1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
/*
* Copyright (C) 2010-2012 Regents of the University of Michigan
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "BamIndex.h"
#include <iomanip>
BamIndex::BamIndex()
: IndexBase(),
maxOverallOffset(0),
myUnMappedNumReads(-1)
{
}
BamIndex::~BamIndex()
{
}
// Reset the member data for a new index file.
void BamIndex::resetIndex()
{
IndexBase::resetIndex();
maxOverallOffset = 0;
myUnMappedNumReads = -1;
}
// Read & parse the specified index file.
SamStatus::Status BamIndex::readIndex(const char* filename)
{
// Reset the index from anything that may previously be set.
resetIndex();
IFILE indexFile = ifopen(filename, "rb");
// Failed to open the index file.
if(indexFile == NULL)
{
return(SamStatus::FAIL_IO);
}
// generate the bam index structure.
// Read the magic string.
char magic[4];
if(ifread(indexFile, magic, 4) != 4)
{
// Failed to read the magic
ifclose(indexFile);
return(SamStatus::FAIL_IO);
}
// If this is not an index file, set num references to 0.
if (magic[0] != 'B' || magic[1] != 'A' || magic[2] != 'I' || magic[3] != 1)
{
// Not a BAM Index file.
ifclose(indexFile);
return(SamStatus::FAIL_PARSE);
}
// It is a bam index file.
// Read the number of reference sequences.
if(ifread(indexFile, &n_ref, 4) != 4)
{
// Failed to read.
ifclose(indexFile);
return(SamStatus::FAIL_IO);
}
// Size the references.
myRefs.resize(n_ref);
for(int refIndex = 0; refIndex < n_ref; refIndex++)
{
// Read each reference.
Reference* ref = &(myRefs[refIndex]);
// Read the number of bins.
if(ifread(indexFile, &(ref->n_bin), 4) != 4)
{
// Failed to read the number of bins.
// Return failure.
ifclose(indexFile);
return(SamStatus::FAIL_PARSE);
}
// If there are no bins, then there are no
// mapped/unmapped reads.
if(ref->n_bin == 0)
{
ref->n_mapped = 0;
ref->n_unmapped = 0;
}
// Resize the bins so they can be indexed by bin number.
ref->bins.resize(ref->n_bin + 1);
// Read each bin.
for(int binIndex = 0; binIndex < ref->n_bin; binIndex++)
{
uint32_t binNumber;
// Read in the bin number.
if(ifread(indexFile, &(binNumber), 4) != 4)
{
// Failed to read the bin number.
// Return failure.
ifclose(indexFile);
return(SamStatus::FAIL_IO);
}
// Add the bin to the reference and get the
// pointer back so the values can be set in it.
Bin* binPtr = &(ref->bins[binIndex]);
binPtr->bin = binNumber;
// Read in the number of chunks.
if(ifread(indexFile, &(binPtr->n_chunk), 4) != 4)
{
// Failed to read number of chunks.
// Return failure.
ifclose(indexFile);
return(SamStatus::FAIL_IO);
}
// Read in the chunks.
// Allocate space for the chunks.
uint32_t sizeOfChunkList = binPtr->n_chunk * sizeof(Chunk);
binPtr->chunks = (Chunk*)malloc(sizeOfChunkList);
if(ifread(indexFile, binPtr->chunks, sizeOfChunkList) != sizeOfChunkList)
{
// Failed to read the chunks.
// Return failure.
ifclose(indexFile);
return(SamStatus::FAIL_IO);
}
// Determine the min/max for this bin if it is not the max bin.
if(binPtr->bin != MAX_NUM_BINS)
{
for(int i = 0; i < binPtr->n_chunk; i++)
{
if(binPtr->chunks[i].chunk_beg < ref->minChunkOffset)
{
ref->minChunkOffset = binPtr->chunks[i].chunk_beg;
}
if(binPtr->chunks[i].chunk_end > ref->maxChunkOffset)
{
ref->maxChunkOffset = binPtr->chunks[i].chunk_end;
}
if(binPtr->chunks[i].chunk_end > maxOverallOffset)
{
maxOverallOffset = binPtr->chunks[i].chunk_end;
}
}
}
else
{
// Mapped/unmapped are the last chunk of the
// MAX BIN
ref->n_mapped = binPtr->chunks[binPtr->n_chunk - 1].chunk_beg;
ref->n_unmapped = binPtr->chunks[binPtr->n_chunk - 1].chunk_end;
}
}
// Read the number of intervals.
if(ifread(indexFile, &(ref->n_intv), 4) != 4)
{
// Failed to read, set to 0.
ref->n_intv = 0;
// Return failure.
ifclose(indexFile);
return(SamStatus::FAIL_IO);
}
// Allocate space for the intervals and read them.
uint32_t linearIndexSize = ref->n_intv * sizeof(uint64_t);
ref->ioffsets = (uint64_t*)malloc(linearIndexSize);
if(ifread(indexFile, ref->ioffsets, linearIndexSize) != linearIndexSize)
{
// Failed to read the linear index.
