are stored or
entered on the manager.

Eavesdropping and/or man-in-the-middle attacks
on the device-client channel

Yes, without the need to
establish a confidential channel.

Enforced by external mechanisms or
physical security assumptions∗.

∗ Current online managers require confidential and authenticated channels, while current smartphone managers require confidential channels.

popularity and trustworthiness as password managers (or even
two-factor authentication) as suggested in the study of [30].
1) A Secure Password Manager (Section II): We introduce

SPHINX, a cryptographic password manager application
that perfectly hides passwords from itself, from eaves-
droppers and from active attackers. SPHINX is a novel
application of the general device-enhanced password key
exchange (DE-PAKE) framework from [29]. DE-PAKE
is a broad modular cryptographic primitive with several
possible applications. SPHINX uses an instantiation of DE-
PAKE that works with no modification on the current web
services that use password-only authentication (in partic-
ular, allowing for the use of SPHINX with typical TLS-
enabled services that use the password-over-TLS protocol).
This practical application was not studied by the authors
of [29].

2) System Design and Implementation (Section III): We
present the design, implementation and performance evalu-
ation of a full smartphone-based SPHINX system offering a
prototype browser (Chrome) plugin and a device (Android)
app2. As a main component of our design, we highlight and
address the challenges associated in building transparent
bidirectional browser-device channel.

3) Usability Study (Sections IV and V): We report on a usabil-
ity study of our SPHINX smartphone manager conducted in
lab settings with participants of different educational back-
grounds but none skilled in computer security. The study
follows a methodology in line with prior notable studies
of password managers [21], [31]. Our results suggest that
users’ perception of SPHINX security and usability is
high, and that SPHINX user experience is satisfactory
when compared to regular password authentication using a
human-memorable password (a baseline used in our study).
We also show that SPHINX imposes lesser cognitive load
on the users than traditional smartphone managers.

Scope of the Work: Just like any other smartphone man-
ager (and even currently deployed two-factor authentication
schemes), our studied SPHINX instantiation assumes the avail-
ability of the smartphone during the authentication process.
Based on this assumption, it simultaneously provides security
properties 1-4 above, and a satisfactory level of user experi-
ence when compared to regular password-only authentication.

Like any password management approach, providing pro-
tection in the event of client compromise is beyond the scope
of SPHINX. While some protection is provided by SPHINX
in the form of anti-phishing defenses and the ability to block

2A brief video, demonstrating the implemented prototype can be found at
https://sites.google.com/site/stopsmanager/demo

remote adversarial activity by requiring user confirmation on
the device upon SPHINX invocation, comprehensive defenses
based on two-factor authentication (TFA) techniques would
entitle server-side changes which password managers avoid.
Integrating SPHINX with a TFA solution is possible but we
leave this as an item of future work.

A further extension of our work could support a
SPHINX online instantiation that replaces or complements
the smartphone-based instantiation (e.g., as a main password
manager or as a backup to the smartphone instantiation). The
security properties of SPHINX, particularly its resistance to
device compromise and security against active man-in-the-
middle attackers on client-device channel without the need for
confidential channels, make the online variant very appealing.
Although we discuss how our work can be extended in the
future to such an online case, building and testing the full
implementation is beyond the scope of the current paper.

II. OUR APPROACH

A. Background

We first review the notion of Device-Enhanced Password-
Authenticated Key Exchange (DE-PAKE) introduced in [29], a
cryptographic primitive which gives rise to our SPHINX appli-
cation. DE-PAKE [29] securely transforms a user-memorable
password into a full-entropy random string (strong password)
by leveraging a secondary device, and then uses this random
password as an input to any password-based authenticated key
exchange protocol (PAKE) [16]. In [29], authors developed
such a “password-to-random” (PTR) protocol functionality and
studied its composition with any PAKE protocol, giving rise
to a DE-PAKE protocol that is resistant to online guessing
and offline dictionary attacks (under server and device com-
promise), without the need for confidential communication
between device and the authentication terminal (client).

In DE-PAKE protocol model, there are four parties: user,
client, server, and device, individually denoted U, C, S, and
D, respectively. U’s goal is to authenticate itself to S via C by
making use of a simple password and a personal device D. The
protocol has two phases: initialization and authenticated key
exchange. In the initialization phase, U chooses a password
from a given dictionary Dict. The initialization phase also
includes the device-client communication that establishes the
state stored at D, as well as interaction with S producing
a user’s state σS(U) that S stores while U only remembers
its password. After initialization, the link between U and D
is subject to the same man-in-the-middle adversarial activity
as in the links between U and S. In the authenticated key
exchange phase, U interacts with D over an authenticated
but unencrypted channel, and interacts with S over insecure

4

Fk(pwd|domain)

OPRF

(FK-PTR)
username, rwd

pwd

�Only k is stored

�k is unique to each service

�pwd or rwd is not stored

�Secure to offline dict. attack

�Alternative devices possible

�pwd is human-memorable

�pwd can be reused

�rwd is randomized

�rwd is unique to each service

�Secure to offline dict. attack

Non-confidential authenticated D-C channel

�Secure to guessing attack

�Phishing protection

TLS protected S-C channel

C: Browser extensionD: Android App

U: User

k H(rwd)

S: Server

outputs
inputs

rwd =

Fig. 1: A high-level overview of SPHINX. U enters memorable password pwd and
approves the communication on D (explicit consent), D and C run an OPRF protocol
(instantiated as FK-PTR) to construct a randomized password rwd, C sends rwd to S
over SSL/TLS to authenticate to the service. A smartphone instantiation is developed
and tested in the paper. However, the phone can be replaced with an online service.

(adversary-controlled) channel to authenticate itself to S and
establish session keys to protect subsequent communication
with S (e.g., to download emails).

The PTR protocol design [29] follows the “password hard-
ening” approach of Ford and Kaliski [23] (hence termed FK-
PTR). DE-PAKE model assumes a fully capable man-in-the-
middle attacker active on all the links between all parties and
one is allowed to compromise servers and devices at will.

