
Device-Enhanced Password Protocols with Optimal Online-Offline
Protection

Stanislaw Jarecki∗ Hugo Krawczyk† Maliheh Shirvanian‡ Nitesh Saxena§

March 29, 2017

Abstract

We introduce a setting that we call Device-Enhanced PAKE (DE-PAKE), where PAKE (password-
authenticated key exchange) protocols are strengthened against online and offline attacks through the use
of an auxiliary device that aids the user in the authentication process. We build such schemes and show
that their security, properly formalized, achieves maximal-attainable resistance to online and offline
attacks in both PKI and PKI-free settings. In particular, an online attacker must guess the user’s password
and also corrupt the user’s auxiliary device to authenticate, while an attacker who corrupts the server
cannot learn the users’ passwords via an offline dictionary attack. Notably, our solutions do not require
secure channels, and nothing (in an information-theoretic sense) is learned about the password by the
device (or a malicious software running on the device) or over the device-client channel, even without any
external protection of this channel. An attacker taking over the device still requires a full online attack
to impersonate the user. Importantly, our DE-PAKE scheme can be deployed at the user end without the
need to modify the server and without the server having to be aware that the user is using a DE-PAKE
scheme. In particular, the schemes can work with standard servers running the usual password-over-TLS
authentication.

1 Introduction

Today, passwords constitute the prevalent authentication mechanism for bootstrapping security in online,
personal and business applications, with a plethora of sensitive information depending on the security of
password-based authentication. However, passwords are vulnerable to both online and offline dictionary
attacks that build on password dictionaries from which a significant portion of passwords are chosen. Can-
didate passwords for authenticating a user to a server can be tested by an attacker through online interactions
with the server. Furthermore, an attacker breaking into a server can mount an offline attack that uses infor-
mation stored on the server (typically, a salted hash of the password) to test the different passwords in
the dictionary. Such offline dictionary attacks are a serious concern, especially in light of frequent attacks
against major commercial vendors such as PayPal [1], LinkedIn [4], Blizzard [2], Gmail [3], RSA [5, 6],
and many more. The offline attacks are particularly devastating because a single server break-in may lead to
∗U. California Irvine. Email: stasio@ics.uci.edu.
†IBM Research. Email: hugo@ee.technion.ac.il.
‡U. Alabama at Birmingham. Email: maliheh@uab.edu
§U. Alabama at Birmingham. Email: saxena@cis.uab.edu

A preliminary version of this paper appears in ACM Asia Conference on Computer and Communications Security (ASIA CCS’16).

1

compromising a huge number of user accounts [7]. Furthermore, since many users re-use their passwords
across multiple services, compromising one service may compromise user accounts at other services.

In this paper we present solutions which enhance password protocols against both online and offline
attacks through the use of an auxiliary device (e.g., a smartphone, smartwatch, USB token, etc.) owned
by the user. We prove our solutions to be secure against an active man-in-the-middle attacker acting on
user-server and user-device links, and capable of compromising devices and servers by learning their full
internal state (e.g., server’s password file and device’s secrets).

1.1 Our Contributions

We introduce the setting of Device-Enhanced PAKE (DE-PAKE), where PAKE (password-authenticated
key exchange) protocols are strengthened against online and offline attacks through the use of an auxiliary
device which aids the user in the authentication process. We build such schemes and show that their security,
properly formalized, achieves maximal-attainable resistance to online and offline attacks in both PKI and
PKI-free1 settings. Most importantly, our DE-PAKE schemes can be deployed at the user end without the
need to modify the server and without the server having to be aware that the user is using a DE-PAKE
scheme. In particular, in the PKI setting the scheme can work with unmodified servers running the usual
password-over-TLS authentication. We note that while we focus the presentation on a setting where the
auxiliary device is a physical personal device, e.g. a phone, our protocols apply also to the setting where the
device entity is implemented by an auxiliary on-line service.

Secure and Efficient DE-PAKE Protocols: We introduce efficient DE-PAKE protocols with the following
properties:

• Resistance to online and offline attacks: Our DE-PAKE schemes provide maximal-attainable security in
terms of resistance to both online and offline attacks. That is, the only attack allowed by the scheme is the
unavoidable online guessing attack where the attacker tests if a given value p is the user U’s password by
interacting with both device D and server S in the role of U with password p and observing whether S accepts.
In other words, each guess attempt requires the attacker to interact on both U-D and U-S links. No amount
of attacking on one link helps without a corresponding attack on the other. Moreover, fully compromising
D still requires a full online guessing attack on the U-S link, and fully compromising S requires a full online
guessing attack on the U-D link. And even if both S and D are compromised, a full offline dictionary attack
is required. More formally, to have an impersonation probability of q/|Dict|, where Dict is a passwords
dictionary from which U chooses its password, the attacker needs to either run q online interactions with D
and q online interactions with S, or q online interactions with U impersonating both D and S. Moreover,
even when compromising D and finding all its secrets, the attacker still needs to run q online interactions
with either S or U, and if the server is compromised, q online interactions with D or U. Finally, if both D
and S are compromised the adversary must stage a full offline dictionary attack to learn any passwords. We
formalize these properties through a security model, DE-PAKE, that extends the traditional PAKE security
setting, and then we use this model to prove the security of our schemes.

• PKI-agnostic: We show that the above strong security can be achieved even when the user-server channel
is not protected by a server public key. On the other hand, when such protection is available one obtains
the additional benefit that impersonating the server to the user is infeasible even if the user’s password is

1In the client-server setting one considers both PKI-based (say, via TLS) password authentication [19] where the client possesses
a server’s certificate in addition to the password, and the PKI-free case where no such certificate or other form of secure channels
is assumed for user login [18]. In either case, password registration (being much less frequent than regular login) can use special
safeguards, such a PKI-based interactions or out-of-band channels.

2

disclosed. Luckily, our schemes can work, without modification and without having to be aware of it, with
PKI-based and PKI-free authentication protocols, providing in each case the best attainable offline-online
protection.

• Modularity and server-transparency: Our design is modular allowing for the use of independent device
and server components, in particular enabling the use of our scheme with existing password protocols and
without the need to modify the server side. Indeed, one of the core results in the paper is a composition
theorem showing that the composition of our user-device protocol (we call it PTR) with any user-server
PAKE scheme2 results in a secure DE-PAKE protocol. A case of particular practical significance is when
the user-server PAKE is implemented via the standard password-over-TLS protocol (this particular setting
requires the communication from device to user to be authenticated - see Section 4.53). Moreover, a single
device and the same device-user protocol can serve passwords for different services, including services using
different user-server PAKE protocols, with the user having to remember a single (master) password for all
these services (see Section 5). As a particular application of these results, in [34] we show how to build,
using the DE-PAKE framework, a smartphone-based password manager application with outstanding and
unique security properties.

1.2 Related Work

Prior Work on Device-Enhanced Authentication. Our approach is closely related to the work of Acar,
Belenkiy, and Kupcu [8], and Boyen [13]. A close variant of the key ingredient of our solution, a “Password-
to-Random” (PTR) protocol, was proposed as a “Hidden Credential Retrieval” (HCR) scheme by [13]. Our
DE-PAKE protocol has similar goals as the “Single Password Authentication” (SPA) scheme of [8], namely,
strengthening password authentication by making offline dictionary attack against the server infeasible.
Moreover, one of their schemes does so in roughly the same way as we do, following an approach first
suggested by Ford-Kaliski [16], i.e. having the user “strengthen” her password into a strong secret via the
HCR/PTR protocol with an auxiliary device (or service), and then use this strong secret to authenticate to
the primary server. Despite these similarities, our work improves on [8, 13] in the following aspects: (1)
Whereas [13] shows that HCR can be realized almost identically to our PTR, i.e. using the same variant
of the Ford-Kaliski protocol [16], the SPA scheme of [8] did not show a general compiler from HCR, but
assumed a stronger tool of unique blind signature which is costlier to realize (moreover, in their scheme
the user-device blind signature protocol goes over TLS, while in ours the PTR protocol goes over insecure
links); (2) The SPA scheme of [8] is weaker than our DE-PAKE, in that it achieves only entity authentication
rather than authenticated key exchange as in our case and it assumes PKI while our DE-PAKE works in
both PKI-free and PKI settings;4 (3) Very importantly, our modular approach that treats PTR and PAKE as
independent components and has no involvement of the server in the PTR execution, allows us to obtain
DE-PAKE security without any modification to existing servers (e.g., those running password-over-TLS
authentication). In contrast, the SPA scheme of [8] requires the server to perform additional public key
operations.

Relation to T-PAKE and 2-PAKE. The DE-PAKE model that we introduce is closely related to 2-PAKE,
the two-server case of Threshold PAKE (T-PAKE) [32]. Our model can be seen as a main-server/auxiliary-
server version of 2-PAKE, where the client establishes an independent session key only with the single

2More precisely, any PAKE scheme that finding the user’s password requires an offline dictionary attack even upon server
compromise - see Section 3.2.

3In the previous version of this paper we overlooked this requirement that is specific to the password-over-TLS case.
4Our DE-PAKE security model is also more precise, e.g. letting adversary observe whether user authentication succeeds or not.

3

designated server. In DE-PAKE, the role of the second server is played by the device, and its role is solely
to provide security against offline dictionary attacks in case the server is corrupted. The major advantage
of the DE-PAKE model is that it enables modular realizations where the user-server authentication can use
any password protocol, including standard password-over-TLS. In this case, one cannot just use 2-PAKE
solutions as those would require a dedicated protocol on the server side too. See Section 3.3 for more details
on modeling DE-PAKE as a case of T-PAKE.

Interestingly, the main-server/auxiliary-server 2-PAKE protocols implied by our work are more efficient
than previously known 2-PAKE’s (modified so that only one server establishes a session key). Indeed,
assuming PKI and assuming that the user-server protocol proceeds over a pre-established TLS session, our
DE-PAKE instantiation (see Section 5) requires 2 exponentiations for user and 1 for device, while to the
best of our knowledge, the DE-PAKE implied by the most efficient existing 2-PAKE in that setting [14,36],
would take 2 exp’s for server and 2 for device, assuming pre-estalished TLS sessions. The total costs
including TLS session establishment would be even better in our case because in the 2-PAKEs of [14, 36]
the client needs TLS sessions with both servers, while in our DE-PAKE the client needs a TLS session
only with the main server. In the PKI-Free model, our DE-PAKE instantiation (see Section 5) requires 6
exponentiations for user, 1 for device, and 3 for the server, which to the best of our knowledge beats prior
non-PKI 2-PAKE schemes5. Another point of comparison is the required cryptographic assumptions. While
our protocol requires the One-More Diffie-Hellman (OMDH) interactive assumption in the Random Oracle
Model (ROM), the 2-PAKE’s of [14, 36] are secure under Decisional Diffie-Hellman (DDH) in ROM. We
also note that there are 2-PAKE schemes secure in the standard model [9,21,28–30], but they are much less
efficient than our ROM-based constructions.

