1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
|
/*
* Copyright (C) 2010-2012 Regents of the University of Michigan
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "assert.h"
#include "ctype.h"
#include "stdio.h"
#include "Error.h"
#include "Generic.h"
#include "GenomeSequence.h"
#include <algorithm>
#include <istream>
#include <fstream>
#include <sstream>
#include <stdexcept>
#if defined(_WIN32)
#include <io.h>
#ifndef R_OK
#define R_OK 4
#endif
#endif
// not general use:
#include "CSG_MD5.h"
//
// given a read in a string, pack it into the vector of
// bytes coded as two bases per byte.
//
// The goal is to allow us to more rapidly compare against
// the genome, which is itself packed 2 bases per byte.
//
// Unfortunately, the match position may be odd or even,
// so as a result, we also need to be able to prepad
// with 'N' bases to get the byte alignment the same, so
// padWithNCount may be a positive number indicating how
// many N bases to prepend.
//
void PackedRead::set(const char *rhs, int padWithNCount)
{
clear();
// pad this packed read with 'N' bases two at a time
while (padWithNCount>1)
{
packedBases.push_back(
BaseAsciiMap::base2int[(int) 'N'] << 4 |
BaseAsciiMap::base2int[(int) 'N']
);
padWithNCount -= 2;
length+=2;
}
// when we have only one base, pack one 'N' base with
// the first base in rhs if there is one.
if (padWithNCount)
{
// NB: *rhs could be NUL, which is ok here - just keep
// the length straight.
packedBases.push_back(
BaseAsciiMap::base2int[(int) *rhs] << 4 |
BaseAsciiMap::base2int[(int) 'N']
);
// two cases - have characters in rhs or we don't:
if (*rhs)
{
length+=2; // pad byte plus one byte from rhs
rhs++;
}
else
{
length++;
}
padWithNCount--; // should now be zero, so superfluous.
assert(padWithNCount==0);
}
// pad pairs of bases from rhs, two at a time:
while (*rhs && *(rhs+1))
{
packedBases.push_back(
BaseAsciiMap::base2int[(int) *(rhs+1)] << 4 |
BaseAsciiMap::base2int[(int) *(rhs+0)]
);
rhs+=2;
length+=2;
}
// if there is an odd base left at the end, put it
// in a byte all its own (low 4 bits == 0):
if (*rhs)
{
packedBases.push_back(
BaseAsciiMap::base2int[(int) *(rhs+0)]
);
length++;
}
return;
}
std::string GenomeSequence::IntegerToSeq(unsigned int n, unsigned int wordsize) const
{
std::string sequence("");
for (unsigned int i = 0; i < wordsize; i ++)
sequence += "N";
unsigned int clearHigherBits = ~(3U << (wordsize<<1)); // XXX refactor - this appears several places
if (n > clearHigherBits)
error("%d needs to be a non-negative integer < clearHigherBits\n", n);
for (unsigned int i = 0; i < wordsize; i++)
{
sequence[wordsize-1-i] = BaseAsciiMap::int2base[n & 3];
n >>= 2;
}
return sequence;
}
GenomeSequence::GenomeSequence()
{
constructorClear();
}
void GenomeSequence::constructorClear()
{
_debugFlag = 0;
_progressStream = NULL;
_colorSpace = false;
_createOverwrite = false;
}
void GenomeSequence::setup(const char *referenceFilename)
{
setReferenceName(referenceFilename);
if (_progressStream) *_progressStream << "open and prefetch reference genome " << referenceFilename << ": " << std::flush;
if (open(false))
{
std::cerr << "Failed to open reference genome " << referenceFilename << std::endl;
std::cerr << errorStr << std::endl;
exit(1);
}
prefetch();
if (_progressStream) *_progressStream << "done." << std::endl << std::flush;
}
GenomeSequence::~GenomeSequence()
{
// free up resources:
_umfaFile.close();
}
//
// mapped open.
//
// if the file exists, map in into memory, and fill in a few useful
// fields.