B. SPHINX Overview and Features

SPHINX is a compelling application of the DE-PAKE
approach [29]. It is a password manager, transparent to any
existing web service that deploys password authentication.
As shown in Figure 1, U registers a hardened randomized
password rwd with S, but only remembers a memorable
password pwd that could be the same for multiple accounts
(we use the terms master password and memorable password
interchangeably). For each server S with which the user U has
an account, the device D stores a unique key k. The key is used
to map pwd into rwd using the (oblivious) PRF Fk such that
rwd = Fk(pwd|domain). pwd and rwd are never stored in C
and (in contrast to the current password managers neither rwd
nor pwd is ever stored in or exposed to D. Instead, D and C run
the PTR protocol to obliviously compute rwd at the login time.
The details of the protocol are described in the next subsection.
SPHINX offers several key security guarantees simultaneously
(individually as well as combined), namely:
1) Resistance to offline dictionary attacks under server

compromise (or server being malicious): In SPHINX, the
server stores the salted-hash of the randomized password
rwd, and hence the compromise of a server does not
help the attacker to learn rwd (or pwd). Note that a
dictionary attack is infeasible since rwd does not belong to
a dictionary known to the attacker (unlike other managers
which may not necessarily use randomized passwords).

2) Resistance to phishing attacks: SPHINX combines pwd
with the domain name of the web service to compute rwd
to provide protection under a phishing attack. The phisher
can not even perform an offline dictionary attack to learn
rwd or pwd.

3) Resistance to offline dictionary attacks under device
compromise (or device being malicious): SPHINX does
not leak any information about pwd or rwd to the device
or a potential malicious code running on the device, since

neither the pwd nor rwd is stored or entered on the device.
Therefore, any offline attack against the device (remote or
physical) does not reveal any information about the pwd
or rwd, even during a user’s active session.

4) Resistance to eavesdropping and man-in-the-middle
attacks on the device-client channel: SPHINX does not
require a confidential channel between the device and
client, but is secure against eavesdropping and MITM
attack over device-client channel.

As far as online guessing attacks are considered, the security
provided by smartphone SPHINX is equivalent to that of the
high-entropy rwd. Other smartphone managers have the same
level of security against online guessing attack, however, rwd’s
may or may not be high-entropy in other managers. When
considering the online instantiation of SPHINX, the security
against online guessing attack is equivalent to that of the
master password pwd, in line with other online managers.

Security is not the only compelling feature of SPHINX. It
also offers the following usability advantages:
1) Use of a human-memorable password: In SPHINX,

the user simply remembers pwd but registers a strong
randomized rwd with the service. Moreover, pwd can
be reused over multiple accounts without compromising
security, while rwd is unique to each service.

2) Easy password updates: Rather than asking the user to
frequently change the password and memorize the updated
password (as is a common practice today), only the key on
the device can be changed, which provides an improved
level of usability.

3) Use of multiple types of devices: Since no information
about pwd or rwd is learned by the device and the device-
client channel does not need to be a confidential channel, a
personal device could be a smartphone, a wearable device
(e.g., smartwatch) or even an online service (as will be
discussed in Section VI).

All the security and usability features are offered by
SPHINX simultaneously, while other password management
schemes only provide a partial subset of these properties,
especially no other scheme provides the last two properties.

C. SPHINX Protocol and System Details

In the standard password-only authentication schemes, U au-
thenticates to S using pwd. In the SPHINX protocol as shown
in Figure 3, C runs an instance of password authentication
protocol not on pwd, but on value rwd = Fk(pwd|domain)
where F is a pseudorandom function (PRF) and k is a
key held by D. Before authenticating to S, C contacts D
(through a client application) and obtains the rwd value using a
special-purpose (oblivious) PRF-evaluation protocol. Without
knowledge of k, the value rwd has full entropy in the range
set of function F and hence dictionary attacks do not apply
against rwd (not even if the server is compromised). Since
D holds only the PRF key k and S holds only information
related to pseudorandom value rwd, we can ensure that offline
attacks against pwd are also infeasible when S and/or D
are compromised. In the case of D compromise, the user’s
password is not exposed. Rather, security reduces to the

5

security of the memorable password (the attacker who obtains
D can attempt to guess pwd only in an online attack against
S).

The PRF protocol used in SPHINX is defined as PTR [29],
and is designed in a way that neither D or a MITM learn
anything about the password (pwd or rwd) and no one other
than D learns anything about the key.

The implementation of the SPHINX protocol is based on an
instantiation of the DE-PAKE primitive [29]. This instantiation
assumes a cyclic group G of prime order q, |q| = τ ,
with generator g. At initialization, U chooses and remembers
password pwd while D chooses and stores k ← Zq . To
retrieve rwd, C first blinds pwd by raising the hashed value
H ′(pwd|domain) to a random exponent ρ, and sends it to D.
This perfectly hides pwd from D and from any eavesdropper
on the U− D link. D checks that the received value is in the
group G and if so it raises it to the secret exponent k. Now,
C can de-blind this value by raising it to the power 1/ρ to
obtain H ′(pwd|domain)k. Finally, C hashes this value with
pwd to obtain rwd. The security of SPHINX directly follows
from the security of PTR and DE-PAKE (for formal security
arguments we refer the reader to [29]).

III. DESIGN, IMPLEMENTATION &
PERFORMANCE EVALUATION

In this paper, we instantiate SPHINX using the smartphone
as the device serving the role of the password manager. The
resulting system has two essential components as shown in
Figure 1, namely, the SPHINX browser extension and the
SPHINX Android application communicating with each other
over an authenticated channel to reconstruct the hardened
randomized password from the memorable password.

A. SPHINX Browser Extension

Step 1–Reading the password: The browser extension gets
activated once a predefined “@@” password prefix or the “F2”
function key is entered in the password field. This design
decision is similar to the approach of PwdHash [37] and
allows the user to choose whether to use the service for a
particular website or not (i.e., only passwords that are preceded
by the prefix undergo the protocol). After getting activated,
the extension reads the input password. The password prefix
is only a design choice and can be discarded from the design
at no additional security/usability cost.

Step 2–Hashing the password into the elliptic curve: The
password is input in a “Hash-into-Elliptic-Curve” function
H ′. We implemented H ′ using the Stanford Elliptic Curve
Cryptography and Core JavaScript libraries for curve and field
computation, and CryptoJS library for SHA-256 computation.
The Hash-into-Elliptic-Curve function maps the password into
a point on NIST P-256 curve. In this implementation, SHA-
256 of the input and the iteration counter is computed and
truncated into an element in Zq , and the computed value is
considered as the x coordinate of a point on the curve if the
y value associated with it is a quadratic residue (i.e. x and y
satisfy the curve equation). Otherwise, the same computation

is repeated until a curve element is obtained. Such a point on
the curve is the output of the hash function3. To add resistance
against phishing, password is concatenated with the domain
name and input into H ′.