Relation to Work on Two-Factor Authentication. One important and increasingly common line of defense
against password attacks is the use of two-factor password authentication (TFA) schemes. TFA mechanisms
are used for authenticating a user U to a server S where the user has a password and a personal device D that
contains some secret auxiliary information. This secret information is used to provide security even in the
case that the user’s password leaks (e.g., by an attack on the client machine). Our DE-PAKE scheme offers
several defenses against attacks on the client machine as we describe in Section 5 but does not add protection
against the leakage of a user’s password. For such protection, it is possible to combine a DE-PAKE scheme
with a traditional two-factor mechanism that takes advantage of the presence of an auxiliary device (e.g. a
one-time PIN delivered to or generated by the hand-held device).

In this context, it is worth recalling the work of Shirvanian et al. [35] that addresses the issues of two-
factor authentication and defense against offline attacks in one combined solution. The main idea underlying
their protocols is for the server to store a randomized hash of the password, h = H(p, s), and for the
device to store the corresponding random secret s. For authentication, the user sends both s and p to the
server which makes the scheme crucially dependent on the PKI infrastructure over which the password is
transmitted. The scheme also requires a special-purpose protocol on the server side and shared information
between server and device. While we do not provide two-factor authentication, we improve on the latter two
counts by accommodating PKI-free protocols as well as not requiring any changes on the server side.

5A recent construction of T-PAKE implied by the PPSS scheme from [24] would provide a more efficient non-PKI 2-PAKE than
the non-PKI DE-PAKE construction presented here, but it would not satisfy the modularity and server transparency properties of
the DE-PAKE protocol.

4

Table 1: Glossary

Acronym Description

PAKE Password-authenticated key exchange. We refer to password protocols by PAKE as well as to
their security model (recalled in Section 3.1).

PKI-Free PAKE
A PAKE protocol that does not assume any secret or authenticated key carried by the user other
than its own password. In particular, no PKI-based server-authentication is assumed.
This is also known as the CRS or password-only model.

DE-PAKE
A new notion of Device-Enhanced PAKE protocols that guarantees optimal resilience to offline and
online attacks upon compromise of device and/or server. We use DE-PAKE to refer to the security
model (Section 3.2) as well as to the constructions satisfying this model (Sections 4 and 5) .

PTR A security notion and model for password hardening protocols. We use PTR (password-to-random) to
refer to the security model (Section 4.2) as well as to the constructions satisfying this model (Section 4.1).

FK-PTR Specific PTR construction using the Ford-Kaliski password hardening technique (Section 4.1).

OPRF Oblivious PRF (see Section 4.1) is the basis for the FK-PTR protocol.
When implemented via the function Fk(x) = H(x, (H ′(x))k) we obtain FK-PTR.

PTR-PAKE A general name for DE-PAKE protocols built by composing a PTR and a PAKE protocols
(their generic security is based on Theorem 3)

FK-PTR-PAKE A PTR-PAKE scheme where the PTR part is implemented with the FK-PTR construction. It is also the
name of the protocol in Fig 3 that combines FK-PTR with the PKI-free PAKE protocol of [22, 23].

1.3 Organization and Glossary

We overview our design and proof methodology in Section 2, with full details given in Section 4. Section 3
presents our formal DE-PAKE security model on which we base our analysis. Section 5 presents protocol
instantiations and extensions: A fully specified DE-PAKE scheme secure in the PKI-free (i.e. CRS) model; a
description of our approach for armoring existing servers against online and offline attacks while keeping the
servers unmodified; and extensions which address issues related to client security (which are not covered
in our DE-PAKE model). For easy reference, in Table 1 we provide a summary of the main terms and
acronyms used throughout the paper.

2 Overview: DE-PAKE Design and Analysis

Our design follows the “password hardening” approach of Ford and Kaliski [16], but dispenses of authen-
ticated channels (other than during a registration phase), multiple servers and/or other safeguards that were
required for the secure use of these techniques in prior work [16, 20].

The idea is simple: the user memorizes a regular password pwd but uses as her password with server S a
value rwd = Fk(pwd) where F is a pseudorandom function and k is a key held by device (or an auxiliary on-
line service) D (rwd is a mnemonics for “randomized password”). Before authenticating to S, U contacts D
(through a client application) and obtains rwd via a special protocol with D (in which D learns nothing about
pwd or rwd). U then authenticates to S via a (standard) PAKE protocol using rwd as a password. Note that
without knowledge of k, the value rwd has full entropy (i.e., it is indistinguishable from uniform in the range
set of function F) hence dictionary attacks do not apply against rwd (neither online or offline attacks, not
even if the server is compromised). Moreover, we will ensure that even if D (or S) is compromised, offline
attacks against pwd are infeasible. Thus, the challenge is in implementing the protocol between U and D, to
which we refer as PTR (for Password-to-Random), so that U can compute Fk(pwd) but the protocol leaks
no other information about protocol inputs, i.e. pwd and k. Note that we cannot assume an authenticated

5

or secret channel between the client and D since this would either require knowing a device public key
or storing pwd-related information at D (the latter would open pwd to an offline dictionary attack upon
compromising D). We show that in spite of the client-device link being unauthenticated, hence controlled
by the attacker, the “blinded DH” approach of Ford-Kaliski, (see Section 4.1), can be used to implement the
PTR protocol.

PTR

1. kd 1. pwd

PAKE

3. rwd

input
output

3. σs(U)

4. K 2. rwd = Fkd(pwd)

Figure 1: PTR-PAKE Authentication Phase

Hence, we obtain a DE-PAKE scheme, which we call PTR-PAKE, as the composition of a PTR protocol
and a secure PAKE. We depict this generic construction of a DE-PAKE protocol in Figure 1. The output K
in step 4 denotes the session key established between the user and the server, i.e. the output of the DE-PAKE
protocol, which is equal to the output of the PAKE subprotocol. The server’s input σS(U) to the PAKE
subprotocol denotes the user-specific information stored at S created in the PAKE initialization using rwd in
the role of the password (e.g. in a common PKI-based PAKE σS(U) would be a salted hash of rwd).

In order to prove the security of such scheme, we first extend the established security models for the
PAKE functionality to the DE-PAKE setting (Section 3). For the DE-PAKE modeling we consider a fully
capable man-in-the-middle attacker active on all the links between all parties and one who is allowed to
compromise servers and devices at will. No external source of authentication is assumed other than the
user’s password (except for secure registration of a user with the server and device). Second, we define
the security requirements from a PTR protocol and show a PTR instantiation, FK-PTR, that satisfies this
definition in the random oracle model. Finally, we prove a generic security composition theorem showing
that the composition of a secure PTR scheme (run between U and D on the basis of the user’s password pwd)
with a secure PAKE protocol (run between U and S on the basis of the hardened password rwd = Fk(pwd))
results in a secure DE-PAKE scheme, provided that the PAKE protocol satisfies “security against server
compromise” or the more precise notion of KCI resistance introduced and discussed in Section 3.2 (we note
that typical protocols that store a salted version of the password satisfy this property).

Since our FK-PTR scheme does not require PKI, using a PKI-free PAKE in the above composition
results in a DE-PAKE protocol that does not rely on public keys or other secure channels.

In order to demonstrate full standalone solutions, in Section 5 we describe two instantiations of our PTR-
PAKE construction of a DE-PAKE scheme. First, we compose our FK-PTR scheme with a specific PAKE
protocol - a KCI-resistant version of the single-server variant of threshold PAKE from [22, 23]. Since this
PAKE protocol does not require PKI, neither does the resulting DE-PAKE protocol. Secondly, we expand
on the fact that since our PTR-PAKE construction can be used with any existing password protocol with
resistance to KCI attacks, one obtains DE-PAKE schemes without changing the server that implements the

6

PAKE protocol. In particular, this allows us to use without any change a server that implements the standard
PKI-based password-over-TLS protocol, but in this case the outgoing communication from the device needs
to be authenticated (see Section 4.5).

A PTR scheme is a close variant of OPRF, and the potential of OPRF to strengthen password authen-
tication was recently used in the Pythia system [15], but their proposal differs from ours in at least three
ways: (1) Their OPRF scheme is significantly more costly than our PTR: it requires 6 exponentiations and
a bilinear map compared to 3 exponentiations in our PTR scheme (and we can use elliptic curves without
bilinear maps where exponentiations are cheaper); (2) Their solution relies on PKI, while ours does not; (3)
Their solution does not offer a server-transparent instantiation.

3 Security Model

We introduce the Device-Enhanced PAKE (DE-PAKE) security model under which we prove the security of
our schemes. The model extends the standard PAKE (Password Authenticated Key Exchange) formalisms to
include user-specific devices and formulates a security definition that guarantees maximal online and offline
security of password protocols. We start by recalling the PAKE security model (adapted to the client-server
setting) and then we present the extension of the PAKE model to the DE-PAKE setting.

3.1 PAKE Security Model

We recall the security model for PAKE (Password-based Authenticated Key Exchange) protocols, based on
the model of Bellare, Pointcheval and Rogaway [11] that extends authenticated key exchange models to
account for the inherent vulnerability of password protocols to online guessing attacks. We adapt the PAKE
model to the client-server setting borrowing some of the formalism from [22]. In Section 3.2 we will extend
this standard PAKE model to security against server compromise.

Protocol participants. There are two types PAKE protocol participants, users and servers. Each user U is
associated with a unique server S while servers may be associated with multiple users.

Protocol execution. A PAKE protocol has two phases: initialization and key exchange. In the initialization
phase each user U chooses a random password pwd from a given dictionary Dict and interacts with its
associated server S producing a user’s state σS(U) that S stores while U only remembers its password pwd.
Initialization is assumed to be executed securely, e.g., over secure channels. In the key exchange phase,
users interact with servers over insecure (adversary-controlled) channels to establish session keys. Both
users and servers may execute the protocol multiple times in a concurrent fashion. Each execution of the
PAKE protocol by U or S defines a (user or server) protocol instance, also referred to as a protocol session,
denoted respectively ΠU

i or ΠS
i , where integer pointer i serves to differentiates between multiple protocol

instances executed by the same party. Each protocol session is associated with the following variables: a
session identifier sid, which we equate with the message transcript observed by this instance (where both
U and S order their interaction transcripts starting with U’s message), a peer identity pid, and a session key
sk. For a user instance the peer is always the user’s server while for a server instance the peer is the user
authenticated in the session. The output of an execution consists of the above three variables which can be
set to ⊥ if the party aborts the session (e.g., when authentication fails, a misformed message is received,
etc.). When a session outputs sk 6=⊥ we say that the session accepts.