// Return failure.
ifclose(indexFile);
return(SamStatus::FAIL_IO);
}
}
int32_t numUnmapped = 0;
if(ifread(indexFile, &numUnmapped, sizeof(int32_t)) == sizeof(int32_t))
{
myUnMappedNumReads = numUnmapped;
}
// Successfully read the bam index file.
ifclose(indexFile);
return(SamStatus::SUCCESS);
}
// Get the chunks for the specified reference id and start/end 0-based
// coordinates.
bool BamIndex::getChunksForRegion(int32_t refID, int32_t start, int32_t end,
SortedChunkList& chunkList)
{
chunkList.clear();
// If start is >= to end, there will be no sections, return no
// regions.
if((start >= end) && (end != -1))
{
std::cerr << "Warning, requesting region where start <= end, so "
<< "no values will be returned.\n";
return(false);
}
// Handle REF_ID_UNMAPPED. This uses a default chunk which covers
// from the max offset to the end of the file.
if(refID == REF_ID_UNMAPPED)
{
Chunk refChunk;
// The start of the unmapped region is the max offset found
// in the index file.
refChunk.chunk_beg = getMaxOffset();
// The end of the unmapped region is the end of the file, so
// set chunk end to the max value.
refChunk.chunk_end = Chunk::MAX_CHUNK_VALUE;
return(chunkList.insert(refChunk));
}
if((refID < 0) || (refID >= n_ref))
{
// The specified refID is out of range, return false.
std::cerr << "Warning, requesting refID is out of range, so "
<< "no values will be returned.\n";
return(false);
}
const Reference* ref = &(myRefs[refID]);
// Handle where start/end are defaults.
if(start == -1)
{
if(end == -1)
{
// This is whole chromosome, so take a shortcut.
if(ref->maxChunkOffset == 0)
{
// No chunks for this region, but this is not an error.
return(true);
}
Chunk refChunk;
refChunk.chunk_beg = ref->minChunkOffset;
refChunk.chunk_end = ref->maxChunkOffset;
return(chunkList.insert(refChunk));
}
else
{
start = 0;
}
}
if(end == -1)
{
// MAX_POSITION is inclusive, but end is exclusive, so add 1.
end = MAX_POSITION + 1;
}
// Determine the minimum offset for the given start position. This
// is done by using the linear index for the specified start position.
uint64_t minOffset = 0;
getMinOffsetFromLinearIndex(refID, start, minOffset);
bool binInRangeMap[MAX_NUM_BINS+1];
getBinsForRegion(start, end, binInRangeMap);
// Loop through the bins in the ref and if they are in the region, get the chunks.
for(int i = 0; i < ref->n_bin; ++i)
{
const Bin* bin = &(ref->bins[i]);
if(binInRangeMap[bin->bin] == false)
{
// This bin is not in the region, so check the next one.
continue;
}
// Add each chunk in the bin to the map.
for(int chunkIndex = 0; chunkIndex < bin->n_chunk; chunkIndex++)
{
// If the end of the chunk is less than the minimum offset
// for the 16K block that starts our region, then no
// records in this chunk will cross our region, so do
// not add it to the chunks we need to use.
if(bin->chunks[chunkIndex].chunk_end < minOffset)
{
continue;
}
// Add the chunk to the map.
if(!chunkList.insert(bin->chunks[chunkIndex]))
{
// Failed to add to the map, return false.
std::cerr << "Warning, Failed to add a chunk, so "
<< "no values will be returned.\n";
return(false);
}
}
}
// Now that all chunks have been added to the list,
// handle overlapping chunks.
return(chunkList.mergeOverlapping());
}
// Get the max offset.
uint64_t BamIndex::getMaxOffset() const
{
return(maxOverallOffset);
}
// Get the min & max file offsets for the reference ID.
bool BamIndex::getReferenceMinMax(int32_t refID,
uint64_t& minOffset,
uint64_t& maxOffset) const
{
if((refID < 0) || (refID >= (int32_t)myRefs.size()))
{
// Reference ID is out of range for this index file.