Step 3–FK-PTR OPRF protocol: After computing the hash,
the extension follows its role in the OPRF function to blind
the password. The OPRF function [28] is defined as Fk(x) =
H(x, (H ′(x))k) with input x from the client and k from the
device. The OPRF works over group G of prime order p,
which in our implementation is an elliptic curve NIST P-
256 group. The input to the OPRF function is the password
concatenated with the domain name of the visited page. As
described in Figure 3, the extension picks a random number
ρ ∈ Zq and raises hash value of the input to the power ρ
(note that the use of the blinding factor ρ hides the password
with information-theoretic security), and sends it to the device
(we call this value α). In response, the extension receives
β = αk from the device. After checking the group membership
of β, the extension reconstruct the randomized password by
raising the received value to the power of ρ−1 ∈ Zq and
then computing SHA-256 hash of the calculated value. We
used Stanford Random Number Generator JavaScript API and
CryptoJS SHA-256 to generate the random number ρ. The
communication channel between the extension and the device
will be discussed in more detail in Section III-C.

Step 4–Entering the randomized password: The final step
performed by the extension is in line with the PwdHash
implementation. The output of the OPRF is encoded to a
random combination of letters, numbers and symbols matching
the password requirement of the visited website, and is re-
entered in the password field of the login page.

B. SPHINX Android Application

Step 1–Starting the FK-PTR protocol: In the first step the
Android app receives α = H ′(pwd|domain)ρ from the client,
checks the group membership of α, and computes β = αk. The
OPRF key k is picked by the device at the initialization phase
and is stored on the device. All elliptic curve functions in our
app are based on Java Security and Spongy Castle libraries.

Step 2.1–Explicit Consent Mode: In this optional step, which
we consider as the primary design option for SPHINX an
alert message is displayed on the device to make the user
aware of the ongoing login process. The user is required to
confirm the alert before the protocol continues to the next
step. We call this alert box the explicit consent on the device.
This design choice is made to ensure that the device does not
respond to unauthorized requests (without user’s awareness),
preventing an attacker who obtains the user’s master password
from authenticating to the service. We evaluated this option in
our usability study presented in Section V.

Step 2.2–Zero-Interaction Mode: In the second option, user
can disable the explicit consent requirement, for the appli-
cation to run on the device with zero interaction with the

3An alternative, robust to side channels, is to use a hashing-into-the-curve
mechanism such as Elligator 2 [17].

6

user, without seeking for user’s approval. This design choice is
assumed to be more usable and transparent to the user. Using
this option, an attacker who has obtained the master password
(e.g., with a shoulder surfing attack), might be able to login
to the service. Our hypothesis is that since this model does
not require any extra action from the user’s side, compared to
the password-only authentication model, its usability should
be similar to password-only systems, therefore, we did not
evaluate this option in our study.

Step 3–Completing the FK-PTR OPRF Protocol: The
device sends β to the client to complete its role in the OPRF.

C. Device-Client Authenticated Channel

In our first implementation of the SPHINX system for
Google Chrome browser, which was used in our lab-based
study (described Section IV), we used the WebSocket proto-
col to establish communication between the device and the
Chrome Extension. For the client to initiate the WebSocket
communication by sending α, the device needs to be set-up as
an HTTP server, the client being the HTTP client. We set up an
HTTP server on the device using NanoHttpd Java application
[8], adapted for Android.

In later implementation of SPHINX we decided to use
Google Cloud Messaging (GCM) to provide a more stable
connection between the device and the client. Note that since
our application does not require the device-client channel to
be secure, trusting on GCM would not at all affect the security
of our approach. To our knowledge, this is the first implemen-
tation of GCM that makes a bi-directional connection between
two typically considered GCM clients (a phone and a browser)
without the need for any additional relaying server.

D. Performance Evaluation

The overall execution time of the SPHINX and performance
of different major tasks on the Android device (LG G3 smart-
phone) and the client-side Chrome extension (on MacBook
Air laptop with a 1.3 GHz Intel Core i5 processor and 4GB of
memory) is evaluated over 10, 000 iterations, and the averaged
results are reported in Table II. The total execution time for
both the WebSocket and GCM implementation are shown.
We excluded the time of human interaction with the system
(manual pwd entry, and explicit consent on the device) from
the evaluation. We also excluded authentication to the service,
as this is the same in all schemes. Communication between C
and D is timed for a 10Gbps WiFi Internet.

Based on our evaluation, for all parties, the most costly
computation is Elliptic Curve exponentiation (71.00 ms on
the extension, and 52.30 ms on the Android app with the
mentioned libraries). The overall execution time of SPHINX
protocol is around 500 ms and 400 ms, for WebSocket and
GCM communication, respectively (excluding human interac-
tion), which seems reasonably efficient. The total execution
time including the interaction of human and the device are
reported in the lab-based usability study (Section V).

TABLE II: Performance Analysis of SPHINX for NIST P-256 Curve and 128 Bit
OPRF Key; ? The total time excludes users’ interaction with the system.

Task Delay

Device Group Membership (α ∈ G) 0.36 ms
Scalar Multiplication (β = αk) 71.00 ms

Client

EC-Hash (H ′(pwd|domain)) 2.23 ms
Scalar Multiplication 54.23 ms
(H ′(pwd|domain)ρ)
Inverse (1/ρ) 0.23 ms
SHA256 Hash (H) 0.07 ms
H(pwd|domain, β1/ρ) 52.30 ms

Total Time?
Websocket 510.00 ms
GCM 400.54 ms

IV. USABILITY STUDY DESIGN

To analyze the effectiveness of the developed smartphone-
based SPHINX system from the point of view of security (as
perceived by the users), usability and adoption potential, we
conducted a formal lab-based study, where participants logged
into a popular web email service (Gmail) in a controlled
observable environment with credentials (master password and
device) provided to the participants. The design details and
the flow of the study are presented in this section. The study
was approved by our University’s IRB. The participation in
the study was voluntary, and standard ethical procedures were
fully followed, e.g., participants being informed, given choice
to discontinue, and not deceived.