PAKE Security. To define security we consider a probabilistic attacker A which schedules all actions in
the protocol and controls all communication channels with full ability to transport, modify, inject, delay
or drop messages. In addition, the attacker knows (or even chooses) the dictionaries used by users. The

7

model defines the following queries or activations through which the adversary interacts with, and learns
information from, the protocol’s participants.

send(P, i, P ′,M): Delivers message M to instance ΠP
i purportedly coming from P ′. In response to a send

query the instance takes the actions specified by the protocol and outputs a message given to A. When a
session accepts, a message indicating acceptance is given to A. A send message with a new value i (possibly
with null M) creates a new instance at P with pid P ′. For simplicity, we assume that the pair {P, P ′} in
any send message contains a user and the server associated to that user (a non-compliant message causes
the receiving instance to abort). The send query can also create a new instance of party P : If ΠU

i does not
exist then query send(U, i,S, init) creates a new instance ΠU

i which executes with pid = S on U’s chosen
password pwd. Similarly, if ΠS

i does not exist then send(S, i,U,M) creates a new instance ΠS
i which

executes with pid = U on S’s input σS(U), with U’s first message set to M . (This formalism assumes that
protocol exchanges are initiated by users, which is the operational setting in PAKE.)

reveal(P, i): If instance ΠP
i has accepted, outputs the respective session key sk; otherwise outputs ⊥.

corrupt(P): Outputs all data held by party P and A gains full control of P . We say that P is corrupted.

compromise(S,U): Outputs state σS(U) at S. We say that S is U-compromised.

test(P, i): If instance ΠP
i has accepted, this query causes ΠP

i to flip a random bit b. If b = 1 the instance’s
session key sk is output and if b = 0 a string drawn uniformly from the space of session keys is output. A
test query may be asked at any time during the execution of the protocol, but may only be asked once. We
will refer to the party P against which a test query was issued and to its peer as the target parties.

The following notion taken from [22] is used in the security definition below to ensure that legitimate
messages exchanged between honest parties do not help the attacker in online password guessing attempts
(only adversarially-generated messages count towards such online attacks). It has similar motivation as
the execute query in [11], but the latter fails to capture the ability of the attacker to delay and interleave
messages from different sessions.

Rogue send queries/activations: We say that a send(P, i, P ′,M) query is rogue if it was not generated and/or
delivered according to the specification of the protocol, i.e. message M has been changed or injected by the
attacker, or the delivery order differs from what is stipulated by the protocol (delaying message delivery or
interleaving messages from different sessions is not considered a rogue operation as long as internal session
ordering is preserved). We also consider as rogue any send(P, i, P ′,M) query where P is uncorrupted and
P ′ is corrupted. We refer to messages delivered through rogue send queries as rogue activations by A.

Matching sessions. A session in instance ΠP
i and a session in instance ΠP ′

j are said to be matching if both
have the same session identifier sid (i.e., their transcripts match), the first has pid = P ′, the second has
pid = P , and both have accepted.

Fresh sessions. A session at instance ΠP
i with peer P ′ s.t. {P, P ′} = {U, S} is called fresh if none of the

queries corrupt(U), corrupt(S), compromise(S,U), reveal(P, i) or reveal(P ′, i′) were issued, where ΠP ′
i′ is

an instance whose session matches ΠP
i (if such ΠP ′

i′ exists).

Correctness. Matching sessions between uncorrupted peers output the same session key.

Attacker’s advantage. Let PAKE be a PAKE protocol and A be an attacker with the above capabilities running
against PAKE. Assume that A issues a single test query against a fresh session at a user or server and ends
its run with an output bit b′. We say that A wins if b′ = b where b is the bit chosen internally by the test
session. The advantage of A against PAKE is defined as AdvPAKE

A = 2 · Pr [A wins against PAKE]− 1.

Definition 1. A PAKE protocol PAKE is (qS , qU , T, ε)-secure if it is correct and for any password dictionary
Dict and any attacker A that runs in time T , it holds that AdvPAKE

A ≤ qU+qS
|Dict| + ε where qU is the number of

8

rogue send queries having the target user U as recipient and qS is the number of rogue send queries having
the target S as recipient.

Dictionary size 2d. Our treatment works for any dictionary size, but for notational convenience we denote it
as 2d.

3.2 Security against server compromise and KCI-resistance

In the asymmetric client-server setting of password authentication that concerns us in this paper, plain pass-
words should not be stored at the server, so as to prevent the leakage of the password in case of server
compromise. Instead, the server should store some other verification information corresponding to this pass-
word, such as the salted password hash. The security requirement in this case, often referred to as security
against server compromise [18], is that access to the server’s state for a particular user (i.e, U-compromise
in our terminology) does not allow the attacker to authenticate that user to the server except after running an
offline dictionary attack that recovers the password given the server’s state.6 In the key-exchange literature
an attack in which the compromise of a party P allows the attacker to falsely authenticate another party P ′

to P is called a Key-Compromise Impersonation (KCI) attack [12]. Therefore, the above notion of security
against server compromise can be seen as a weak form of KCI resistance, where impersonation of U to S is
possible but only after running an offline dictionary attack.

We extend the above PAKE formalism to capture resistance to weak KCI attacks (wKCI-resistance)
through the following game (which is well-suited to ROM-based implementations that hash the password).
The security experiment is as before except for the following changes. User U (associated with server S)
chooses its password at random from a dictionary Dict, where Dict is a random subset of {0, 1}τ of size
2d (for integers d<τ). The attacker A is given a random subset of Dict of size q as well as the server’s
state σS(U), and it must choose the test session at an instance of S with peer U (in the regular case this is
not allowed since S is U-compromised). We call a PAKE scheme ε-wKCI-resistant if for any q ≤ 2d, the
attacker’s advantage in this game is at most q/2d + ε.

A strong notion of KCI resistance is achieved in the DE-PAKE model as we will see next.

3.3 DE-PAKE Security Model

We extend the PAKE model to the DE-PAKE setting. Besides servers and users in the PAKE model, each
user is associated with a device D with which it communicates over a two-way link. (We stress that the role
of D can be played by any data-connected entity, including a hand-held device or an auxiliary web service.)
The initialization phase of PAKE is extended to include the user-device communication that establishes the
state stored at D. As before, users only remember their passwords. As in the PAKE case, initialization
(including the user-device interaction) is assumed to run over secure channels. After initialization, the links
between users and devices are subject to the same man-in-the-middle adversarial activity as in the links
between users and servers. Device instances ΠD

i are created similarly to user and server instances, and are
activated by A via send queries that include users and devices as senders and receivers. However, device
instances do not produce output other than the outgoing messages. In particular, reveal queries do not apply
to them, but corrupt queries can be issued against devices, in which case the internal state of the device is
revealed to A who then controls the device. The session-related notions, including the test query, do not
apply to devices.

6Recovering the password via an offline dictionary attack is unavoidable in the PAKE model. Also unavoidable is impersonating
S to U when S is U-compromised (except if one assumes, as in the PKI model, an independent authenticated channel from S to U).

9

The attacker’s goal is the same as before, i.e. to win the test experiment at a user or server instance, as
in the PAKE setting. Also the correctness property is unchanged. However, to the attacker resources we add
the number of rogue send queries (see Section 3.1) where the target user is the recipient and the device the
sender (denoted q′U) and the number of rogue send queries where the target user is the sender and the device
the recipient (denoted qD). We refer to this more powerful adversary as a DE-PAKE attacker.

Strong KCI resistance. The DE-PAKE model is intended to provide a much stronger notion of security
in case of server compromise than achievable in the PAKE case. While in the latter, impersonating U to S
in case of U-compromise is possible (and unavoidable) through an offline dictionary attack, in DE-PAKE
protocols this is prohibited. In order to formalize this requirement we follow the treatment of KCI resistance
from [31] and we strengthen the capabilities of a DE-PAKE attacker through a more liberal notion of fresh
sessions at a server S. All sessions considered fresh in the PAKE model are also considered fresh in the
DE-PAKE model; in addition, in the DE-PAKE model, a session ΠS

i at server S with peer U is considered
fresh even if corrupt(S) or compromise(S,U) were issued as long as all other requirements for freshness
are satisfied and the attacker A does not have access to the temporary state information created by session
ΠS
i . This relaxation of the notion of freshness captures the case where the attacker A might have corrupted

S and gained access to S’s secrets (including long-term ones), yet A is not actively controlling S during the
generation of session ΠS

i . In this case we would still want to prevent A from authenticating as U to S on that
session. Definition 2 (item 2) below ensures that this is the case for DE-PAKE secure protocols even when
unbounded offline attacks against S are allowed.

The following security definition captures the maximal-attainable online and offline security from a DE-
PAKE protocol as informally discussed in the introduction. Let DPK be a DE-PAKE protocol and A be an
attacker with the above capabilities running against DPK. As in the PAKE model, we assume that A issues a
single test query against some U or S session, that A output bit b′, and we say that A wins if b′ = b where b
is the bit chosen by the test session. We define AdvDPK

A = 2 · Pr [A wins against DPK]− 1.

Definition 2. A DE-PAKE protocol is called (qS , qU , q
′
U , qD, T, ε)-secure if it is correct, and for any pass-

word dictionary Dict of size 2d and any attacker that runs in time T , the following properties hold (for
qS , qU , q

′
U , qD as defined above):

1. If S and D are uncorrupted, the following bound holds:

AdvDPK
A ≤

min{qU + qS , q
′
U + qD}

2d
+ ε. (1)

2. If D is corrupted then AdvDPK
A ≤ (qU + qS)/2d + ε.

3. If S is corrupted then AdvDPK
A ≤ (q′U + qD)/2d + ε.

4. When both D and S are corrupted, expression (1) holds but qD and qS are replaced by the number of
offline operations performed based on D’s and S’s state, respectively.

Note that the bounds in items 3 and 4 hold also when S is U-compromised (since being corrupted implies
U-compromise for all users U associated with S).

Note (more general bounds). One can define the above bounds more generally by replacing the expression
min{qU + qS , q

′
U + qD}/2d + ε with a tighter bound (as in equation (3) in the proof of Theorem 3). We

choose the simpler and more natural expression (1) that can be achieved by the adversary via generic attacks
(e.g., qU + qS is achievable when A plays man-in-the-middle between S and D on a guessed password, and
q′U + qD is achievable when A acts between U and D on the guessed password). Finally, we note that item 2

10

(resp. 3) could be covered by (1) if one replaced qD (resp. qS) in this expression with the number of offline
operations performed based on D’s (resp. S’s) state.