//
bool GenomeSequence::open(bool isColorSpace, int flags)
{
bool rc;
if (isColorSpace)
{
_umfaFilename = _baseFilename + "-cs.umfa";
}
else
{
_umfaFilename = _baseFilename + "-bs.umfa";
}
if(access(_umfaFilename.c_str(), R_OK) != 0)
{
// umfa file doesn't exist, so try to create it.
if(create(isColorSpace))
{
// Couldon't access or create the umfa.
std::cerr << "GenomeSequence::open: failed to open file "
<< _umfaFilename
<< " also failed creating it."
<< std::endl;
return true;
}
}
rc = genomeSequenceArray::open(_umfaFilename.c_str(), flags);
if (rc)
{
std::cerr << "GenomeSequence::open: failed to open file "
<< _umfaFilename
<< std::endl;
return true;
}
_colorSpace = header->_colorSpace;
return false;
}
void GenomeSequence::sanityCheck(MemoryMap &fasta) const
{
unsigned int i;
unsigned int genomeIndex = 0;
for (i=0; i<fasta.length(); i++)
{
switch (fasta[i])
{
case '>':
while (fasta[i]!='\n' && fasta[i]!='\r') i++;
break;
case '\n':
case '\r':
break;
default:
assert(BaseAsciiMap::base2int[(int)(*this)[genomeIndex]] ==
BaseAsciiMap::base2int[(int) fasta[i]]);
genomeIndex++;
break;
}
}
}
#define HAS_SUFFIX(str, suffix) ((strlen(suffix) < str.size()) && (str.substr(str.size() - strlen(suffix)) == suffix))
//
// referenceFilename is either a fasta or a UM fasta (.fa or .umfa)
// filename. In both cases, the suffix gets removed and the
// base name is kept for later use depending on context.
// @return always return false
//
bool GenomeSequence::setReferenceName(std::string referenceFilename)
{
if (HAS_SUFFIX(referenceFilename, ".fa"))
{
_referenceFilename = referenceFilename;
_baseFilename = _referenceFilename.substr(0, referenceFilename.size() - 3);
}
else if (HAS_SUFFIX(referenceFilename, ".umfa"))
{
_baseFilename = referenceFilename.substr(0, referenceFilename.size() - 5);
}
else if (HAS_SUFFIX(referenceFilename, "-cs.umfa"))
{
_baseFilename = referenceFilename.substr(0, referenceFilename.size() - 8);
}
else if (HAS_SUFFIX(referenceFilename, "-bs.umfa"))
{
_baseFilename = referenceFilename.substr(0, referenceFilename.size() - 8);
}
else
{
_baseFilename = referenceFilename;
}
_fastaFilename = _baseFilename + ".fa";
if (HAS_SUFFIX(referenceFilename, ".fasta"))
{
_referenceFilename = referenceFilename;
_baseFilename = _referenceFilename.substr(0, referenceFilename.size() - 6);
_fastaFilename = _baseFilename + ".fasta";
}
return false;
}
//
// this works in lockstep with ::create to populate
// the per chromosome header fields size and md5
// checksum.
//
// It relies on header->elementCount being set to
// the data length loaded so far ... not the ultimate
// reference length.
//
bool GenomeSequence::setChromosomeMD5andLength(uint32_t whichChromosome)
{
if (whichChromosome>=header->_chromosomeCount) return true;
ChromosomeInfo *c = &header->_chromosomes[whichChromosome];
c->size = header->elementCount - c->start;
MD5_CTX md5Context;
uint8_t md5Signature[MD5_DIGEST_LENGTH];
//
// it's easier to ensure we do this right if we just do it
// in one big chunk:
//
char *md5Buffer = (char *) malloc(c->size);
MD5Init(&md5Context);
for (genomeIndex_t i = 0; i < c->size; i ++)
{
md5Buffer[i] = (*this)[c->start + i];
}
MD5Update(&md5Context, (unsigned char *) md5Buffer, c->size);
MD5Final((unsigned char *) &md5Signature, &md5Context);
free(md5Buffer);
for (int i=0; i<MD5_DIGEST_LENGTH; i++)
{
// cheesy but works:
sprintf(c->md5+2*i, "%02x", md5Signature[i]);
}
// redundant, strictly speaking due to sprintf NUL terminating
// it's output strings, but put it here anyway.
c->md5[2*MD5_DIGEST_LENGTH] = '\0';
return false;
}
//
// Given a buffer with a fasta format contents, count
// the number of chromosomes in it and return that value.
