1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
/*
* Copyright (c) 1997 Stanford University
*
* The use of this software for revenue-generating purposes may require a
* license from the owners of the underlying intellectual property.
* Specifically, the SRP protocol may not be used for revenue-generating
* purposes without license.
*
* Within that constraint, permission to use, copy, modify, and distribute
* this software and its documentation for any purpose is hereby granted
* without fee, provided that the above copyright notices and this permission
* notice appear in all copies of the software and related documentation.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL STANFORD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef T_SERVER_H
#define T_SERVER_H
#include "t_sha.h"
#if !defined(P)
#ifdef __STDC__
#define P(x) x
#else
#define P(x) ()
#endif
#endif
#define BLEN 32
struct t_server {
struct t_num n;
struct t_num g;
struct t_num v;
struct t_num s;
struct t_num b;
struct t_num B;
SHA1_CTX oldhash, hash, oldckhash, ckhash;
unsigned char session_key[SESSION_KEY_LEN];
unsigned char session_response[RESPONSE_LEN];
unsigned char nbuf[MAXPARAMLEN], gbuf[MAXPARAMLEN], vbuf[MAXPARAMLEN];
unsigned char saltbuf[MAXSALTLEN], bbuf[BLEN], Bbuf[MAXPARAMLEN];
};
/*
* SRP server-side negotiation
*
* This code negotiates the server side of an SRP exchange.
* "t_serveropen" accepts a username (sent by the client), a pointer
* to an open password file, and a pointer to an open configuration
* file. The server should then call...
* "t_servergenexp" will generate a random 256-bit exponent and
* raise g (from the configuration file) to that power, returning
* the result. This result should be sent to the client as y(p).
* "t_servergetkey" accepts the exponential w(p), which should be
* sent by the client, and computes the 256-bit session key.
* This data should be saved before the session is closed.
* "t_serverresponse" computes the session key proof as SHA(w(p), K).
* "t_serverclose" closes the session and frees its memory.
*
* Note that authentication is not performed per se; it is up
* to either/both sides of the protocol to now verify securely
* that their session keys agree in order to establish authenticity.
* One possible way is through "oracle hashing"; one side sends
* r, the other replies with H(r,K), where H() is a hash function.
*/
extern struct t_server *
t_serveropen P((const char *, struct t_pw *, struct t_conf *));
extern struct t_server *
t_serveropen_s P((const char *)); /* To be implemented */
extern struct t_num * t_servergenexp P((struct t_server *));
extern unsigned char * t_servergetkey P((struct t_server *, struct t_num *));
extern int t_serververify P((struct t_server *, unsigned char *));
extern unsigned char * t_serverresponse P((struct t_server *));
extern void t_serverclose P((struct t_server *));
#endif
|