Note on modeling DE-PAKE via a T-PAKE. In a (t, n)-Threshold-PAKE (T-PAKE) (cf. [22]), a user
holding a single password can securely establish authenticated keys with a subset of n servers as long as
no more than t of them are corrupted (and the user interacts with at least t + 1 well-behaving servers).
One can implement DE-PAKE on the basis of a T-PAKE for (t, n)=(1, 2), otherwise known as 2-PAKE, by
letting D and S act as the two servers in the 2-PAKE scheme. This would imply the first three conditions
of Definition 2, but the last condition should be added as an additional requirement. Moreover, one can use
2-PAKE as the basis for the definition of DE-PAKE where the user only authenticates to one of the servers.
However, the dedicated DE-PAKE definition we present, and its instantiations, provide several advantages:
(1) It makes the security goals for the DE-PAKE notion clearer; (2) It allows for a more precise specifica-
tion of the (strict) upper bounds on attacker’s advantage depending on the attack setting; and (3) It allows
for more efficient implementations, in particular enabling a server-transparent DE-PAKE implementation,
which cannot be done using 2-PAKE. (A 2-PAKE cannot be server-transparent because if S runs the code as
in PAKE then S’s presence cannot help U to authenticate to D.)

Note on client security. The DE-PAKE model is designed to capture (maximal) security against online and
offline attacks where the attacker fully controls all communication channels and can compromise servers
and devices. However, as it is customary in the PAKE setting, the model does not consider the security of
the machine (the “client”) into which the user enters the password. Yet, our solutions, while vulnerable to
some forms of attack by an attacker controlling the client machine, also provide defenses to common attacks
such as keyloggers or phishing attacks (see Section 5).

4 A modular DE-PAKE Scheme

In this section we present and analyze our generic DE-PAKE scheme, i.e. the PTR-PAKE shown in Figure
1, which results from the composition of two independent cryptographic primitives, a PTR protocol and
a PAKE protocol with resistance to wKCI attacks (see section 3.1). For a high-level description of the
functionality of a PTR (password-to-random) scheme and its use for obtaining a DE-PAKE scheme see
Section 2. We start by describing a specific efficient PTR implementation we call FK-PTR, with is based on
the “password hardening” protocol of Ford-Kaliski [16] (Section 4.1). We then use this protocol example
to formalize the PTR notion and its security requirements (Section 4.2), and we prove that the FK-PTR
protocol satisfies the PTR security notion (Section 4.3). Finally, we prove that the generic composition of
any secure PTR scheme and any PAKE scheme with resistance to wKCI attacks results in a secure DE-
PAKE scheme (Section 4.4). Thus, our scheme can be instantiated with the FK-PTR scheme as the PTR
part and any secure wKCI-resistant PAKE protocol (e.g., [18, 22]). Moreover, if the PAKE scheme is in the
password-only model7 then the DE-PAKE scheme is also secure in this model.

4.1 The FK-PTR Scheme

The instantiation of a PTR scheme we call FK-PTR is based on Ford-Kaliski’s “password hardening” [16] or
its more general interpretation as an Oblivious PRF (OPRF) [17,26,27]. Roughly, an OPRF is a pseudoran-
dom function that is computed by two parties, one that holds the key to the function and learns nothing from

7This model assumes that user/password registration is implemented over secure channels but user authentication after registra-
tion does not assume public keys or secure channels for any party in the system - only the existence of public parameters, e.g., for
defining an elliptic curve, is assumed. These parameters are common to all users of the system and are part of the client program
run by a user; they require the same integrity guarantees as the program itself.

11

Setup

• Group G. The scheme works over a cyclic group G of prime order q, |q| = `, with generator g.

• Hash functions H,H ′ map arbitrary-length strings into elements of {0, 1}τ and G, respectively, where τ is a
security parameter.

• OPRF. For a key k ← Zq , we define function Fk as Fk(x) = H(x, (H ′(x))k).

• Parties. User U, Device D, Server S.

• Dictionary Dict of size 2d (a power of 2 is used for notational convenience only).

• Any PAKE protocol Π.

Initialization Phase (assumed to be executed over secure links)

• FK-PTR Initialization: U chooses password pwd← Dict; D chooses and stores OPRF key k ← Zq; U interacts
with D to compute rwd = Fk(pwd).

• PAKE Initialization: User U and server S are initialized with value rwd used as a password according to the
specification of PAKE protocol Π.

Login Phase

• User-Device Interaction (FK-PTR)

1. U chooses ρ← Zq; sends α = (H ′(pwd))ρ to D.

2. D checks that the received α ∈ G and if so it responds with β = αk.

3. U sets rwd = H(pwd, β1/ρ).

• User-Server Interaction (PAKE)

Follows the specification of the PAKE protocol Π where U uses rwd as its password.

Figure 2: The FK-PTR-PAKE Scheme

the computation, and one that holds an input and learns the output of the function on that input and nothing
else.8 In Figure 2 we present a particular instantiation of the PTR-PAKE protocol, which we call FK-PTR-
PAKE, that results from a composition of FK-PTR, which is a specific instantiation of a PTR scheme, with
a PAKE scheme. Figure 2 fully specifies the FK-PTR protocol, which is an interaction between U and D
by which U retrieves a random value rwd with the help of its password pwd. At initialization, U chooses
and remembers password pwd while D chooses and stores k ← Zq. To retrieve rwd, U first blinds pwd by
raising the hashed value H ′(pwd) to a random exponent ρ, and send it to D. This perfectly hides pwd from
D and from any eavesdropper on the U−D link. D checks that the received value is in the group G and if so
it raises it to the secret exponent k. Now, U can de-blind this value by raising it to the power 1/ρ to obtain
H ′(pwd)k. Finally, U hashes this value with pwd to obtain the randomized password rwd.

Note that D contains no information related to pwd hence an attacker interacting with D or even breaking
into it learns nothing about pwd. Also, U does not run any test on the value reconstructed in the FK-PTR

8The reason that we define our notion of PTR instead of referring to some existing definition of OPRF is that that most existing
definitions of OPRF are game-based, e.g. [17, 26], and their properties do not seem sufficient for the PTR protocol. On the other
hand, the recent definition of UC OPRF [22] involves verifiability which we do not provide (hence the FK-PTR construction shown
here uses fewer exponentiations than the OPRF scheme of [22] based on the same OMG-DH assumption in ROM), but even that
UC OPRF notion does not imply some of the PTR properties we require, namely the 1-1 property listed as #4 in definition 3 below.

12

protocol. Hence, an attacker that interacts with U in the role of D does not learn anything about pwd from
watching the behavior of U. These “obliviousness” and minimality properties of FK-PTR are essential to
achieve PTR security and make the security analysis challenging. We will use this scheme to motivate the
security requirements from a PTR scheme as needed for composing it with a PAKE protocol and obtain
a secure DE-PAKE protocol. We establish these requirements in the next subsection and then prove the
security of FK-PTR.

4.2 PTR Security Model

Here we present the security model for (generic) PTR schemes. We first define the adversarial game under-
lying this model and then use the FK-PTR scheme and explicit potential attacks against it to motivate the
security definition.

PTR adversarial game. The game is parameterized by a function family F and a password dictionary Dict
of size 2d for some d (the power of two is chosen for notational convenience only). User U is initialized
with password pwd ← Dict and device D with a key k defining function Fk. Later, the parties interact
so that in an undisturbed interaction between U and D, where U runs with input pwd, U outputs the secret
rwd = Fk(pwd). Attacker A has oracle access to U and D, calling these parties with any message of its
choice and receiving the corresponding response as defined by the scheme depending on the internal secrets
and state of the responding party. The security requirements are defined below in Definition 3 but we first
motivate them as follows.

Attack avenues and PTR security requirements. We define security of a PTR scheme in a way that
guarantees that the generic composition of PTR and PAKE protocols results in a secure DE-PAKE scheme.
The definition consists of several requirements that we motivate next via concrete attacks showing these
requirements to be necessary (and by virtue of Thm. 3 also sufficient). Reducing the PTR requirements to
the minimum necessary is pivotal for obtaining our very efficient FK-PTR implementation that would not
be possible otherwise.

Attack avenue 1: Leakage on rwd = Fk(pwd). Given that A can obtain values in RDict by interacting with
D on input any password in Dict we need to assure that nothing in the scheme leaks information on the
specific value of rwd = Fk(pwd) or otherwise the attacker can use this information to gain advantage on
guessing which of the RDict values is more plausible to be the correct rwd (e.g., it shouldn’t be possible for
A to test a possible value p as a candidate for pwd or to test a value r as a candidate for rwd). More generally,
to apply PAKE we need to ensure that the view of the attacker at the end of the PTR run is independent,
computationally or statistically, from rwd.

To capture this property we define the following experiment referred to as the distinguishing test. Define
RDict as {Fk(p) : p ∈ Dict} where k is D’s secret key. Let rwd = Fk(pwd) and choose r ← RDict\{rwd}.
A is given both rwd, r (in random order) and it needs to guess which one equals Fk(pwd).

Attack avenue 2: Learning values in RDict. Since A can learn values in RDict by interacting with D, A
can later interact with S in the PAKE protocol using these values. Thus, the best we can do is to require
the PTR protocol not to leak to A more than one value in RDict for each interaction with D. We formalize
this by defining a game where the attacker, at the end of its run, outputs a set of candidate values in RDict,
and requiring that this set does not contain more than qD correct values where qD is the number of rogue
activations of D by A.

Attack avenue 3: Using U to test passwords. Since the attacker can influence the values output by U in the
PTR protocol, the possibility exists, at least in principle, that A makes U output a value Fk(pwd′) where

13

pwd′ ∈ Dict is known to A. In this case, A can observe the PAKE run of U with S and see if pwd′ is the
correct password. This allows A to test passwords in Dict without having to act as an active MitM in the
PAKE protocol between U and S. While this attack is not possible against FK-PTR (as we will prove later),
one can show PTR schemes where this attack is feasible. There are two ways of dealing with this issue.
We either show that any such “dictated password” requires a specific rogue activation of D (as in Attack
2 above) hence treating it as any other password in RDict that A may learn by interacting with D or we
require that a secure PTR scheme does not allow for such attack. The latter is better as it prevents A from
testing passwords without a rogue activation of U but the former can be acceptable in a protocol that allows
the attack. Given that our FK-PTR protocol does not allow the attacker to use U as an oracle for testing
passwords in RDict \ {rwd}, we choose the stronger notion by adding an explicit requirement against such
possibility.

To prevent this we require that U’s PTR output equals Fk(pwd′) for pwd′ ∈ Dict \ {pwd} with at most
negligible probability.