//
static bool getFastaStats(const char *fastaData, size_t fastaDataSize, uint32_t &chromosomeCount, uint64_t &baseCount)
{
chromosomeCount = 0;
baseCount = 0;
bool atLineStart = true;
//
// loop over the fasta file, essentially matching for the
// pattern '^>.*$' and counting them.
//
for (size_t fastaIndex = 0; fastaIndex < fastaDataSize; fastaIndex++)
{
switch (fastaData[fastaIndex])
{
case '\n':
case '\r':
atLineStart = true;
break;
case '>':
{
if (!atLineStart) break;
chromosomeCount++;
//
// eat the rest of the line
//
while (fastaIndex < fastaDataSize && fastaData[fastaIndex]!='\n' && fastaData[fastaIndex]!='\r')
{
fastaIndex++;
}
break;
}
default:
baseCount++;
atLineStart = false;
break;
}
}
return false;
}
class PackedSequenceData : public std::vector<uint8_t>
{
std::vector<uint8_t> m_packedBases;
size_t m_baseCount;
void set(size_t index, uint8_t value) {
m_packedBases[index>>1] =
(m_packedBases[index>>1] // original value
& ~(7<<((index&0x01)<<2))) // logical AND off the original value
| ((value&0x0f)<<((index&0x1)<<2)); // logical OR in the new value
}
public:
void reserve(size_t baseCount) {m_packedBases.reserve(baseCount/2);}
size_t size() {return m_baseCount;}
void clear() {m_packedBases.clear(); m_baseCount = 0;}
uint8_t operator [](size_t index)
{
return (m_packedBases[index>>1] >> ((index&0x1)<<2)) & 0xf;
}
void push_back(uint8_t base);
};
//
// Load a fasta format file from filename into the buffer
// provided by the caller.
// While parsing the fasta file, record each chromosome name,
// its start location, and its size.
//
// NB: the caller must implement the logic to determine how
// large the sequence data is. There is no correct way to do
// this, because we can't reliably estimate here how much sequence
// data is contained in a compressed file.
//
// To safely pre-allocate space in sequenceData, use the reserve() method
// before calling this function.
//
bool loadFastaFile(const char *filename,
std::vector<PackedSequenceData> &sequenceData,
std::vector<std::string> &chromosomeNames)
{
InputFile inputStream(filename, "r", InputFile::DEFAULT);
if(!inputStream.isOpen()) {
std::cerr << "Failed to open file " << filename << "\n";
return true;
}
int whichChromosome = -1;
chromosomeNames.clear();
char ch;
while((ch = inputStream.ifgetc()) != EOF) {
switch (ch)
{
case '\n':
case '\r':
break;
case '>':
{
std::string chromosomeName = "";
//
// pull out the chromosome new name
//
while (!isspace((ch = inputStream.ifgetc())) && ch != EOF)
{
chromosomeName += ch; // slow, but who cares
}
//
// eat the rest of the line
//
do {
ch = inputStream.ifgetc();
} while(ch != EOF && ch != '\n' && ch != '\r');
//
// save the Chromosome name and index into our
// header so we can use them later.
//
chromosomeNames.push_back(chromosomeName);
whichChromosome++;
break;
}
default:
// we get here for sequence data.
