1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/*
* Copyright (c) 1997 Stanford University
*
* The use of this software for revenue-generating purposes may require a
* license from the owners of the underlying intellectual property.
* Specifically, the SRP protocol may not be used for revenue-generating
* purposes without license.
*
* Within that constraint, permission to use, copy, modify, and distribute
* this software and its documentation for any purpose is hereby granted
* without fee, provided that the above copyright notices and this permission
* notice appear in all copies of the software and related documentation.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL STANFORD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "t_defines.h"
#include "t_sha.h"
#ifndef NULL
#define NULL 0
#endif
/* Only use if the weak RNG is needed. This sometimes causes problems
* with systems that don't have random(). */
/* #define WEAKRAND */
/*
* t_envhash - Generate a 160-bit SHA hash of the environment
*
* This routine performs an SHA hash of all the "name=value" pairs
* in the environment concatenated together and dumps them in the
* output. While it is true that anyone on the system can see
* your environment, someone not on the system will have a very
* difficult time guessing it, especially since some systems play
* tricks with variable ordering and sometimes define quirky
* environment variables like $WINDOWID or $_.
*/
extern char ** environ;
static void
t_envhash(out)
unsigned char * out;
{
char ** ptr;
char ebuf[256];
SHA1_CTX ctxt;
SHA1Init(&ctxt);
for(ptr = environ; *ptr; ++ptr) {
strncpy(ebuf, *ptr, 255);
ebuf[255] = '\0';
SHA1Update(&ctxt, ebuf, strlen(ebuf));
}
SHA1Final(out, &ctxt);
}
/*
* t_fshash - Generate a 160-bit SHA hash from the file system
*
* This routine climbs up the directory tree from the current
* directory, running stat() on each directory until it hits the
* root directory. This information is sensitive to the last
* access/modification times of all the directories above you,
* so someone who lists one of those directories injects some
* entropy into the system. Obviously, this hash is very sensitive
* to your current directory when the program is run.
*
* For good measure, it also performs an fstat on the standard input,
* usually your tty, throws that into the buffer, creates a file in
* /tmp (the inode is unpredictable on a busy system), and runs stat()
* on that before deleting it.
*
* The entire buffer is run once through SHA to obtain the final result.
*/
static void
t_fshash(out)
unsigned char * out;
{
char dotpath[128];
struct stat st;
SHA1_CTX ctxt;
int i, pinode;
dev_t pdev;
SHA1Init(&ctxt);
if(stat(".", &st) >= 0) {
SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st));
pinode = st.st_ino;
pdev = st.st_dev;
strcpy(dotpath, "..");
for(i = 0; i < 40; ++i) {
if(stat(dotpath, &st) < 0)
break;
if(st.st_ino == pinode && st.st_dev == pdev)
break;
SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st));
pinode = st.st_ino;
pdev = st.st_dev;
strcat(dotpath, "/..");
}
}
if(fstat(0, &st) >= 0)
SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st));
sprintf(dotpath, "/tmp/rnd.$$", getpid());
if(creat(dotpath, 0600) >= 0 && stat(dotpath, &st) >= 0)
SHA1Update(&ctxt, (unsigned char *) &st, sizeof(st));
unlink(dotpath);
SHA1Final(out, &ctxt);
}
/*
* Generate a high-entropy seed for the strong random number generator.
* This uses a wide variety of quickly gathered and somewhat unpredictable
* system information. The 'preseed' structure is assembled from:
*
* The system time in seconds
* The system time in microseconds
* The current process ID
* The parent process ID
* A hash of the user's environment
* A hash gathered from the file system
* Input from a random device, if available
* Timings of system interrupts
*
* The entire structure (60 bytes on most systems) is fed to SHA to produce
* a 160-bit seed for the strong random number generator. It is believed
* that in the worst case (on a quiet system with no random device versus
* an attacker who has access to the system already), the seed contains at
* least about 80 bits of entropy. Versus an attacker who does not have
* access to the system, the entropy should be slightly over 128 bits.