Attack avenue 4: Running U on passwords outside RDict. The PTR-PAKE composition presents an attack
avenue not present in regular PAKE protocols: A can make U run the PAKE protocol on a password from
a dictionary RDict∗ different than RDict (note that this is different from attack scenario 3). To see this,
consider an attack in which A impersonates D to U running the protocol with a key k′ chosen by A. As a
consequence, U will run the PAKE protocol with the value Fk′(pwd), i.e., with a value uniformly distributed
over RDict∗ = {Fk′(p) : p ∈ Dict} where RDict∗ is known to A. This allows A to attack the PAKE protocol
as follows. It impersonates S to U as if the server’s state was initialized with password Fk′(p) for p ∈ Dict.
If p = pwd, A succeeds in the impersonation and learns pwd.9 This attack is not contemplated in standard
PAKE models where the user is assumed to run with a password from the specified dictionary and without
adversarial choice of the password. To illustrate the dangers of such attack, imagine that the family F has a
key k∗ such that Fk∗(·) is a constant function (with an output known to A). This is a real possibility against
FK-PTR if we define Fk(p) to be H((H ′(p)k) in which case k∗ = 0 has exactly this effect. Similarly, if
there is a key k∗ for which Fk∗ is a t-to-1 function, A could discard t passwords with each S-impersonation
attempt against U. Again, this is possible against FK-PTR with the modified Fk where A can choose β′, the
response returned to U, to be in a group of small-order. (Such an implementation of FK-PTR would require
to test β′ ∈ G \ {1}.)

To prevent this attack avenue we require that any attack strategy by A for generating a dictionary RDict∗

induces a 1-1 function. We formalize this as follows. Let c denote a set of coins for parties U,D,A in
a PTR run. For any such c define fc(p) as the output from U if its password was p. We require that
except for negligible probability over the choice of c, fc is 1-1. (Note that each such c defines a dictionary
RDict∗ = {fc(p) : p ∈ Dict} of size |Dict|.)
We are now ready to define PTR security.

Definition 3. We say that a PTR scheme is (qD, qU , T, ε)-secure if for any PTR attacker A that runs time
T and performs qD and qU rogue activations of D and U, respectively, ε is an upper bound on the values
ε1, ε2, ε3, ε4 defined as follows (these εi are functions of qD, qU , T and they correspond to the above attack
avenues):

9This attack recovers pwd with 2d impersonation attempts (of S) against U and it only requires one value Fk′(pwd) used by U
as its PAKE password. This does not imply a break of the DE-PAKE scheme, since for each impersonation attempt against U, A
needs to perform a rogue activation of U in PTR. If q′U is the number of rogue activation of U in PTR and qU is the number of rogue
calls to U in PAKE, then the probability of successful impersonation is at most min{qU , q′U}/2d. This implies that it is insecure
for U to cache the value retrieved from D for use in multiple sessions - doing so allows the above attack without A having to act as
a MitM between U and D in each DE-PAKE session.

14

1. the probability that A passes the distinguishing test of attack avenue 1 is at most 1/2 + ε1;
2. the probability that A outputs more than qD values in RDict following attack avenue 2 is at most ε2;
3. the probability that U outputs Fk(pwd′) for pwd′ ∈ Dict \ {pwd} is at most ε3;
4. the probability that fc, as defined in attack avenue 4, is not 1-1 is less than ε4.

where in all four cases the probability goes over random PTR key k and random pwd in Dict.

4.3 Security of the FK-PTR Scheme

Theorem 1 below summarizes the security of the FK-PTR scheme in terms of Definition 3. It uses the
One-More Gap Diffie-Hellman assumption defined next.
The One-More Gap DH (OMG-DH) Assumption [10, 27]: Let G be a group of prime order q and k a
random value in Zq. Let DHk be an oracle10 that on input g ∈ G outputs gk, and let DDHk be an oracle
that on input a pair (a, b) answers whether b = ak. We say that G satisfies the εomg-OMG-DH assumption
for function εomg if any attacker A that runs in time T has probability at most εomg(T, qdh, qddh) to win the
following game: A is given access to the DHk and DDHk oracles, which it queries qdh and qddh times, resp.,
and is given a set R of random elements in G. It wins if it outputs qdh + 1 different pairs (g, gk), g ∈ R.

Theorem 1. Let G be a group where the εomg(·)-One-More Gap DH holds. Let the hash functions H,H ′

be modeled as random oracles and qH be the number of invocations to H . Then, the FK-PTR scheme run
over group G with a dictionary Dict ⊂ {0, 1}τ is (qD, qU , T, ε)-secure where ε = max{ε1, ε2, ε3, ε4} with
ε1 = 0, ε2 ≤ T/2τ + εomg(T, qD, qH), ε3 ≤ 1/2τ , ε4 ≤ |Dict|2/2τ .

Proof. To show that ε1 = 0, note that the only information A sees related to the particular value pwd is
α = (H ′(pwd))ρ but since ρ is chosen by U uniformly in Zq, α is uniformly distributed in G independently
of pwd. Thus, the view of A is independent of U’s password pwd and the probability of A to win the
distinguishing test is 1/2. The bound on ε2 follows from Lemma 2 below proven based on the OMG-DH
assumption. The bound on ε3 follows from the fact that pwd is included under H , hence the probability that
for some pwd′ ∈ Dict \ {pwd}, we have H(pwd′, (H ′(pwd′))k) = H(pwd, (H ′(pwd))k) is 2−τ where τ is
the length of the output from H . Similarly, the bound on ε4 follows from the collision resistance properties
of the (random) H .

Note: The bound |Dict|2/2τ on ε4 can be reduced significantly if one relaxes requirement 4 of PTR security
to allow for some deviation from injectiveness, e.g., allowing RDict to be of size α · |Dict| for some α, say
α = 1/2.

Lemma 2. LetG be a group where the εomg-One-More Gap DH assumption holds and model hash functions
H,H ′ as random oracles. Let A be a PTR-attacker against the FK-PTR scheme that runs time T and
activates D qD times with values chosen by A (i.e., rogue activations). Then, the probability that A outputs
more than qD values in RDict (as in attack avenue 2) is at most ε2 = T/2τ + εomg(T

′, qD, qH) where qH is
the number of invocations of H by A and T ′ ≈ T .

Proof. Given a PTR attacker A against the FK-PTR scheme over a εomg-OMG-DH group G, we build an
attacker A′ against OMG-DH in group G. A′ gets access to a DHk and DDHk oracles and an input in the
form of an ordered set R = g1, ..., gN of random elements in G. A′ runs A on a simulated run of FK-PTR.
A′ uses DHk to answer queries to D (i.e., A′ simulates an instance of D under key k) and uses the set R to

10DHk is not defined over elements outside G hence one needs to check the input to the oracle - it can be done by an explicit
group membership check or by co-factor exponentiation.

15

answer H ′ queries. Namely, if R = g1, ..., gN then the first H ′ query is answered with g1, the second with
g2, etc. Queries (x, y) to H are answered with random values in {0, 1}τ . A′ keeps a table of defined inputs-
outputs for these oracles and answers to repeated queries with the corresponding values in these tables. A′

chooses pwd, sets H ′(pwd) = g1 (i.e., this is done prior to answering any H ′ query from A), and queries g1

to DHk obtaining gk1 which we denote by y∗.
A′ simulates the actions of U faithfully, namely, it outputs messages of the form α = gρ1 for random

ρ ← Zq and upon receiving a response β from A it computes r′ = H(pwd, β1/ρ). When A delivers a
message α′ to D, A′ responds to it as follows. If α′ was output by U, in which case A′ knows ρ such that
α′ = gρ1 , A′ responds with yρ1 ; otherwise A′ queries α′ from DHk. In addition, for inputs (x, y) to H , A′

checks that H ′(x) was queried and if so it checks, using the DDHk oracle, whether the gj ∈ R returned as
the result of H ′(x) satisfies y = gkj . If all checks pass, A′ stores the pair (gj , y) in a list L.

Note that the above simulation of A is perfect hence the output from A is the same as in a real execution
of FK-PTR. As claimed in the proof of Theorem 1, the view of A is independent of pwd and g1 (A only
sees values of the form gρ1 for one-time random ρ’s) hence it is independent of rwd (which is computed as
H(pwd, (H ′(pwd))k)).

Denote by R′ the set of values in RDict output by A. Let E1 denote the event that R′ contains a value
r′ = H(p, (H ′(p))k) for p ∈ Dict and that A did not query H on (p, (H ′(p))k) or H ′ on p; the probability
of E1 is at most T/2τ . Assuming E1 does not happen we have that if r′ = H(p, (H ′(p))k) ∈ R′ then A
queried H ′ on p and H on (p, (H ′(p))k). Since A′ chooses its responses to H ′ queries from elements in the
set R, we have that r′ = H(p, gj

k) for gj ∈ R so the query H(p, (H ′(p))k) resulted in the pair (gj , gj
k)

being included by A′ into the list L. Thus, |R′| ≤ |L|.
Note that A′ has obtained pairs (gj , g

k
j) for all pairs in L as well as for (g1, g

k
1). Let L′ = L∪{(g1, g

k
1)}.

By the DH-OMG assumption we have that the probability that L′ contains more than qdh elements is at
most εomg(T ′, qdh, qddh) where T ′ is the running time of A′. So, except for this probability, we can assume
|L′| ≤ qdh. We show |L| ≤ qD and therefore |R′| ≤ qD as claimed by the lemma.

A′ queries DHk in two cases: Upon rogue activations of D by A and for obtaining gk1 . Thus, if (g1, g
k
1) /∈

L we have qdh = qD + 1, and together with the assumption qdh ≥ |L′| = |L| + 1 we obtain that |L| ≤
qdh − 1 = qD. If (g1, g

k
1) ∈ L (meaning that g1 was also queried by A through a rogue activation) then

qdh = qD and together with qdh ≥ |L′| = |L| we obtain that |L| ≤ qdh = qD.
In all, we have that except for probability ε2 = εomg(T

′, qD, qH)+T/2τ , |R′| ≤ |L| ≤ qD. The running
time of A′ is essentially that of A if we count U activations as part of A running time and equate the cost of
a call to DHk to that of a D activation and the cost of a H ′ call to that of a DDHk invocation.

4.4 PTR-PAKE Composition Theorem

We are now ready to prove the composition theorem showing that composing a secure PTR with a PAKE
that offers the wKCI-resistance property, results in a secure DE-PAKE scheme (with security definitions as
presented in Section 3). As noted earlier, if the PTR and PAKE schemes dispense of PKI so does our DE-
PAKE protocol: An example of such composed scheme free of PKI (except for initialization) is presented
in Section 5.