return(false);
}
// Get this reference.
minOffset = myRefs[refID].minChunkOffset;
maxOffset = myRefs[refID].maxChunkOffset;
return(true);
}
// Get the number of mapped reads for this reference id.
int32_t BamIndex::getNumMappedReads(int32_t refID)
{
// If it is the reference id of unmapped reads, return
// that there are no mapped reads.
if(refID == REF_ID_UNMAPPED)
{
// These are by definition all unmapped reads.
return(0);
}
if((refID < 0) || (refID >= (int32_t)myRefs.size()))
{
// Reference ID is out of range for this index file.
return(-1);
}
// Get this reference.
return(myRefs[refID].n_mapped);
}
// Get the number of unmapped reads for this reference id.
int32_t BamIndex::getNumUnMappedReads(int32_t refID)
{
// If it is the reference id of unmapped reads, return
// that value.
if(refID == REF_ID_UNMAPPED)
{
return(myUnMappedNumReads);
}
if((refID < 0) || (refID >= (int32_t)myRefs.size()))
{
// Reference ID is out of range for this index file.
return(-1);
}
// Get this reference.
return(myRefs[refID].n_unmapped);
}
// Print the bam index.
void BamIndex::printIndex(int32_t refID, bool summary)
{
std::cout << "BAM Index: " << std::endl;
std::cout << "# Reference Sequences: " << n_ref << std::endl;
unsigned int startRef = 0;
unsigned int endRef = myRefs.size() - 1;
std::vector<Reference> refsToProcess;
if(refID != -1)
{
// Set start and end ref to the specified reference id.
startRef = refID;
endRef = refID;
}
// Print out the information for each bin.
for(unsigned int i = startRef; i <= endRef; ++i)
{
std::cout << std::dec
<< "\tReference ID: " << std::setw(4) << i
<< "; #Bins: "<< std::setw(6) << myRefs[i].n_bin
<< "; #Linear Index Entries: "
<< std::setw(6) << myRefs[i].n_intv
<< "; Min Chunk Offset: "
<< std::setw(18) << std::hex << std::showbase << myRefs[i].minChunkOffset
<< "; Max Chunk Offset: "
<< std::setw(18) << myRefs[i].maxChunkOffset
<< std::dec;
// Print the mapped/unmapped if set.
if(myRefs[i].n_mapped != Reference::UNKNOWN_MAP_INFO)
{
std::cout << "; " << myRefs[i].n_mapped << " Mapped Reads";
}
if(myRefs[i].n_mapped != Reference::UNKNOWN_MAP_INFO)
{
std::cout << "; " << myRefs[i].n_unmapped << " Unmapped Reads";
}
std::cout << std::endl;
// Only print more details if not summary.
if(!summary)
{
std::vector<Bin>::iterator binIter;
for(binIter = myRefs[i].bins.begin();
binIter != myRefs[i].bins.end();
++binIter)
{
Bin* binPtr = &(*binIter);
if(binPtr->bin == Bin::NOT_USED_BIN)
{
// This bin is not used, continue.
continue;
}
// Print the bin info.
std::cout << "\t\t\tBin Name: " << binPtr->bin << std::endl;
std::cout << "\t\t\t# Chunks: " << binPtr->n_chunk << std::endl;
std::cout << std::hex << std::showbase;
for(int chunkIndex = 0; chunkIndex < binPtr->n_chunk;
++chunkIndex)
{
// If this is the last chunk of the MAX_NUM_BINS - it
// contains a mapped/unmapped count rather than the regular
// chunk addresses.
if((binPtr->bin != MAX_NUM_BINS) ||
(chunkIndex != (binPtr->n_chunk - 1)))
{
std::cout << "\t\t\t\tchunk_beg: "
<< binPtr->chunks[chunkIndex].chunk_beg
<< std::endl;
std::cout << "\t\t\t\tchunk_end: "
<< binPtr->chunks[chunkIndex].chunk_end
<< std::endl;
}
}
}
std::cout << std::dec;
// Print the linear index.
for(int linearIndex = 0; linearIndex < myRefs[i].n_intv;
++linearIndex)
{
if(myRefs[i].ioffsets[linearIndex] != 0)
{
std::cout << "\t\t\tLinearIndex["
<< std::dec << linearIndex << "] Offset: "
<< std::hex << myRefs[i].ioffsets[linearIndex]
<< std::endl;
}
}
}
}
}
|