*/
static char initialized = 0;
static struct {
unsigned int trand1;
time_t sec;
time_t usec;
short pid;
short ppid;
unsigned char envh[SHA_DIGESTSIZE];
unsigned char fsh[SHA_DIGESTSIZE];
unsigned char devrand[8];
unsigned int trand2;
} preseed;
static unsigned char randkey1[SHA_DIGESTSIZE], randkey2[SHA_DIGESTSIZE];
static unsigned char randpool[SHA_DIGESTSIZE];
static int inpool = 0;
static void
t_initrand()
{
SHA1_CTX ctxt;
struct timeval t;
long r1, r2;
int i;
if(initialized)
return;
preseed.trand1 = raw_truerand();
gettimeofday(&t, NULL);
preseed.sec = t.tv_sec;
preseed.usec = t.tv_usec;
preseed.pid = getpid();
preseed.ppid = getppid();
t_envhash(preseed.envh);
t_fshash(preseed.fsh);
i = open("/dev/random", O_RDONLY);
if(i > 0) {
read(i, preseed.devrand, sizeof(preseed.devrand));
close(i);
}
preseed.trand2 = raw_truerand();
SHA1Init(&ctxt);
SHA1Update(&ctxt, (unsigned char *) &preseed, sizeof(preseed));
SHA1Final(randkey1, &ctxt);
memcpy(randkey2, randkey1, sizeof(randkey1));
memset(randpool, 0, sizeof(randpool));
inpool = 0;
i = ((preseed.trand2 & 0xff) << 24) | (preseed.usec & 0xffff00) |
(preseed.pid & 0xff);
#ifdef WEAKRAND
srandom(i);
srand48(i);
#endif
initialized = 1;
}
#define NUM_RANDOMS 12
void
t_stronginitrand()
{
SHA1_CTX ctxt;
unsigned int rawrand[NUM_RANDOMS];
int i;
if(!initialized)
t_initrand();
for(i = 0; i < NUM_RANDOMS; ++i)
rawrand[i] = raw_truerand();
SHA1Init(&ctxt);
SHA1Update(&ctxt, (unsigned char *) rawrand, sizeof(rawrand));
SHA1Final(randkey2, &ctxt);
memset(rawrand, 0, sizeof(rawrand));
}
#ifdef WEAKRAND
#if defined (hpux) || defined (__alpha__)
/* HPUX lacks random(). DEC Alpha's random() returns a double. */
static inline long
urandom ()
{
return mrand48 ();
}
#else
long random ();
static inline long
urandom ()
{
/* random() returns 31 bits, we want 32. */
return random() ^ (random() << 1);
}
#endif
/*
* The weak random number generator. This uses random() on most
* systems and has no more than 32 bits of entropy. Its seed is
* independent of the strong generator, so breaking this generator
* will not affect the security of the strong generator.
*/
void
t_rand(data, size)
unsigned char * data;
unsigned size;
{
long rbuf = 0;
int bytes = 0;
if(!initialized)
t_initrand();
while(size-- > 0) {
if(bytes <= 0) {
rbuf = urandom();
bytes = 4;
}
*data++ = rbuf & 0xff;
rbuf >>= 8;
--bytes;
}
}
#endif
/*
* The strong random number generator. This uses two 160-bit seeds
* and uses SHA in a feedback configuration to generate successive
* outputs. Let A[0] = 0'160 (160 zero bits). Then, the outputs
* become:
* A[i+1] = SHA(K1, A[i], K2)
* where K is the seed and the outputs start with A[1]. Each cycle
* generates 20 bytes of new output.
*/
void
t_random(data, size)
unsigned char * data;
unsigned size;
{
SHA1_CTX ctxt;
if(!initialized)
t_initrand();
while(size > inpool) {
memcpy(data, randpool + sizeof(randpool) - inpool, inpool);
data += inpool;
size -= inpool;
/* Recycle */
SHA1Init(&ctxt);
SHA1Update(&ctxt, randkey1, sizeof(randkey1));
SHA1Update(&ctxt, randpool, sizeof(randpool));
SHA1Update(&ctxt, randkey2, sizeof(randkey2));
SHA1Final(randpool, &ctxt);
inpool = sizeof(randpool);
}
if(size > 0) {
memcpy(data, randpool + sizeof(randpool) - inpool, size);
inpool -= size;
}
}
/*
* The interleaved session-key hash. This separates the even and the odd
* bytes of the input (ignoring the first byte if the input length is odd),
* hashes them separately, and re-interleaves the two outputs to form a
* single 320-bit value.
*/
unsigned char *
t_sessionkey(key, sk, sklen)
unsigned char * key;
unsigned char * sk;
unsigned sklen;
{
unsigned i, klen;
unsigned char * hbuf;
unsigned char hout[SHA_DIGESTSIZE];
SHA1_CTX ctxt;
while(sklen > 0 && *sk == 0) { /* Skip leading 0's */
--sklen;
++sk;
}
klen = sklen / 2;
if((hbuf = malloc(klen * sizeof(char))) == 0)
return 0;
for(i = 0; i < klen; ++i)
hbuf[i] = sk[sklen - 2 * i - 1];
SHA1Init(&ctxt);
SHA1Update(&ctxt, hbuf, klen);
SHA1Final(hout, &ctxt);
for(i = 0; i < sizeof(hout); ++i)
key[2 * i] = hout[i];
for(i = 0; i < klen; ++i)
hbuf[i] = sk[sklen - 2 * i - 2];
SHA1Init(&ctxt);
SHA1Update(&ctxt, hbuf, klen);
SHA1Final(hout, &ctxt);
for(i = 0; i < sizeof(hout); ++i)
key[2 * i + 1] = hout[i];
memset(hout, 0, sizeof(hout));
memset(hbuf, 0, klen);
free(hbuf);
return key;
}
|