Theorem 3. Let P be a (qD, q
′
U , TP , εP)-secure PTR scheme and Π be a (qS , qU , TΠ, εΠ)-secure PAKE

protocol that is also εKC-wKCI-resistant, then the DE-PAKE scheme C that uses the composition of both
protocols is a (qS , qU , q

′
U , qD, TC , εC)-secure DE-PAKE protocol where εC = εΠ + (3q′U + 1)εP + εKC +

qU+qS
2τ−1 .

Proof. The proof of the Theorem is presented in Appendix A.

16

4.5 Adaptation to Standard Password-over-TLS

The most widely deployed password protocol in practice is the web-based “password-over-TLS” scheme,
namely, one where server and browser establish a TLS channel authenticated by the server over which the
user’s password is encrypted and transmitted to the server. At reception the server decrypts the password
and passes it to the application that requested the authentication. Typically, such application will not keep
passwords in plaintext form but will rather store a (possibly salted) hash image of the password so that upon
server compromise an attacker still has to mount a dictionary attack. However, in this setting an attacker
that compromises or controls a server can potentially learn the cleartext password upon user authentication,
namely, when the password is decrypted and sent to the application.

This capability of the attacker can be exploited in our setting as follows. Assume the attacker A corrupts
server S and impersonates the device to the user choosing its own OPRF key k′. When the user U authenti-
cates to S, it obtains from the (impersonated) device the value rwd′ = fk′(pwd) which U then transmits to S
over TLS. If we assume that A learns the cleartext rwd′ by corrupting S, then A can now mount a dictionary
attack on pwd on the basis of the values k′ and rwd′ that it knows. Therefore, to recover DE-PAKE security
in this case one has to assume that the communication from the device D to the user’s client machine is au-
thenticated. This requires a one-time setup procedure where a device’s key is installed in the user’s machine
(one can also leverage the PKI setting in this case) .

Revisiting the security analysis in this case, one notes that the ability to learn the plaintext rwd′, violates
PTR security, particularly via attack avenue 4. Indeed, the attacker A can now induce the computation of
a password rwd′ outside RDict which it learns via S compromise. Requiring the communication from the
device to the client machine to be authenticated solves the issue as it prevents the attacker from choosing
its own OPRF key k′ for computing non-RDict passwords. Thus, with device authentication the proof of
Theorem 3 remains valid. It is worth noting that in this setting the attacker A can learn rwd = fk(pwd)
computed under the real device’s key k. Yet, this is of no value to A as it does not allow to mount an attack
on pwd or on other rwd values except if A also compromises the device. In the latter case, A can mount an
offline dictionary attack but as stated before such an attack upon compromise of both device and server is
unavoidable.

5 Instantiations and Extensions

In this section, we discuss several instantiations and extensions of our PTR-PAKE scheme showing the
practicality and flexibility of our approach. We first present a full and detailed instantiation of PTR-PAKE
that is secure in the PKI-free setting . Then, we show how to provide transparent DE-PAKE support to
currently deployed web services, namely, armoring an existing service against online and offline attacks
without changing the server. Finally, we comment on extensions that provide defenses against client-side
and phishing attacks.

PKI-Free DE-PAKE. Figure 3 describes a full instantiation of a PKI-free PTR-PAKE protocol using the
FK-PTR scheme from Figure 2 and a PKI-free PAKE protocol with resistance against wKCI attacks adapted
from the threshold PAKE (TPAKE) protocol of [22, 23]. More precisely, the PAKE protocol we use is an
adaptation of the variant of the TPAKE protocol from [22,23] with resistance against wKCI attacks, proven
secure in the PKI-free (or CRS) model, to the single-server case (i.e., a (1,1)-TPAKE).

The protocol as described in Figure 3 also requires a key-exchange mechanism (the “KE formula”) to
set a session key between server and user (in particular for the sake of mutual authentication). Different
protocols can be used here, for example, based on shared keys or public keys, with or without forward

17

Parties: User U, Device D, Server S.
Public Parameters and Components

• Group G of prime order q with generator g.
• Hash functions H,H ′ with ranges {0, 1}2τ , G and Zq , respectively, for τ a security parameter.
• Pseudorandom function (PRF) f with range {0, 1}2τ .
• OPRF function Fk(x) = H(x, (H ′(x))k) for key k ∈ Zq .
• Key exchange formula KE: on input long-term and ephemeral private-public keys outputs shared key K ∈ {0, 1}τ .

Initialization Phase (assumed to be executed over secure links)

• FK-PTR Initialization: Run FK-PTR initialization of Fig. 2 to choose pwd, device’s OPRF key kd, and compute
rwd = Fkd(pwd).

• PAKE Initialization:

1. S chooses ps ∈R Zq and sends to U the public key Ps = gps (Ps can be used with all of S’s users).
2. U chooses z ∈R {0, 1}τ , ks ∈R Zq;

sets values c = z ⊕ Fks(rwd), r = fz(0), C = H(r, rwd, c), pu = fz(1) mod q;
computes Pu = gpu and mu = fz(2, Pu, Ps); and sends to S the values c, C, ks, Pu, mu.

3. S stores c, C, ks, Pu,mu in its U-associated storage (if Ps is user-specific, it also stores Ps and ps).

Login Phase

• User-Device Interaction (FK-PTR)
Follows the FK-PTR protocol as per Fig. 2 to obtain rwd on input pwd from U and input kd from D.

• User-Server Interaction (PAKE)

1. U chooses ρ, xu ← Zq; initiates a key exchange session with S by sending its identity U, the value
α = (H ′(rwd))ρ and Xu = gxu .

2. S proceeds as follows:

(a) Checks that α ∈ G;
(b) Retrieves (c, C, ks, Pu,mu) from its U-associated storage;
(c) Picks xs ∈R Zq and computes β = αks , Xs = gxs .
(d) Sends to U: β, c, C, Pu,mu, Ps, Xs.
(e) Computes K = KE(ps, xs, Pu, Xu) and outputs session key SK = fK(0).

3. U proceeds as follows:

(a) Sets z = c⊕H(rwd, β1/ρ), r = fz(0), pu = fz(1) mod q.
(b) Aborts unless the following conditions hold: β ∈ G, C = H(r, rwd, c), mu = fz(2, Pu, Ps).
(c) Computes K = KE(pu, xu, Ps, Xs) and outputs session key SK = fK(0).

• Explicit Authentication
If explicit authentication of the parties is required then S adds the value fK(1) to its message and U adds a third
message with value fK(2). Each party verifies the value received from the other party.

Figure 3: Instantiation of FK-PTR-PAKE with PKI-free PAKE protocol from [22, 23]

18

secrecy, etc. However, we note that in order to achieve security against server compromise (needed to
provide the maximal security of a PTR-PAKE scheme) one must use a public key mechanism. Otherwise, the
server would be storing a secret authentication key for the user which would allow an attacker to impersonate
the user to the server in case of server compromise. Thus, while we allow for different key exchange
mechanisms through a general KE formula, we do require these to be based on public keys for both parties
(we also accommodate ephemeral keys if forward secrecy is desired). For illustration, and as a concrete and
efficient instantiation that preserves a minimal number of messages and provides forward secrecy, we define
the key computation formulas corresponding to the HMQV protocol [31], where eu = H(Xu,S), es =
H(Xs,U):

For S: K = KE(ps, xs, Pu, Xu) = H ((XuP
eu
u)xs+esps)

For U: K = KE(pu, xu, PS , XS) = H ((XsP
es
s)xu+eupu)

Server-Transparent DE-PAKE. An important implication of the modularity of our PTR-PAKE scheme is
that the user can use any secure PTR protocol to derive a hardened password rwd from her nominal password
pwd, and then register rwd as her actual password with an existing server, where the latter implements any
wKCI-resistant password authentication protocol acting as PAKE. In particular, such authentication protocol
can be the standard PKI-based password-over-TLS protocol widely used as the basis for web authentication.
In such case the login phase of the PTR-PAKE protocol consists of the user typing her password pwd, the
client terminal and the device executing the PTR protocol to compute the hardened password rwd, and the
client terminal sending rwd to the server over a TLS session. In this setting, no modification to an existing
service is required. We note, however, that as stated in Section 4.5, providing DE-PAKE security in this
TLS setting requires authentication of the communication from device to the user’s machine. Once this
authentication is ensured (via a setup procedure where a device’s key is installed in the user’s machine) the
resultant composition of PTR and password-over-TLS is DE-PAKE secure.

There are several advantages of this setting: (1) the user can simply remember the short nominal pwd
but register with a strong high-entropy password that significantly increases resistance to online and offline
guessing attacks (in particular, offline-only attacks on a compromised server are not possible); (2) nominal
password pwd can be the same or reused among multiple services, but the OPRF key associated with each
service stored on the device can be different (hence also rwd would be different), and therefore the compro-
mise of the password rwd at one server will not reveal the actual password pwd and will not compromise the
user’s accounts with other services; (3) rather than asking the user to frequently change the password and
memorize the updated password, only the key on the device can be changed, which improves the usability.

In a companion work [34], we have developed a smartphone-based password manager application built
on top of the DE-PAKE framework and investigated its usability. The results of our study demonstrate the
promising feasibility of our approach to a real-world practical problem.

Resisting Client-Side & Phishing Attacks. Malicious code and keyloggers remain a threat to browsers in
spite of browser security enhancements. Because we use a keyed password hardening scheme, an attacker
who learns pwd by a key-logger or shoulder surfing can not authenticate to the service without interacting
with the device. However, an attacker who compromises a client terminal can obtain rwd. By using service-
specific keys at the device we guarantee that an attacker who obtains rwd can only compromise the particular
service associated with it; even if pwd is used for multiple services, the rwd values derived for each service
are random and independent .

Still, one can reduce the threat of the malware attack to the by combining our scheme with the traditional
two-factor authentication (TFA) mechanism, i.e., having D generate a PRF on a time value or a nonce under

19

a key that D shares with S. Note that in a traditional TFA mechanism, compromising the client allows the
attacker to hijack the current login session of the user, but does not allow the attacker to login in future
sessions (due to the use of “one-time” PIN codes). Integrating our DE-PAKE protocol with traditional TFA
could provide the same level of security in the event of client compromise, while providing all the other
security properties of our DE-PAKE scheme.

Resistance to phishing attacks can be achieved if rwd is computed on a concatenatation of pwd and the
URL being accessed, i.e., if rwd = FKd(pwd|url). This is similar to the PwdHash approach [33] except that
in PwdHash, the attacker that obtains the randomized password through phishing can mount a dictionary
attack to find the user’s password while in our case this is not feasible.

Integrating our DE-PAKE techniques with existing two-factor authentication mechanisms (e.g., PIN
based) to simultaneously enhance security against offline-online attacks and client compromise is left as a
future work item.