A. Goals and Methodology

We first reasoned as to the optimal scheme in our study that
should be used as a baseline for comparison with SPHINX.
The candidate schemes we analyzed were: password-only,
SPHINX in Zero-Interaction Mode, SPHINX in Explicit Con-
sent Mode, and current device-based password manager. Com-
pared to password-only systems, SPHINX in Zero-Interaction
Mode does not impose any additional burden to the user, and
SPHINX in Explicit Consent Mode requires the confirmation
on the device. In contrast, current device-based password
managers require the user to input master password on the
device, and then copy the password from the device to the
terminal manually. Based on inspection of the user task flows,
it is clear that current device-based managers have much lower
usability compared to the other three approaches, and hence
we ruled it out as the candidate for comparison. SPHINX in
Zero-Interaction Mode also seems very close to password-only
in terms of usability, so we do not use these schemes for
comparison. We were left with SPHINX in Explicit Consent
Mode and password-only scheme, which appeared to be two
ideal schemes to compare via our usability study.

Thus, we designed our study to compare the usability
of SPHINX (Explicit Consent Mode) with the usability of
traditional password-only login as the baseline or control
condition (i.e., login in the absence of SPHINX or any other
password manager). Our hypotheses were that the SPHINX
login would be near-transparent to the users, except of typing
in a memorable password (i.e., almost as easy as the password
login), and security perception of SPHINX would be stronger
for the users (i.e., providing a better sense of security when

7

using SPHINX compared to the password-only login). To test
these hypotheses, our study aims to answer the following:
• Transparency: How close is the SPHINX user experience

to a password-only authentication (login with a plain pass-
word in the absence of SPHINX)?

• Security and Trust: How much do the users trust the
system? Do they feel that it might expose their password?

• Necessity: Would the users be willing to adopt the system
in practice?

• Portability: Can users easily login from multiple terminals?
• Efficiency: What delay the system incurs in logging in?
• Comfort and Learnability: How comfortable are users

with the system? Can users quickly learn to use the system?

B. Study Flow

We recruited 25 participants from the members of our uni-
versity. A similar number of participants are well-established
in usability study research of password managers and mobile-
based security applications [21], [31], [34], [35], [39]. After
a brief introduction about the study, the participants were
navigated by an examiner to a computer desk, and were
provided an Android phone that had SPHINX app installed
and a laptop that had the SPHINX Chrome extension installed.
They were asked to consider this laptop as their home/personal
(primary) computer. The examiner supervised and observed
the participants throughout the study, and took notes of their
questions and their performance. Upon completion of the
study, the examiner filled out a form about success and errors
that occurred in each assigned task. To assure that all users
received equal guidance, all information and the instructions
were shown in QuestionPro online survey format. The par-
ticipants could read the instructions related to each task and
answer questions related to the task online. We also logged the
execution time of the protocol, excluding the manual password
entry and including the approval on the phone.

The study was composed of three phases: the pre-study
questionnaire, the main study tasks, and the post-study ques-
tionnaire. Analysis of the participants’ answers, error rates, and
behaviors in the study helped us to: (1) demonstrate the us-
ability of SPHINX, (2) compare the usability of SPHINX with
the password-only authentication, and (3) investigate possible
security issues arising from usability problems. The study took
about 30 minutes for each user. To value participants’ time and
effort, we offered a $5 Starbucks gift card to each.

C. Pre-Study Phase

The quantitative/qualitative pre-study questions were
grouped into three categories, displayed in three consecutive
pages, as summarized below (the questions asked are included
in Appendix C):
Q1. Demographics: The participants were asked to fill out a
demographic questionnaire. These questions polled for each
participant’s age, gender and education.
Q2. Technical Background: The participants were asked
about their general computer and security skills, and technical
background to uncover their initial attitude towards security.

D. Main Study Phase
The main part of the experiment was an experience-oriented

study. The study methodology is in line with that of prior
studies of password managers [21], [31]. The participants were
provided with a short description of SPHINX i.e., what it
is, how it is activated, and how it is used. Then, they were
given a username and a password to authenticate to Gmail
(this service was chosen for its popularity among users), and
a set of tasks to perform. Each task was shown in a web-page
with an instruction followed by two multiple choice usability
questions related to users’ comfort in performing the task.
After finishing each task and answering the two questions,
users were instructed to move to the next available task.

1) Primary Computer Login: Following is the list of the
first five tasks that was performed from the laptop provided to
the participants (primary computer):
P1. Unprotected Login: As a baseline for our study, we asked
the participants to login to Gmail using the given username and
password (i.e., without using SPHINX). The username was the
name of our research lab and the password was their name
followed by a four digit number. We asked the participants to
perform this task once. This task captures traditional password-
only authentication.
P2. Activation: To evaluate the usability of the SPHINX reg-
istration process, we asked the users to update their password.
The updated password was used as their master password in
the next task. To activate SPHINX, the new password should
start with “@@” or the user should click on the “F2” key
before entering the password. After entering the password,
user should accept a prompt displayed on the phone to assure
that SPHINX is run only by the user who possesses the phone
(and not by a remote attacker). We suggested them to set the
extension to show the randomized password once. They could
take a note of the randomized password in order to be able to
login without SPHINX extension on a remote computer.
P3. Protected Login: To evaluate the usability of SPHINX
login process, we asked the users to login to Gmail with
their new password (established in the Activation task). After
entering the master password, user accepts the prompted
alert on the phone. Then the protocol continues and fills the
password field automatically with the randomized password.
The participants repeated this task 5 times.
P4. Password Update: To evaluate the usability of password
update when using SPHINX, we asked the participants to
update their SPHINX protected password to a new SPHINX
protected password.
P5. Protected Re-Login: To gather more data, and also to
provide participants with another chance to try SPHINX with
a different master password (one established in the Password
Update task), we asked them to follow the protected login
process and login to Gmail with the updated password.

2) Remote Computer Login: After completing the primary
computer login experiment, the participants were asked to
move to another computer, which did not have the SPHINX
plugin installed considering it as their office or friend’s com-
puter, and instructed them to perform the following tasks:
R1. Direct Login with Randomized Password: To evaluate
usability of the system in case the SPHINX Chrome browser

8

P1.
Unp

rot
ec

ted
Log

in

P2.
Acti

va
tio

n

P3.
Prot

ec
ted

Log
in

P4.
Pass

word
Upd

ate

P5.
Prot

ec
ted

Re-L
og

in

R1.
Dire

ct
Log

in
with

rw
d

R2.
Plug

in
Ins

tal
lat

ion

R3.
Prot

ec
ted

Re-L
og

in
0

2

4

6

Easiness Satisfaction

Fig. 2: Main Study Task Easiness & Satisfaction Scores (out of 5)

extension is unavailable or users’ phone is unavailable (e.g.,
out of battery) users were asked to login to Gmail using their
randomized password without SPHINX.
R2. Plugin Installation: An email was sent to the participants
containing a link to the SPHINX browser extension. They were
asked to download and install the extension on the remote
computer.
R3. Protected Re-Login: Finally, after installing and configur-
ing SPHINX on the remote computer, participants were asked
to login using SPHINX (i.e., using their master password) as
in the case of login from their primary computer.