//
// save the base value
// Note: invalid characters come here as well, but we
// let ::set deal with mapping them.
break;
}
}
return false;
}
//
// recreate the umfa file from a reference fasta format file
//
// The general format of a FASTA file is best described
// on wikipedia at http://en.wikipedia.org/wiki/FASTA_format
//
// The format parsed here is a simpler subset, and is
// described here http://www.ncbi.nlm.nih.gov/blast/fasta.shtml
//
bool GenomeSequence::create(bool isColor)
{
setColorSpace(isColor);
if (_baseFilename=="")
{
std::cerr << "Base reference filename is empty." << std::endl;
return true;
}
if (isColorSpace())
{
_umfaFilename = _baseFilename + "-cs.umfa";
}
else
{
_umfaFilename = _baseFilename + "-bs.umfa";
}
if (!_createOverwrite && access(_umfaFilename.c_str(), R_OK) == 0)
{
std::cerr << "Output file '" << _umfaFilename << "' exists or is not writable - please remove." << std::endl;
return true;
}
MemoryMap fastaFile;
if (fastaFile.open(_fastaFilename.c_str()))
{
std::cerr << "failed to open input fasta file '" << _fastaFilename << "'." << std::endl;
return true;
}
std::cerr << "Creating FASTA "
<< (isColorSpace() ? "color space " : "")
<< "binary cache file '"
<< _umfaFilename
<< "'."
<< std::endl;
std::cerr << std::flush;
//
// simple ptr to fasta data -- just treat the memory map
// as an array of fastaDataSize characters...
//
const char *fasta = (const char *) fastaFile.data;
size_t fastaDataSize = fastaFile.length();
uint32_t chromosomeCount = 0;
uint64_t baseCount = 0;
getFastaStats(fasta, fastaDataSize, chromosomeCount, baseCount);
if (genomeSequenceArray::create(_umfaFilename.c_str(), baseCount, chromosomeCount))
{
std::cerr << "failed to create '"
<< _umfaFilename
<< "'."
<< std::endl;
perror("");
return true;
}
header->elementCount = 0;
header->_colorSpace = isColorSpace();
header->setApplication(_application.c_str());
header->_chromosomeCount = chromosomeCount;
//
// clear out the variable length chromosome info array
//
for (uint32_t i=0; i<header->_chromosomeCount; i++) header->_chromosomes[i].constructorClear();
std::string chromosomeName;
//
// for converting the reference to colorspace, the first base is always 5 (in base space it is 'N')
signed char lastBase = BaseAsciiMap::base2int[(int) 'N'];
bool terminateLoad = false;
int percent = -1, newPercent;
uint32_t whichChromosome = 0;
for (uint64_t fastaIndex = 0; fastaIndex < fastaDataSize; fastaIndex++)
{
if (_progressStream)
{
newPercent = (int) (1.0 * fastaIndex / fastaDataSize) * 100;
if (newPercent>percent)
{
*_progressStream << "\r" << newPercent << "% ";
*_progressStream << std::flush;
percent = newPercent;
}
}
switch (fasta[fastaIndex])
{
case '\n':
case '\r':
break;
case '>':
{
chromosomeName = "";
fastaIndex++; // skip the > char
//
// pull out the chromosome new name
//
while (!isspace(fasta[fastaIndex]))
{
chromosomeName += fasta[fastaIndex++]; // slow, but who cares
}
//
// eat the rest of the line
//
while (fasta[fastaIndex]!='\n' && fasta[fastaIndex]!='\r')
{
fastaIndex++;
}
//
// save the Chromosome name and index into our
// header so we can use them later.
//
ChromosomeInfo *c = &header->_chromosomes[whichChromosome];
c->setChromosomeName(chromosomeName.c_str());
c->start = header->elementCount;
// c->size gets computed at the next '>' line or at the EOF
if (whichChromosome>0)
{
//
// compute md5 checksum for the chromosome that we just
// loaded (if there was one) - note that on the last
// chromosome, we have to duplicate this code after
// the end of this loop
//
setChromosomeMD5andLength(whichChromosome - 1);
}
whichChromosome++;
if (whichChromosome > header->_chromosomeCount)
{
std::cerr << "BUG: Exceeded computed chromosome count ("
<< header->_chromosomeCount
<< ") - genome is now truncated at chromosome "
<< header->_chromosomes[header->_chromosomeCount-1].name
<< " (index "
<< header->_chromosomeCount
<< ")."