6 Conclusions and Future Work

In this paper, we considered the problem of armoring password protocols against online guessing attacks as
well as offline dictionary attacks in the event of server or device compromise. We proposed a novel, effi-
cient and modular device-enhanced password protocol (DE-PAKE) and formally analyzed its security. In
contrast to previous work on this subject, our protocol does not require the presence of a public key infras-
tructure or the availability of authenticated public keys (except, possibly, for initial password registration)
thus relaxing the concerns regarding PKI failures or compromises. At the same time, when an authentic and
uncompromised public key of the server is available, our protocol further guarantees resilience to server im-
personation even when the user’s password is disclosed. Remarkably, we can achieve these benefits without
necessitating service-side changes.

Finally, we note that, thanks to our modular architecture, one can further increase the resistance to server
compromise by using a threshold-PAKE protocol (e.g., [22]), in which case an attacker needs to compromise
a threshold of servers in addition to the device before being able to mount an offline dictionary attack.

Acknowledgments

This research is partially supported by ONR Contract N00014-14-C-0113, NSF CICI Award #1547435 and
#1547350, and NSF CNS Award #1209280.

References
[1] Anonymous hackers claim to leak 28,000 PayPal passwords on global protest day. Available at: http://goo.

gl/oPv2h.

[2] Blizzard servers hacked; emails, hashed passwords stolen. Available at: http://goo.gl/OTNWJC.

[3] Hackers compromised nearly 5M Gmail passwords. Available at: http://goo.gl/IRu07u.

[4] LinkedIn Confirms Account Passwords Hacked. Available at: http://goo.gl/UBWuY0.

[5] RSA breach leaks data for hacking securid tokens. Available at: http://goo.gl/tcEoS.

[6] RSA SecurID software token cloning: a new how-to. Available at: http://goo.gl/qkSFY.

[7] Russian Hackers Amass Over a Billion Internet Passwords. Available at: http://goo.gl/aXzqj8.

20

[8] T. Acar, M. Belenkiy, and A. Kupcu. Single password authentication. Computer Networks, 57(13):2597 – 2614,
2013.

[9] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret sharing. In Proceedings of the
18th ACM Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, October
17-21, 2011, pages 433–444, 2011.

[10] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion problems and the
security of Chaum’s blind signature scheme. 16(3):185–215, June 2003.

[11] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In
Advances in Cryptology – Eurocrypt, 2000.

[12] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their security analysis. In Pro-
ceedings of the 6th IMA International Conference on Cryptography and Coding, pages 30–45, London, UK, UK,
1997. Springer-Verlag.

[13] X. Boyen. Hidden credential retrieval from a reusable password. In Proceedings of the 4th International Sympo-
sium on Information, Computer, and Communications Security, ASIACCS ’09, pages 228–238, New York, NY,
USA, 2009. ACM.

[14] J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. A new two-server approach for authentication with short secrets.
In Proceedings of the 12th Conference on USENIX Security Symposium - Volume 12, SSYM’03, pages 14–14,
Berkeley, CA, USA, 2003. USENIX Association.

[15] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia prf service. In 24th USENIX
Security Symposium (USENIX Security 15), 2015.

[16] W. Ford and B. S. Kaliski Jr. Server-assisted generation of a strong secret from a password. In Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2000.

[17] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom functions.
In Theory of Cryptography. 2005.

[18] C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based key exchange resilient to server
compromise. In Advances in Cryptology-CRYPTO. 2006.

[19] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. 2(3):230–268, Aug. 1999.

[20] D. P. Jablon. Password authentication using multiple servers. In The Cryptographer’s Track at RSA Conference
(CT-RSA). 2001.

[21] S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret sharing and T-PAKE in the
password-only model. In Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014, Proceedings, Part II, pages 233–253, 2014.

[22] S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret sharing and T-PAKE in the
password-only model. In Advances in Cryptology–ASIACRYPT. 2014.

[23] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly Efficient and Composable Password-Protected Secret
Sharing. In 1st IEEE European Symposium on Security and Privacy (EuroS&P). 2015.

[24] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-efficient and composable password-protected secret
sharing (or: How to protect your bitcoin wallet online). In IEEE European Symposium on Security and Privacy,
EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016, pages 276–291, 2016.

[25] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena. Device-enhanced password protocols with optimal
online-offline protection. IACR Cryptology ePrint Archive: Report 2015/1099 available at http://eprint.
iacr.org/2015/1099, December 2015.

21

[26] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive ot and secure
computation of set intersection. In Theory of Cryptography. 2009.

[27] S. Jarecki and X. Liu. Fast secure computation of set intersection. In Security and Cryptography for Networks.
2010.

[28] J. Katz, P. MacKenzie, G. Taban, and V. Gligor. Two-server password-only authenticated key exchange. Journal
of Computer and System Sciences, 78(2):651 – 669, 2012. Games in Verification.

[29] F. Kiefer and M. Manulis. Distributed Smooth Projective Hashing and Its Application to Two-Server Password
Authenticated Key Exchange, pages 199–216. Springer International Publishing, Cham, 2014.

[30] F. Kiefer and M. Manulis. Universally Composable Two-Server PAKE, pages 147–166. Springer International
Publishing, Cham, 2016.

[31] H. Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In Advances in Cryptology–CRYPTO,
2005.

[32] P. D. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key exchange. In Ad-
vances in Cryptology - CRYPTO 2002, International Cryptology Conference, 2002.

[33] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger password authentication using browser
extensions. In Usenix security Symposium, 2005.

[34] M. Shirvanian, S. Jarecki, H. Krawczyk, and N. Saxena. SPHINX: A password store that perfectly hides pass-
words from itself. In 37th IEEE International Conference on Distributed Computing Systems (ICDCS 2017), to
appear, June 2017.

[35] M. Shirvanian, S. Jarecki, N. Saxena, and N. Nathan. Two-factor authentication resilient to server compromise
using mix-bandwidth devices. In Network & Distributed System Security Symposium, 2014.

[36] M. Szydlo and B. Kaliski. Proofs for two-server password authentication. In A. Menezes, editor, Topics in
Cryptology – CT-RSA 2005: The Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA,
February 14-18, 2005. Proceedings, pages 227–244, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

A Proofs

A.1 Proof of Lemma 2
Proof. Given a PTR attacker A against the FK-PTR scheme over a εomg-OMG-DH group G, we build an attacker A′

against OMG-DH in group G. A′ gets access to a DHk and DDHk oracles and an input in the form of an ordered set
R = g1, ..., gN of random elements in G. A′ runs A on a simulated run of FK-PTR. A′ uses DHk to answer queries to
D (i.e., A′ simulates an instance of D under key k) and uses the set R to answer H ′ queries. Namely, if R = g1, ..., gN
then the first H ′ query is answered with g1, the second with g2, etc. Queries (x, y) to H are answered with random
values in {0, 1}τ . A′ keeps a table of defined inputs-outputs for these oracles and answers to repeated queries with the
corresponding values in these tables. A′ chooses pwd, sets H ′(pwd) = g1 (i.e., this is done prior to answering any H ′

query from A), and queries g1 to DHk obtaining gk1 which we denote by y∗.
A′ simulates the actions of U faithfully, namely, it outputs messages of the form α = gρ1 for random ρ ← Zq and

upon receiving a response β from A it computes r′ = H(pwd, β1/ρ). When A delivers a message α′ to D, A′ responds
to it as follows. If α′ was output by U, in which case A′ knows ρ such that α′ = gρ1 , A′ responds with yρ1 ; otherwise A′

queries α′ from DHk. In addition, for inputs (x, y) to H , A′ checks that H ′(x) was queried and if so it checks, using
the DDHk oracle, whether the gj ∈ R returned as the result of H ′(x) satisfies y = gkj . If all checks pass, A′ stores the
pair (gj , y) in a list L.

Note that the above simulation of A is perfect hence the output from A is the same as in a real execution of FK-
PTR. As claimed in the proof of Theorem 1, the view of A is independent of pwd and g1 (A only sees values of the
form gρ1 for one-time random ρ’s) hence it is independent of rwd (which is computed as H(pwd, (H ′(pwd))k)).

22

Denote by R′ the set of values in RDict output by A. Let E1 denote the event that R′ contains a value r′ =
H(p, (H ′(p))k) for p ∈ Dict and that A did not query H on (p, (H ′(p))k) or H ′ on p; the probability of E1 is at most
T/2τ . Assuming E1 does not happen we have that if r′ = H(p, (H ′(p))k) ∈ R′ then A queried H ′ on p and H on
(p, (H ′(p))k). Since A′ chooses its responses to H ′ queries from elements in the set R, we have that r′ = H(p, gj

k)
for gj ∈ R so the query H(p, (H ′(p))k) resulted in the pair (gj , gj

k) being included by A′ into the list L. Thus,
|R′| ≤ |L|.

Note that A′ has obtained pairs (gj , g
k
j) for all pairs in L as well as for (g1, g

k
1). Let L′ = L ∪ {(g1, g

k
1)}. By the

DH-OMG assumption we have that the probability thatL′ contains more than qdh elements is at most εomg(T ′, qdh, qddh)
where T ′ is the running time of A′. So, except for this probability, we can assume |L′| ≤ qdh. We show |L| ≤ qD and
therefore |R′| ≤ qD as claimed by the lemma.

A′ queries DHk in two cases: Upon rogue activations of D by A and for obtaining gk1 . Thus, if (g1, g
k
1) /∈ L we

have qdh = qD + 1, and together with the assumption qdh ≥ |L′| = |L| + 1 we obtain that |L| ≤ qdh − 1 = qD. If
(g1, g

k
1) ∈ L (meaning that g1 was also queried by A through a rogue activation) then qdh = qD and together with

qdh ≥ |L′| = |L| we obtain that |L| ≤ qdh = qD.
In all, we have that except for probability ε2 = εomg(T

′, qD, qH) + T/2τ , |R′| ≤ |L| ≤ qD. The running time of
A′ is essentially that of A if we count U activations as part of A running time and equate the cost of a call to DHk to
that of a D activation and the cost of a H ′ call to that of a DDHk invocation.

A.2 Lemma 4
We formulate and prove Lemma 4 that we use as a main component in the proof of the composition theorem, Theo-
rem 3.

Lemma 4. Let Π be a (qS , qU , T, ε)-secure PAKE protocol. Then the following holds for any PAKE-adversary A
against Π. Let Dict ⊂ {0, 1}τ be a dictionary composed of the union of two disjoints sets Dict1 and Dict2, where
Dict1 is known to A and Dict2 is chosen as a random subset of {0, 1}τ \Dict1 and unknown to A. Then the advantage
of A against Π running with dictionary Dict is at most

min{qS + qU , |Dict1|}
|Dict|

+
qS + qU

2τ−1
+ ε.