To record participants’ opinion about the system, each task
above was followed by the following two questions that the
participants had to answer on a 5-point Likert scale.
Q3. Easiness: How easy it was to execute this task, Extremely
easy, Very easy, Neither easy nor difficult, Very difficult,
Extremely Difficult?
Q4. Satisfaction: How satisfied are you with SPHINX at
performing this task, Extremely satisfied, Very satisfied, Nei-
ther satisfied nor dissatisfied, Very dissatisfied, Extremely
dissatisfied?

E. Post-Study Phase

The post-study phase consists of the following set of ques-
tionnaires (for precise questions, see Appendix D):
Q5. System Usability Scales: At the end of the experiment,
in the first set of post-study questions, users were asked to fill
out the System Usability Scale (SUS) questionnaire [19] for
password-only systems, as well as for SPHINX. SUS has been
designed to measure the usability of a system with respect to
users’ experience and satisfaction.
Q6. SPHINX Specific Usability Questions: In the sec-
ond questionnaire, we asked more specific questions about
SPHINX to figure out how users’ experience was in com-
parison to password only systems, and how confident they
were about system’s security and reliability. This questionnaire
included: two “Transparency”, five “Security and Trust”, two
“Necessity”, and one “Portability” questions.
Q7. Open Ended Questions: The study concluded with six
open-ended questions (Appendix D).

V. STUDY RESULTS AND ANALYSIS

A. Pre-Study Analysis

The 25 participants were from the age groups of 18-24
years (40%) and 25-34 years (60%), with equal number of
undergraduate and graduate students from diverse educational
background, including: education, engineering, health care,
arts, science, and in particular, none of them was specialized
in computer security. 20% of the participants were female
and 80% were male. They ranked their general computer
background as: Poor (20%), Average (40%), and Excellent
(40%), and their general computer security skills as Poor
(40%), and Average (60%). Our participant samples are in
line with those reported in prior password manager studies
[21], [31], [34], [35].

In our pre-study questionnaire, we posed participants with
several questions about their technical background, habits of
using managers and choice of password. Most participants
stated that they visit web-pages that require authentication
several times a day. 25% of them said they do not login to their
Gmail account on daily basis, 50% log in “once a day” and the
rest of them login “several times a day”. Only one participant
said he/she uses a manager, around 30% said they do not use
any manager, and the rest rely on the browser or the cookies
of the visited web-site to remember their password for “fast
and easy login process”. Among the password choices that we
questioned (easy to remember, difficult for others to guess,
strong randomized password, similar over multiple accounts),
50% of the participants said they choose passwords that are
easy to remember, all participants said they pick password that
are difficult for others to guess, and 67% said they reuse the
same password over multiple accounts, and none of the users
had confidence that their passwords are random or strong.
These numbers serve to re-confirm the need for a tool like
SPHINX that can strengthen users’ passwords.

B. Main Study Analysis

Answer to the two questions at the end of each task (P1-P5
and R1-R3, as described in Section IV-D) polls for easiness of
each task and satisfaction of the participants with the system.
Figure 2 presents the Likert scores corresponding to each
task for the first question (easiness) and the second question
(satisfaction). Unprotected Login, which is the baseline for
the rest of the study, shows how easy users found SPHINX-
free login to Gmail. Based on the results, and as expected,
participants found login to Gmail (with the test username
and password that was provided to them) very easy. No error
occurred in performing this task by the participants.

The next task was Activation, in which the participant
had to update his/her passwords to activate SPHINX. The
results show that SPHINX performed well in this task, and
users found this task very easy and were very satisfied with
SPHINX. The Password Update task is, by nature, very
similar to activation (the user needs to update the password).
Therefore, we averaged the error rates in performing these
two similar tasks and found the error rate to be around thirty
percent. The main issue of user failures during activation was
forgetting to enter the predefined prefix, which leads to failure

9

in calling SPHINX from the extension side. Other issues were
entering an incorrect password and forgetting to accept the
alert (the consent message) shown on the phone. We believe
this result is mainly because of the unfamiliarity of the users
with the new system. These results do not degrade the security
of the system in any way, since the attacker still needs to
have access to the device to login even if pwd is exposed. In
a practical setting it is sensible to assume that users would
remember to enter the prefix as part of their password (with
first two publicly known characters). The need for entering
the prefix can be avoided by enabling SPHINX on services by
default. Password update in SPHINX, just like other hash-
based managers, is essential to update the currently used,
possibly weak, password to a randomized one. However, we
note that users do not frequently update their passwords so
lower score could still be acceptable.

The averaged users’ ranking over multiple “Protected Lo-
gins” (i.e., first, second and third protected logins, as described
in Section IV-D) is 4.70. The high average score of 4.70
shows that users found login with SPHINX easy. This score is
comparable to the unprotected login score (4.55) in which the
user logged in using a username and a memorable password.
We further compared the score of unprotected login and the
average score of protected login using Wilcoxon Signed Rank
Test but the result was not statistically significant at p < 0.05.
The average error rate in performing this task was eleven
percent and the main cause of failure was forgetting to enter
the predefined prefix especially in the first attempts, which
is perhaps due to unfamiliarity with the system. It can be
observed in Figure 2 (P3, P5, and R3 – protected login) that, as
the users were repeating the task and becoming more familiar
with the system, they scores slightly improved and they had
less error. However, the result of the Friedman Test did not
show any statistical significance when we compared the scores.

The next task was to log in directly with the strong SPHINX
generated password. This scenario might happen when the user
cannot run the protocol (e.g., due to a missing browser plugin).
A similar situation with a password only system happens when
the user picks a strong randomized password. As anticipated,
the users did not find this task very easy (score of 2.75) and
were not as satisfied as they were with in other tasks. Average
error rate in performing this task was also understandably high,
around 45%. In this task, in addition to Likert score answer
options, we included an extra answer option for those who
did not remember the password or did not take or have a note
of it. 40% of users picked this option in the answers, and
said in real-life it would be very probable that they would not
remember a strong randomized password. This answer in fact
shows an advantage of SPHINX: in general users avoid strong
passwords as was shown in the pre-study questions, therefore
a system like SPHINX that generates a strong password based
on a memorable one would be beneficial to many users.

