1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/* -----------------------------------------------------------------------------
Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-------------------------------------------------------------------------- */
#include <string.h>
#include "squish.h"
#include "colourset.h"
#include "maths.h"
#include "rangefit.h"
#include "clusterfit.h"
#include "colourblock.h"
#include "alpha.h"
#include "singlecolourfit.h"
namespace squish {
static int FixFlags( int flags )
{
// grab the flag bits
int method = flags & ( kDxt1 | kDxt3 | kDxt5 | kBc4 | kBc5 );
int fit = flags & ( kColourIterativeClusterFit | kColourClusterFit | kColourRangeFit );
int extra = flags & kWeightColourByAlpha;
// set defaults
if ( method != kDxt3
&& method != kDxt5
&& method != kBc4
&& method != kBc5 )
{
method = kDxt1;
}
if( fit != kColourRangeFit && fit != kColourIterativeClusterFit )
fit = kColourClusterFit;
// done
return method | fit | extra;
}
void CompressMasked( u8 const* rgba, int mask, void* block, int flags, float* metric )
{
// fix any bad flags
flags = FixFlags( flags );
if ( ( flags & ( kBc4 | kBc5 ) ) != 0 )
{
u8 alpha[16*4];
for( int i = 0; i < 16; ++i )
{
alpha[i*4 + 3] = rgba[i*4 + 0]; // copy R to A
}
u8* rBlock = reinterpret_cast< u8* >( block );
CompressAlphaDxt5( alpha, mask, rBlock );
if ( ( flags & ( kBc5 ) ) != 0 )
{
for( int i = 0; i < 16; ++i )
{
alpha[i*4 + 3] = rgba[i*4 + 1]; // copy G to A
}
u8* gBlock = reinterpret_cast< u8* >( block ) + 8;
CompressAlphaDxt5( alpha, mask, gBlock );
}
return;
}
// get the block locations
void* colourBlock = block;
void* alphaBlock = block;
if( ( flags & ( kDxt3 | kDxt5 ) ) != 0 )
colourBlock = reinterpret_cast< u8* >( block ) + 8;
// create the minimal point set
ColourSet colours( rgba, mask, flags );
// check the compression type and compress colour
if( colours.GetCount() == 1 )
{
// always do a single colour fit
SingleColourFit fit( &colours, flags );
fit.Compress( colourBlock );
}
else if( ( flags & kColourRangeFit ) != 0 || colours.GetCount() == 0 )
{
// do a range fit
RangeFit fit( &colours, flags, metric );
fit.Compress( colourBlock );
}
else
{
// default to a cluster fit (could be iterative or not)
ClusterFit fit( &colours, flags, metric );
fit.Compress( colourBlock );
}
// compress alpha separately if necessary
if( ( flags & kDxt3 ) != 0 )
CompressAlphaDxt3( rgba, mask, alphaBlock );
else if( ( flags & kDxt5 ) != 0 )
CompressAlphaDxt5( rgba, mask, alphaBlock );
}
void Decompress( u8* rgba, void const* block, int flags )
{
// fix any bad flags
flags = FixFlags( flags );
// get the block locations
void const* colourBlock = block;
void const* alphaBlock = block;
if( ( flags & ( kDxt3 | kDxt5 ) ) != 0 )
colourBlock = reinterpret_cast< u8 const* >( block ) + 8;
// decompress colour
DecompressColour( rgba, colourBlock, ( flags & kDxt1 ) != 0 );
// decompress alpha separately if necessary
if( ( flags & kDxt3 ) != 0 )
DecompressAlphaDxt3( rgba, alphaBlock );
else if( ( flags & kDxt5 ) != 0 )
DecompressAlphaDxt5( rgba, alphaBlock );
}
int GetStorageRequirements( int width, int height, int flags )
{
// fix any bad flags
flags = FixFlags( flags );
// compute the storage requirements
int blockcount = ( ( width + 3 )/4 ) * ( ( height + 3 )/4 );