<< std::endl;
terminateLoad = true;
}
break;
}
default:
// save the base pair value
// Note: invalid characters come here as well, but we
// let ::set deal with mapping them.
if (isColorSpace())
{
//
// anything outside these values represents an invalid base
// base codes: 0-> A, 1-> C, 2-> G, 3-> T
// colorspace: 0-> blue, 1-> green, 2-> oragne, 3->red
//
const char fromBase2CS[] =
{
/* 0000 */ 0, // A->A
/* 0001 */ 1, // A->C
/* 0010 */ 2, // A->G
/* 0011 */ 3, // A->T
/* 0100 */ 1, // C->A
/* 0101 */ 0, // C->C
/* 0110 */ 3, // C->G
/* 0111 */ 2, // C->T
/* 1000 */ 2, // G->A
/* 1001 */ 3, // G->C
/* 1010 */ 0, // G->G
/* 1011 */ 1, // G->T
/* 1100 */ 3, // T->A
/* 1101 */ 2, // T->C
/* 1110 */ 1, // T->G
/* 1111 */ 0, // T->T
};
//
// we are writing color space values on transitions,
// so we don't write a colorspace value when we
// get the first base value.
//
// On second and subsequent bases, write based on
// the index table above
//
char thisBase =
BaseAsciiMap::base2int[(int)(fasta[fastaIndex])];
if (lastBase>=0)
{
char color;
if (lastBase>3 || thisBase>3) color=4;
else color = fromBase2CS[(int)(lastBase<<2 | thisBase)];
// re-use the int to base, because ::set expects a base char (ATCG), not
// a color code (0123). It should only matter on final output.
set(header->elementCount++,
BaseAsciiMap::int2base[(int) color]);
}
lastBase = thisBase;
}
else
{
set(header->elementCount++, toupper(fasta[fastaIndex]));
}
break;
}
//
// slightly awkward exit handling when we exceed the fixed
// number of chromosomes
//
if (terminateLoad) break;
}
//
// also slightly awkward code to handle the last dangling chromosome...
// all we should need to do is compute the md5 checksum
//
if (whichChromosome==0)
{
fastaFile.close();
throw std::runtime_error("No chromosomes found - aborting!");
}
else
{
setChromosomeMD5andLength(whichChromosome-1);
}
fastaFile.close();
if (_progressStream) *_progressStream << "\r";
std::cerr << "FASTA binary cache file '"
<< _umfaFilename
<< "' created."
<< std::endl;
//
// leave the umfastaFile open in case caller wants to use it
//
return false;
}
int GenomeSequence::getChromosomeCount() const
{
return header->_chromosomeCount;
}
//return chromosome index: 0, 1, ... 24;
int GenomeSequence::getChromosome(genomeIndex_t position) const
{
if (position == INVALID_GENOME_INDEX) return INVALID_CHROMOSOME_INDEX;
if (header->_chromosomeCount == 0)
return INVALID_CHROMOSOME_INDEX;
int start = 0;
int stop = header->_chromosomeCount - 1;
// eliminate case where position is in the last chromosome, since the loop
// below falls off the end of the list if it in the last one.
if (position > header->_chromosomes[stop].start)
return (stop);
while (start <= stop)
{
int middle = (start + stop) / 2;
if (position >= header->_chromosomes[middle].start && position < header->_chromosomes[middle + 1].start)
return middle;
if (position == header->_chromosomes[middle + 1].start)
return (middle + 1);
if (position > header->_chromosomes[middle + 1].start)
start = middle + 1;
if (position < header->_chromosomes[middle].start)
stop = middle - 1;
}
return -1;
}
//
// Given a chromosome name and 1-based chromosome index, return the
// genome index (0 based) into sequence for it.