The final task was the installation of the SPHINX plugin.
Based on the study it seems the installation task was extremely
easy and users were extremely satisfied with it.
C. Post-Study Analysis

Here, we summarize the results from the post study ques-
tionnaires. The score of “Transparency” was 3.55 (std dev

= 0.87), which is in line with the main study and shows
that most of the users found their experience working with
SPHINX similar to the password-only mechanism. The score
of “Security and Trust” was 4.13 (std dev = 0.97), which shows
that users perception of security of SPHINX was high. The
users generally agreed that SPHINX helps them to secure their
system, they could trust SPHINX to harden their password,
and they do not have any issue with not knowing and not
remembering their strong password. This insight suggests that
users, not only found SPHINX to be easy to use but also
perceived it to be secure. This is an important result for
SPHINX that may push it towards real-world deployment.

The “Necessity” score was 3.32 (std dev = 1.12) which
suggests that users are more in agreement (than disagreement)
that they will need SPHINX to protect their account. Finally,
the “Portability” score was 3.75 (std dev = 1.25) which shows
that logging from a remote computer would be generally
convenient. This result is also in line with our main study
where users found login from a remote computer easy and
did not commit errors setting up the system.
SUS Score: The average SUS score for SPHINX reported
by our study was 79.4 (std dev = 8.9). Considering that
industry averages for SUS scores tend to hover in the 60 to
70 range [32], results show that users found the systems to
be much more usable than the average. Users scored SUS of
a password-only authentication 77.5 (std dev = 11.9), which
compered to SPHINX does not show statistical significance
using Wilcoxon signed-rank test. This is a promising result
demonstrating the overall attractive usability of SPHINX.
Efficiency Results: In our experiments, we timed the SPHINX
login protocol while users were performing the protected login
tasks. The start point was the time the password was entered
and the end point was the time the randomized password
was received by the browser extension (inclusive of the time
for user explicit consent). The averaged execution time was
1968.00ms with an standard deviation of 579.76ms.
Qualitative Feedback: In answers to the open-ended ques-
tionnaire, almost all users correctly described SPHINX as a
system that helps them to—more securely and more easily—
authenticate to web services, and many of them said they
would be willing to use SPHINX in daily life especially to
protect their accounts with financial sites and email providers.

VI. DISCUSSION, LIMITATION &
FUTURE DIRECTIONS

Online SPHINX Service: Our current implementation of
SPHINX is geared for smartphones. However, it is by no
means limited to that. Since SPHINX does not require a
confidential channel between D and C and since the device is
oblivious to the user’s password (pwd or rwd), one possibility
is to outsource the device functionality to a remote online
(third-party) service, to give rise to an online manager (Online
SPHINX). For such an online setting, in contrast to other
online password managers, SPHINX would provide optimal
resistance in the event of service/manager compromise since
only OPRF key is stored on the online service and is inde-
pendent of user’s password (in particular, this password is not
needed for authenticating the user to the online SPHINX).

10

The online SPHINX service can act as a full replacement of
the smartphone as an independent password manager. Online
SPHINX can also serve as the password manager to allow
for login from the smartphone itself, which in our current
setting (smartphone instantiation) is not supported. Finally, the
online service can also be a complement to the smartphone
instantiation for backup purposes (see next discussion item).

Online SPHINX can also benefit from a distributed service
in which the OPRF keys for web accounts is distributed among
several servers. This prevents learning specific keys upon the
compromise of one server or a subset of servers (with a thresh-
old scheme). It also provides better “availability” guarantees.
OPRF computation in SPHINX can be thersholdized using
polynomial secret sharing.

Further work is warranted to carefully design an online
version of SPHINX, which can retain all the security and
usability advantages of SPHINX while providing increased
service availability. Our assumption is that such setting will
provide the same security features as SPHINX in Zero Inter-
action mode, while it may provide better usability since the
reliance on the smartphone would not be needed. In a real-
world system, both online and smartphone implementations
can be offered to the users as a holistic solution, similar to
many currently-deployed commercial password managers.

Key Back-Up and Device Upgrade: One natural concern
about any smartphone password manager, like the smartphone-
based instantiation of SPHINX, is the permanent loss of the
phone. To deal with such situations, SPHINX users should
back-up the OPRF key on an external storage. When using
a new device, this key can then be recovered from the back-
up device. Similarly, when upgrading to a new device (e.g.,
when buying a new phone), the key from the old phone or the
back-up device can be copied over to the new device. Such a
key transfer should be performed over a secure channel (e.g.,
a wired connection between the devices). The current device-
based password managers also recommend backing up the list
of stored passwords on the device in the same way. Even the
current two-factor authentication (2FA) systems recommend
similar strategies. SPHINXonline service could be used to
facilitate such a back-up (as discussed above).

Alternative Devices: Other types of smart wearable devices,
such as smart watches and glasses, are additional viable
platforms on which SPHINX can be instantiated (Wearable
SPHINX). “Security keys”, such as the FIDO Universal sec-
ond factor USB devices, are yet another alternative (USB
SPHINX). Login from smartphone with SPHINX will be pos-
sible if the wearable is used as the manager. Future SPHINX
prototypes might be developed on such alternatives.

Client Compromise: Password managers are not intended,
designed or capable of resisting against client side compro-
mise. Indeed, none of the password managers that we studied
are secure against client compromise. The reason is that the
password is entered in the webpage manually by the user or
automatically by the password manager. In either case, an
attacker who resides on a client can theoretically intercept the
password. Malicious code and key-loggers are always a threat
to browsers in spite of security enhancements in the browsers.

However, in our SPHINX system, because we use a “key-ed”
password hardening scheme, an attacker who learns pwd using
a key-logger can not succeed in logging into the web service.
An attacker, who compromises the client machine and get it
to execute a malicious code, can obtain rwd of an on-going
session, and thereby succeed in logging to only that service,
even if the user uses the same pwd for all services.

One potential solution to offer security under client com-
promise could be to employ a 2FA mechanism. Since 2FA
mechanisms require a password as well as a one-time PIN
code produced by the device (the second factor), they can
offer better resistance in the event of client compromise (key-
logging one PIN code from the client machine will not be
sufficient for the attacker to log in over new sessions). Since
2FA and SPHINX both use a device during the authentication
process, it seems natural to integrate the two schemes together
so as to achieve all the security advantages provided by the
latter and the resilience to client compromise offered by the
former. Such integration may work transparently with current
web services that already use 2FA as a means to login users.
However, a thorough future investigation is necessary to for-
malize and realize such SPHINX-enhanced 2FA mechanisms.