int blocksize = ( ( flags & ( kDxt1 | kBc4 ) ) != 0 ) ? 8 : 16;
return blockcount*blocksize;
}
void CopyRGBA( u8 const* source, u8* dest, int flags )
{
if (flags & kSourceBGRA)
{
// convert from bgra to rgba
dest[0] = source[2];
dest[1] = source[1];
dest[2] = source[0];
dest[3] = source[3];
}
else
{
for( int i = 0; i < 4; ++i )
*dest++ = *source++;
}
}
void CompressImage( u8 const* rgba, int width, int height, int pitch, void* blocks, int flags, float* metric )
{
// fix any bad flags
flags = FixFlags( flags );
// loop over blocks
#ifdef SQUISH_USE_OPENMP
# pragma omp parallel for
#endif
for( int y = 0; y < height; y += 4 )
{
// initialise the block output
u8* targetBlock = reinterpret_cast< u8* >( blocks );
int bytesPerBlock = ( ( flags & ( kDxt1 | kBc4 ) ) != 0 ) ? 8 : 16;
targetBlock += ( (y / 4) * ( (width + 3) / 4) ) * bytesPerBlock;
for( int x = 0; x < width; x += 4 )
{
// build the 4x4 block of pixels
u8 sourceRgba[16*4];
u8* targetPixel = sourceRgba;
int mask = 0;
for( int py = 0; py < 4; ++py )
{
for( int px = 0; px < 4; ++px )
{
// get the source pixel in the image
int sx = x + px;
int sy = y + py;
// enable if we're in the image
if( sx < width && sy < height )
{
// copy the rgba value
u8 const* sourcePixel = rgba + pitch*sy + 4*sx;
CopyRGBA(sourcePixel, targetPixel, flags);
// enable this pixel
mask |= ( 1 << ( 4*py + px ) );
}
// advance to the next pixel
targetPixel += 4;
}
}
// compress it into the output
CompressMasked( sourceRgba, mask, targetBlock, flags, metric );
// advance
targetBlock += bytesPerBlock;
}
}
}
void CompressImage( u8 const* rgba, int width, int height, void* blocks, int flags, float* metric )
{
CompressImage(rgba, width, height, width*4, blocks, flags, metric);
}
void DecompressImage( u8* rgba, int width, int height, int pitch, void const* blocks, int flags )
{
// fix any bad flags
flags = FixFlags( flags );
// loop over blocks
#ifdef SQUISH_USE_OPENMP
# pragma omp parallel for
#endif
for( int y = 0; y < height; y += 4 )
{
// initialise the block input
u8 const* sourceBlock = reinterpret_cast< u8 const* >( blocks );
int bytesPerBlock = ( ( flags & ( kDxt1 | kBc4 ) ) != 0 ) ? 8 : 16;
sourceBlock += ( (y / 4) * ( (width + 3) / 4) ) * bytesPerBlock;
for( int x = 0; x < width; x += 4 )
{
// decompress the block
u8 targetRgba[4*16];
Decompress( targetRgba, sourceBlock, flags );
// write the decompressed pixels to the correct image locations
u8 const* sourcePixel = targetRgba;
for( int py = 0; py < 4; ++py )
{
for( int px = 0; px < 4; ++px )
{
// get the target location
int sx = x + px;
int sy = y + py;
// write if we're in the image
if( sx < width && sy < height )
{
// copy the rgba value
u8* targetPixel = rgba + pitch*sy + 4*sx;
CopyRGBA(sourcePixel, targetPixel, flags);
}
// advance to the next pixel
sourcePixel += 4;
}
}
// advance
sourceBlock += bytesPerBlock;
}
}
}
void DecompressImage( u8* rgba, int width, int height, void const* blocks, int flags )
{
DecompressImage( rgba, width, height, width*4, blocks, flags );
}
static double ErrorSq(double x, double y)
{
return (x - y) * (x - y);
}
static void ComputeBlockWMSE(u8 const *original, u8 const *compressed, unsigned int w, unsigned int h, double &cmse, double &amse)
{
// Computes the MSE for the block and weights it by the variance of the original block.