//
// NB: the header->chromosomes array contains zero based genome positions
//
genomeIndex_t GenomeSequence::getGenomePosition(
const char *chromosomeName,
unsigned int chromosomeIndex) const
{
genomeIndex_t i = getGenomePosition(chromosomeName);
if (i == INVALID_GENOME_INDEX) return INVALID_GENOME_INDEX;
return i + chromosomeIndex - 1;
}
genomeIndex_t GenomeSequence::getGenomePosition(
int chromosome,
unsigned int chromosomeIndex) const
{
if (chromosome<0 || chromosome >= (int) header->_chromosomeCount) return INVALID_GENOME_INDEX;
genomeIndex_t i = header->_chromosomes[chromosome].start;
if (i == INVALID_GENOME_INDEX) return INVALID_GENOME_INDEX;
return i + chromosomeIndex - 1;
}
//
// return the genome index (0 based) of the start of the named
// chromosome. If none is found, INVALID_GENOME_INDEX is returned.
//
// XXX may need to speed this up - and smarten it up with some
// modest chromosome name parsing.... e.g. '%d/X/Y' or 'chr%d/chrX/chrY' or
// other schemes.
//
genomeIndex_t GenomeSequence::getGenomePosition(const char *chromosomeName) const
{
int chromosome = getChromosome(chromosomeName);
if (chromosome==INVALID_CHROMOSOME_INDEX) return INVALID_GENOME_INDEX;
return header->_chromosomes[chromosome].start;
}
int GenomeSequence::getChromosome(const char *chromosomeName) const
{
unsigned int i;
for (i=0; i<header->_chromosomeCount; i++)
{
if (strcmp(header->_chromosomes[i].name, chromosomeName)==0)
{
return i;
}
}
return INVALID_CHROMOSOME_INDEX;
}
//
// Given a read, reverse the string and swap the base
// pairs for the reverse strand equivalents.
//
void GenomeSequence::getReverseRead(std::string &read)
{
std::string newRead;
if (read.size()) for (int32_t i=(int) read.size() - 1; i>=0; i--)
{
newRead.push_back(BasePair(read[i]));
}
read = newRead;
}
void GenomeSequence::getReverseRead(String& read)
{
int i = 0;
int j = read.Length()-1;
char temp;
while (i < j)
{
temp = read[j];
read[j] = read[i];
read[i] = temp;
}
}
#define ABS(x) ( (x) > 0 ? (x) : -(x) )
int GenomeSequence::debugPrintReadValidation(
std::string &read,
std::string &quality,
char direction,
genomeIndex_t readLocation,
int sumQuality,
int mismatchCount,
bool recurse
)
{
int validateSumQ = 0;
int validateMismatchCount = 0;
int rc = 0;
std::string genomeData;
for (uint32_t i=0; i<read.size(); i++)
{
if (tolower(read[i]) != tolower((*this)[readLocation + i]))
{
validateSumQ += quality[i] - '!';
// XXX no longer valid:
if (direction=='F' ? i<24 : (i >= (read.size() - 24))) validateMismatchCount++;
genomeData.push_back(tolower((*this)[readLocation + i]));
}
else
{
genomeData.push_back(toupper((*this)[readLocation + i]));
}
}
assert(validateSumQ>=0);
if (validateSumQ != sumQuality && validateMismatchCount == mismatchCount)
{
printf("SUMQ: Original Genome: %s test read: %s : actual sumQ = %d, test sumQ = %d\n",
genomeData.c_str(),
read.c_str(),
validateSumQ,
sumQuality
);
rc++;
}
else if (validateSumQ == sumQuality && validateMismatchCount != mismatchCount)
{
printf("MISM: Original Genome: %s test read: %s : actual mismatch %d test mismatches %d\n",
genomeData.c_str(),
read.c_str(),
validateMismatchCount,
mismatchCount
);
rc++;
}
else if (validateSumQ != sumQuality && validateMismatchCount != mismatchCount)
{