Proof. Denote qA = qS + qU . The winning probability of A when the password is selected at random in D satisfies
(see below for explanations):

Pr [A wins : p ∈ Dict1] · Pr [p ∈ Dict1] +

Pr [A wins : p ∈ Dict2] · Pr [p ∈ Dict2]

≤ 1

2
+

min{qA, |Dict1|}
|Dict1|

|Dict1|
|Dict|

+
qA

|Dict1|
|Dict2|
|Dict|

+ ε

≤ 1

2
+

min{qA, |Dict1|}
|Dict|

+
2qA
2τ

+ ε

as claimed in the lemma.
To see why the above inequalities hold, first note that the case p ∈ Dict1 corresponds to a regular PAKE game with

known dictionary Dict1 hence the attacker’s winning probability in this case is at most 1/2+min{qA, |Dict1|}/|Dict1|+
ε; on the other hand, Pr [p ∈ Dict1] = |Dict1|/|Dict| from which the first term in the final expression follows (ε and
1/2 are separated as they are common to both terms). Note that the minimum in min{qA, |Dict1|} simply means that
the advantage qA/|Dict1| is capped at 1 even for larger values of qA. As for the second term, the case p ∈ Dict2 is,
from the point of view of A, equivalent to a dictionary Dict1 = 2τ \Dict1 since all elements outside Dict1 are equiprob-
able. Hence, the winning probability in this case is at most 1

2 + qA
|Dict1|

+ ε while Pr [p ∈ Dict2] = |Dict2|/|Dict|,

resulting in the second term. Finally, we observe that when |Dict1| ≤ 2τ−1, then qA
|Dict1|

|Dict2|
|Dict| ≤

qA
|Dict1|

≤ qA
2τ−1 , and

when |Dict1| ≥ 2τ−1 then qA
|Dict1|

|Dict2|
|Dict| ≤

qA
|Dict| ≤

qA
|Dict1| ≤

qA
2τ−1 .

23

A.3 Proof of Theorem 3
Proof. We consider 4 cases as in Definition 2 according to whether D and S are corrupted or not. We focus on the
main ideas of the proof - a formal presentation would represent the arguments in the proof below as a sequence of
game transitions.
Case 1: No corruption. We start by addressing the following modeling issue. In the CRS setting, a PTR-PAKE
attacker A can make the user U run with a password generated via a function fc applied to the U’s password pwd as
in attack avenue 4. Since A has no information about pwd (first PTR requirement), this is equivalent to U choosing a
random independent password rwd∗ from the dictionary RDict∗ = fc(Dict) (which by the 1-1 requirement is of the
same size as user U’s dictionary Dict). Also, since by the third requirement of PTR security, rwd∗ is different than
U’s real password rwd = Fk(pwd), then the runs of U with rwd∗ are independent from those with rwd (runs of a
user with different passwords are independent of each other since the only shared state between runs, or sessions, is
the password). Thus, we can treat U running with rwd∗ as a separate user from U, one created by the attacker with
dictionary RDict∗ = fc(Dict). Note that U does not have rwd∗ registered with S or any other server (the attacker is
allowed to create such unregistered users). We will refer to these derived users as “split users” and consider them as
additional regular users in a PAKE protocol.11

In summary, thanks to requirements 1, 3, 4 of PTR security, the ability of the PTR attacker to induce different
password outputs from U translates into the ability of the PAKE adversary to create independent “split users”. Note that
user U can run with different dictionaries RDict∗, corresponding to different functions fc, and each such run generates
a new split user. On the other hand, the PTR attacker may choose to use the same fc multiple times which we model
as repeated runs of the same split user (since in all these runs the user will use the same password rwd∗). Thus, in
what follows, we assume a setting (or game) where each split user runs with a password pwd∗ that is independent of
pwd and independent of other users’ pwd∗, and that these passwords are chosen from dictionaries RDict∗ of size 2d.
Formally, we need to apply a standard sequence-of-games argument to quantify the increase in the advantage of the
attacker in this game transition. Specifically, each split user activation adds a ε1 + ε3 + ε4 advantage to the attacker
success for a total of q′U (ε1 + ε3 + ε4).

For clarity, we will use Π∗ to denote the PAKE protocol Π when run against an attacker that can create split users
with independent passwords as above. The PAKE security of Π implies the PAKE security of Π∗ (the PAKE model
requires Π to be secure with any number of adversarially generated users).

Having established this correspondence between PTR-induced passwords and split users we can now reduce the
DE-PAKE security of a PTR-PAKE scheme to the PAKE security of Π. That is, we build a PAKE attacker SIM against
Π given a DE-PAKE attacker A against the composed DE-PAKE scheme C. For this SIM simulates the PTR part of
the protocol as follows. Let Dict be the dictionary used by the target user U. SIM chooses k for D and pwd← Dict for
U in the PTR game. It defines the dictionary on which Π∗ runs as RDict = {Fk(p) : p ∈ Dict}. By the 1-1 property
of Fk, RDict is of the same size as Dict (note that Π needs to be secure against any dictionary, even an adversarially
chosen one).

This simulation of P is perfect as it uses full information on the parties’ secrets (pwd and k). Then, by virtue of
PTR security (requirement 1), we have that the view of the DE-PAKE attacker A is independent, up to an advantage
loss of ε1, of pwd and of the password rwd = Fk(pwd) used by U in protocol Π.

Now consider the PAKE activations by the DE-PAKE attacker A of the target pair (U,S), i.e., the activations of
S as well as of U running with password rwd and of U running with passwords induced by A in the PTR activation
of U. We start by considering the activations of S and U according to the regular PAKE model and then consider the
activations related to split users.

The attacker has partial knowledge of the dictionary RDict from which U’s password rwd is chosen. Specifically,
by requirement 2 of PTR security, we can assume (up to an advantage difference of ε2), that A knows at most qD
elements in RDict, where qD is the number of rogue activations of D by A. In the view of A, the rest of RDict is
distributed uniformly (or pseudorandomly) in {0, 1}τ . Thus, we are in the setting of Lemma 4, hence the probability

11The only difference with traditional users is that they are not registered with any server, although we could define a special
server S with which the attacker register split users but S is never activated by the attacker.

24

of A winning the DE-PAKE game in a session at U or S is at most

min{qU + qS , qD}
|Dict|

+
qU + qS

2τ−1
+ εΠ. (2)

We now consider Π activations of U running with a password from an attacker-induced dictionary RDict∗, or the
equivalent Π∗-activation by A of a split user U∗. Such user runs with a password rwd∗ from a dictionary RDict∗ of
the same size as Dict and where rwd∗ 6= rwd; in particular, rwd∗ is not registered with S. Thus, activations of S are
irrelevant to this case but A may activate U∗ (with rogue send messages purportedly coming from S) in order to attempt
at winning a test session at U∗. Since this attack is a legitimate attack against the PAKE protocol Π∗, we have that its
success is at most q∗U/|RDict

∗| = q∗U/|Dict| where q∗U is the number of activations of U∗. The sum of all activations
of all split users U∗ derived from U is bounded by the number of activations in Π of user U thus the total success
probability of A against split users (i.e., against U running on an induced password pwd∗) is bounded by qU/|Dict|.

However, note that each activation of U inC with an induced password other than rwd (equivalently, the activation
of a split user U∗ in Π∗) requires a rogue activation of U by A in the PTR protocol. Thus, if we denote by q′U the number
of rogue U activations in the PTR protocol, we need to adjust the above bound to min{qU , q′U}/|Dict| (i.e., this form
of attack can be exploited only if the activation of U as a Π user is matched by a rogue activation of U as a PTR user).

The final bound on A’s advantage is obtained by adding together the above term min{qU , q′U}/|Dict| and the one
in (2). Before doing so we note that the value qU in (2) only counts rogue activations of U running on the correct
U’s password rwd while the qU in min{qU , q′U}/|Dict| counts rogue activations running on an unregistered password
rwd∗. If we denote the number of the first type of activations by pU and the latter type by p∗U , we have that the total
advantage of the attacker is

min{pU + qS , qD}
|Dict|

+
min{p∗U , q′U}
|Dict|

+
pU + qS

2τ−1
+ εΠ (3)

≤ min{pU + qS + p∗U , qD + q′U}
|Dict|

+
pU + qS

2τ−1
+ εΠ. (4)

Noting that qU = pU + p∗U and adding to the above expression the attacker’s advantage from PTR game transitions
(ε2 + q′U (ε1 + ε3 + ε4)), we get that the total advantage of the DE-PAKE attacker A is bounded by

min{qU + qS , qD + q′U}
|Dict|

+ ε′C

where ε′C = pU+qS
2τ−1 + εΠ + (3q′U + 1)εP .

We now consider the cases where server or device are corrupted. In all these cases the above analysis of case 1
holds except that some of the online operations can now be performed offline.

Case 2: D corrupted. In this case the attacker learns k, hence it does not need to access D via online activations. By
the same argument in Case 1 based on Lemma 4, we have that if A computes qD values from the dictionary RDict
(by offline computation using k), its advantage in the DE-PAKE game where it activates S and U for qS and qU times,
respectively, is bounded by equation (2). If, in addition, A attacks U in PTR with q′U queries, qD in (2) becomes
qD + q′U . But in any case, given the min in (2), A’s advantage (even with |Dict| offline Fk computations) is at most
(qU + qS)/|Dict|+ ε′C .

Case 3: S corrupted (or U-compromised). Consider first attacks that do not involve rogue queries to U. In this case, by
virtue of the PAKE protocol Π being εKC-wKCI-resistant, we have that an attacker against Π that knows q passwords
from the dictionary RDict has advantage at most min{qS , q}/|Dict|+ εKC , where qS counts offline operations based
on S’s state. On the other hand, as in the argument of case 1, by requirement 2 of PTR security, we can assume that A
knows at most qD elements in RDict, where qD is the number of rogue activations of D by A. Thus, we have (up to
probability ε2) that q ≤ qD, and the advantage of the attacker (without U queries) is at most min{qS , qD}/|Dict|+εKC .

25

When adding attacks via U we get this expression to be min{qS + qU , qD + q′U}/|Dict|+ εKC + ε′C and, regardless
of the value of qS , this is at most (qD + q′U)/|Dict|+ εKC + ε′C .

Case 4: D and S corrupted. The combination of the arguments in cases 2 and 3 implies that an attack when both S and
D are corrupted achieves equation (2) where qD is the number of outputs of Fk computed by A using its knowledge of
k and qS is the number of passwords run by A in its offline dictionary attack based on S’s state.

26