// If the variance of the original block is less than 4 (i.e. a standard deviation of 1 per channel)
// then the block is close to being a single colour. Quantisation errors in single colour blocks
// are easier to see than similar errors in blocks that contain more colours, particularly when there
// are many such blocks in a large area (eg a blue sky background) as they cause banding. Given that
// banding is easier to see than small errors in "complex" blocks, we weight the errors by a factor
// of 5. This implies that images with large, single colour areas will have a higher potential WMSE
// than images with lots of detail.
cmse = amse = 0;
unsigned int sum_p[4]; // per channel sum of pixels
unsigned int sum_p2[4]; // per channel sum of pixels squared
memset(sum_p, 0, sizeof(sum_p));
memset(sum_p2, 0, sizeof(sum_p2));
for( unsigned int py = 0; py < 4; ++py )
{
for( unsigned int px = 0; px < 4; ++px )
{
if( px < w && py < h )
{
double pixelCMSE = 0;
for( int i = 0; i < 3; ++i )
{
pixelCMSE += ErrorSq(original[i], compressed[i]);
sum_p[i] += original[i];
sum_p2[i] += (unsigned int)original[i]*original[i];
}
if( original[3] == 0 && compressed[3] == 0 )
pixelCMSE = 0; // transparent in both, so colour is inconsequential
amse += ErrorSq(original[3], compressed[3]);
cmse += pixelCMSE;
sum_p[3] += original[3];
sum_p2[3] += (unsigned int)original[3]*original[3];
}
original += 4;
compressed += 4;
}
}
unsigned int variance = 0;
for( int i = 0; i < 4; ++i )
variance += w*h*sum_p2[i] - sum_p[i]*sum_p[i];
if( variance < 4 * w * w * h * h )
{
amse *= 5;
cmse *= 5;
}
}
void ComputeMSE( u8 const *rgba, int width, int height, int pitch, u8 const *dxt, int flags, double &colourMSE, double &alphaMSE )
{
// fix any bad flags
flags = FixFlags( flags );
colourMSE = alphaMSE = 0;
// initialise the block input
squish::u8 const* sourceBlock = dxt;
int bytesPerBlock = ( ( flags & squish::kDxt1 ) != 0 ) ? 8 : 16;
// loop over blocks
for( int y = 0; y < height; y += 4 )
{
for( int x = 0; x < width; x += 4 )
{
// decompress the block
u8 targetRgba[4*16];
Decompress( targetRgba, sourceBlock, flags );
u8 const* sourcePixel = targetRgba;
// copy across to a similar pixel block
u8 originalRgba[4*16];
u8* originalPixel = originalRgba;
for( int py = 0; py < 4; ++py )
{
for( int px = 0; px < 4; ++px )
{
int sx = x + px;
int sy = y + py;
if( sx < width && sy < height )
{
u8 const* targetPixel = rgba + pitch*sy + 4*sx;
CopyRGBA(targetPixel, originalPixel, flags);
}
sourcePixel += 4;
originalPixel += 4;
}
}
// compute the weighted MSE of the block
double blockCMSE, blockAMSE;
ComputeBlockWMSE(originalRgba, targetRgba, std::min(4, width - x), std::min(4, height - y), blockCMSE, blockAMSE);
colourMSE += blockCMSE;
alphaMSE += blockAMSE;
// advance
sourceBlock += bytesPerBlock;
}
}
colourMSE /= (width * height * 3);
alphaMSE /= (width * height);
}
void ComputeMSE( u8 const *rgba, int width, int height, u8 const *dxt, int flags, double &colourMSE, double &alphaMSE )
{
ComputeMSE(rgba, width, height, width*4, dxt, flags, colourMSE, alphaMSE);
}
} // namespace squish
|