Limitation, and Further User Studies: We note that while
our reported usability study of the smartphone-based SPHINX
system serve to demonstrate its promising feasibility (as is
customary in usable security research), further studies may
need to be conducted with larger and more diverse set of
participant samples, possibly in field settings. We are pursuing
this line of research in our ongoing work.

VII. CONCLUSIONS

Passwords are a “necessary evil”. In this paper, we at-
tempted to respond to the growing security and usability prob-
lems with passwords by proposing SPHINX, a cryptographic
password manager. Unlike other password managers, SPHINX
perfectly hides passwords and the master password from itself,
and thus remains secure under the realistic threat of the com-
promise of password managers. Also, unlike other password
managers, SPHINX does not require a confidential device-
client channel. At the same time and like many other password
managers, SPHINX can resist online guessing, offline dictio-
nary under web service compromise and phishing attacks. We
designed and implemented a smartphone-based instantiation
of SPHINX. Our performance and usability evaluation of this
instantiation shows that it is efficient, relatively simple to use
and perceived to be secure and trustworthy by the users.

Acknowledgments

This work has been supported by NSF CNS-1526524,
ACI CICI ACI-1547435, ACI-1547350, and ONR Contract
N00014-14-C-0113. The authors thank ICDCS 2017 anony-
mous reviewers for their helpful feedback on the version
published in 2017 IEEE 37th International Conference on
Distributed Computing Systems.

11

REFERENCES

[1] 1Password: Simple, Convenient Security. https://1password.com/.
[2] Anonymous hackers claim to leak 28,000 PayPal passwords on global

protest day. Available at: http://goo.gl/oPv2h.
[3] Blizzard servers hacked; emails, hashed passwords stolen. Available at:

http://goo.gl/OTNWJC.
[4] Current Android Malware . Available at: http://goo.gl/0sWbXz.
[5] Fine the source of your leaks. Available at:

https://www.leakedsource.com/.
[6] Hackers compromised nearly 5M Gmail passwords. Available at: http:

//goo.gl/IRu07u.
[7] LinkedIn Confirms Account Passwords Hacked. Available at: http://goo.

gl/AWB5KC.
[8] Nanohttpd java app. https://nanohttpd.com.
[9] One Year Of Android Malware. Available at: http://goo.gl/2UkUJS.

[10] Password Manager - Remember, delete, change and import saved
passwords in Firefox. https://goo.gl/Qve4l7.

[11] Password Manager, Auto Form Filler, Random Password Generator &
Secure Digital Wallet App. https://lastpass.com/.

[12] RSA breach leaks data for hacking securid tokens. Available at: http:
//goo.gl/tcEoS.

[13] RSA SecurID software token cloning: a new how-to. Available at: http:
//goo.gl/qkSFY.

[14] Russian Hackers Amass Over a Billion Internet Passwords. Available
at: http://goo.gl/aXzqj8.

[15] A. Adams and M. A. Sasse. Users are not the enemy. Commun. ACM,
42(12), 1999.

[16] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key ex-
change secure against dictionary attacks. In Advances in Cryptology –
Eurocrypt, 2000.

[17] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings.
2013.

[18] J. Bonneau. The science of guessing: analyzing an anonymized corpus
of 70 million passwords. In Security and Privacy (SP), 2012 IEEE
Symposium on. IEEE, 2012.

[19] J. Brooke. SUS: a “quick and dirty” usability scale. In P. W.
Jordan, B. Thomas, B. A. Weerdmeester, and A. L. McClelland, editors,
Usability Evaluation in Industry. Taylor and Francis, London, 1996.

[20] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart. Cracking-
resistant password vaults using natural language encoders. In 2015 IEEE
Symposium on Security and Privacy, pages 481–498. IEEE, 2015.

[21] S. Chiasson, P. C. van Oorschot, and R. Biddle. A usability study and
critique of two password managers. In Usenix Security, 2006.

[22] I. Dacosta, M. Ahamad, and P. Traynor. Trust no one else: Detecting
MITM attacks against SSL/TLS without third-parties. In European
Symposium on Research in Computer Security, 2012.

[23] W. Ford and B. S. Kaliski Jr. Server-assisted generation of a strong
secret from a password. In Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2000.

[24] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search
and oblivious pseudorandom functions. In Theory of Cryptography.
2005.

[25] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: Validating
ssl certificates in non-browser software. In Proceedings of the ACM
Conference on Computer and Communications Security, 2012.

[26] M. Gollam, B. Beuscher, and M. Drmuth. On the security of cracking-
resistant password vaults. In ACM Conference on Computer and
Communications Security, 2016.

[27] J. A. Halderman, B. Waters, and E. W. Felten. A convenient method for
securely managing passwords. In Proceedings of the 14th international
conference on World Wide Web. ACM, 2005.

[28] S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-
protected secret sharing and T-PAKE in the password-only model. In
Advances in Cryptology–ASIACRYPT. 2014.

[29] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena. Device-
Enhanced Password Protocols with Optimal Online-Offline Protection.
Technical report available at: http://eprint.iacr.org/2015/1099. To appear
at ASIACCS 2016.

[30] A. Karole, N. Saxena, and N. Christin. A Comparative Usability Eval-
uation of Traditional Password Managers. In International Conference
on Information Security and Cryptology (ICISC), December 2010.

[31] A. Karole, N. Saxena, and N. Christin. A comparative usability
evaluation of traditional password managers. In Information Security
and Cryptology-ICISC. 2011.

[32] J. R. Lewis. Ibm computer usability satisfaction questionnaires: psy-
chometric evaluation and instructions for use. Int. J. Hum.-Comput.
Interact., 7(1), 1995.

[33] Z. Li, W. He, D. Akhawe, and D. Song. The emperor’s new password
manager: Security analysis of web-based password managers. In
USENIX Security Symposium, 2014.

[34] D. McCarney, D. Barrera, J. Clark, S. Chiasson, and P. C. van Oorschot.
Tapas: design, implementation, and usability evaluation of a password
manager. In Proceedings of the 28th Annual Computer Security
Applications Conference. ACM, 2012.

[35] S. E. McGregor, P. Charters, T. Holliday, and F. Roesner. Investigating
the computer security practices and needs of journalists. In 24th USENIX
Security Symposium (USENIX Security 15), 2015.

[36] R. Morris and K. Thompson. Password security: a case history. Commun.
ACM, 22(11), 1979.

[37] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger
password authentication using browser extensions. In USENIX Security
Symposium, 2005.

[38] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor.
Crying wolf: An empirical study of ssl warning effectiveness. In
USENIX Security Symposium, 2009.

[39] E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of secure
pairing methods. In Financial Cryptography and Data Security. 2007.

[40] L. Whitney. LastPass CEO reveals details on security breach. CNET:
http://www.cnet.com/news/lastpass-ceo-reveals-details-on-security-
breach/, 2011.

[41] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password memora-
bility and security: Empirical results. IEEE Security and Privacy, 2(5),
2004.

[42] K.-P. Yee and K. Sitaker. Passpet: convenient password management
and phishing protection. In Symposium on Usable privacy and security,
2006.

[43] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Security and Privacy (SP), 2012.

APPENDIX

A. SPHINX Protocol Details

In Figure 3, the initialization and authentication phases of
the SPHINX protocol based on an instantiation of the DE-
PAKE primitive [29], is shown. This approach runs a PTR
protocol between D and U. At initialization, D picks an OPRF
key kd and U memorizes the nominal password pwd but
computes rwd and registers it with the server. At login, U picks
a random ρ and sends α = (H ′(pwd))ρ to D, D checks that
α ∈ G and if so it sends β = αkd to U. U checks that β ∈ G
and if so computes rwd = H(pwd, β1/ρ) and authenticates to
S using rwd over TLS, like a standard PKI-model password
protocol.

B. Study Flow

Figure 4 provides the high-level flow of our study.

C. Pre-Study Questionnaire

Q1. Demographic Information
The demographic information of participants in our study

is summarized in Section V-A.

Q2. Computer Skills and Technical Background
1) How do you rank your general computer skills? (Poor,

Average, Excellent)
2) How do you rank your general computer security skills?

(Poor, Average, Excellent)
3) How comfortable are you with Chrome browser? (Ex-

tremely, Very, Moderately, Slightly, Not at all)

12

Setup
• Group G. The scheme works over a cyclic group G of prime order q, |q| = τ , with generator g.
• Hash functions H,H′ map arbitrary-length strings into elements of {0, 1}τ and G, respectively, where τ is a security parameter.
• OPRF. For a key k ← Zq , we define function Fk as Fk(x) = H(x, (H′(x))k).
• Parties. User U, Client C, Device D, Server S.

Initialization Phase
• D chooses and stores OPRF key k ← Zq ;
• U chooses and remembers a memorable password pwd← Dict;
• C and D interact to construct “randomized password” rwd = Fk(pwd|domain) on input pwd from U and k from D;
• Server S stores one-way hash of the “randomized password” rwd.

Login Phase
• Client-Device Interaction (FK-PTR)

1) C chooses ρ← Zq ; sends α = (H′(pwd|domain))ρ to D.
2) D checks that the received α ∈ G and if so it responds with β = αk .
3) C sets rwd = H(pwd|domain, β1/ρ).

• Client-Server Interaction
U authenticates to S using the “randomized password” rwd submitted over SSL/TLS channel.

Fig. 3: SPHINX Protocol Details

Q1. Demographics

Q5. SUS

Welcome Thank you

Main Study Phase

Pre-Study Phase Post-Study Phase

Q2. Computer Skills Q6. SPHINX

specific

Q7. Open-ended

Primary Computer Login

P1. Unprotected Login

P2. Activation

P3. Protected Login

P4. Password Update

P5. Protected Login

Remote Computer Login

R1. Login with rwd

R2. Installation

R3. Protected LoginQ
3

.
E

as
in

es
s

o
f

E
ac

h
 T

as
k

Q
4

.
S

at
is

fa
ct

io
n

 w
it

h
 E

ac
h

 T
as

k

Fig. 4: Lab Study Design Flow

4) How familiar are you with browser extensions, plugins or
add-ons? (Extremely, Very, Moderately, Slightly, Not at all)

5) How often do you visit websites that require password from
your computer(e.g. Gmail, Facebook, Twitter,...)? (Not on
a daily basis, Once a day, Twice a day, Several times a
day)

6) How often do you login to Gmail? (Not on a daily basis,
Once a day, Twice a day, Several times a day)

7) How do you usually choose a password? (Easy to re-
member, Difficult for others to guess, Strong randomized
password, Similar over multiple accounts)

8) Have you used any password manager before (e.g. storing
password on the browser or on the mobile phone, or
applications such as LastPass or PwdHash, ...)? (Always,
Most of the time, About half the time, Once in a while,
Never)

9) Which of the following password managers have you
used before?(Basic browsers password managers, LastPass,
PwdHash, 1Password, Roboform2Go, KeePass)

10) What is your primary reason for using a password man-
agers? (I do not use them, Fast and easy logins, Increasing
security, Personal choice)

D. Post-Study Questionnaire

Q5. System Usability Score:
Considering the recent experience logging in to Gmail using

SPHINX the participants rated the 10 SUS questions [19].
Q6. SPHINX Specific Questions: Compared to a password-
only authentication mechanism that does not require the de-
vice, how much do you agree with the following statements:
(Answer Options: Strongly disagree, Somewhat disagree, Nei-
ther agree nor disagree, Somewhat agree, Strongly agree)
• Transparency: My experiment logging in with SPHINX

is similar to logging in with password only.
• Security and Trust: (1) I feel my passwords are more

secure using SPHINX; (2) I trust SPHINX to protect
my password; (3) I am uncomfortable with not knowing
my actual passwords for a web site; (4) Passwords are
safer when users do not know their actual password; (5)
am comfortable with letting SPHINX decide a strong
password for me.

• Necessity: (1) My passwords are safe even without using
SPHINX; (2) I need to use SPHINX on my computer to
protect my passwords.

• Portability: I am confident that logging in from remote
computers will be convenient.

Q6. Open Ended Questions:
Following is the list of open ended questions.

1) From your understanding, what does SPHINX do?
2) Did you face any problem/issue/difficulty when using

SPHINX?
3) Do you have any suggestions for SPHINX that can make

it more useful or easier to use?
4) Do you think SPHINX is better than other password

managers?
5) Will you be willing to use SPHINX in your day-to-day

use?
6) Which types of sites you will be interested in using

SPHINX?