printf("BOTH: Original Genome: %s test read: %s : actual sumQ = %d, test sumQ = %d, actual mismatch %d test mismatches %d\n",
genomeData.c_str(),
read.c_str(),
validateSumQ,
sumQuality,
validateMismatchCount,
mismatchCount
);
rc++;
}
if (recurse && ABS(validateMismatchCount - mismatchCount) > (int) read.size()/2)
{
printf("large mismatch difference, trying reverse strand: ");
std::string reverseRead = read;
std::string reverseQuality = quality;
getReverseRead(reverseRead);
reverse(reverseQuality.begin(), reverseQuality.end());
rc = debugPrintReadValidation(reverseRead, reverseQuality, readLocation, sumQuality, mismatchCount, false);
}
return rc;
}
#undef ABS
bool GenomeSequence::wordMatch(unsigned int index, std::string &word) const
{
for (uint32_t i = 0; i<word.size(); i++)
{
if ((*this)[index + i] != word[i]) return false;
}
return true;
}
bool GenomeSequence::printNearbyWords(unsigned int index, unsigned int deviation, std::string &word) const
{
for (unsigned int i = index - deviation; i < index + deviation; i++)
{
if (wordMatch(i, word))
{
std::cerr << "word '"
<< word
<< "' found "
<< i - index
<< " away from position "
<< index
<< "."
<< std::endl;
}
}
return false;
}
void GenomeSequence::dumpSequenceSAMDictionary(std::ostream &file) const
{
for (unsigned int i=0; i<header->_chromosomeCount; i++)
{
file
<< "@SQ"
<< "\tSN:" << header->_chromosomes[i].name // name
<< "\tLN:" << header->_chromosomes[i].size // number of bases
<< "\tAS:" << header->_chromosomes[i].assemblyID // e.g. NCBI36.3
<< "\tM5:" << header->_chromosomes[i].md5
<< "\tUR:" << header->_chromosomes[i].uri
<< "\tSP:" << header->_chromosomes[i].species // e.g. Homo_sapiens
<< std::endl;
}
}
void GenomeSequence::dumpHeaderTSV(std::ostream &file) const
{
file << "# Reference: " << _baseFilename << std::endl;
file << "# SN: sample name - must be unique" << std::endl;
file << "# AS: assembly name" << std::endl;
file << "# SP: species" << std::endl;
file << "# LN: chromosome/contig length" << std::endl;
file << "# M5: chromosome/contig MD5 checksum" << std::endl;
file << "# LN and M5 are only printed for informational purposes." << std::endl;
file << "# Karma will only set those values when creating the index." << std::endl;
file << "SN" << "\t" << "AS" << "\t" << "SP" << "\t" << "UR" << "\t" << "LN" << "\t" << "M5" << std::endl;
for (unsigned int i=0; i<header->_chromosomeCount; i++)
{
file
<< header->_chromosomes[i].name // name
<< "\t" << header->_chromosomes[i].assemblyID // e.g. NCBI36.3
<< "\t" << header->_chromosomes[i].uri
<< "\t" << header->_chromosomes[i].species // e.g. Homo_sapiens
<< "\t" << header->_chromosomes[i].size // number of bases
<< "\t" << header->_chromosomes[i].md5
<< std::endl;
}
}
void GenomeSequence::getString(std::string &str, int chromosome, uint32_t index, int baseCount) const
{
//
// calculate the genome index for the lazy caller...
//
genomeIndex_t genomeIndex = header->_chromosomes[chromosome].start + index - 1;
getString(str, genomeIndex, baseCount);
}
void GenomeSequence::getString(String &str, int chromosome, uint32_t index, int baseCount) const
{
std::string string;
this-> getString(string, chromosome, index, baseCount);
str = string.c_str();
}
void GenomeSequence::getString(std::string &str, genomeIndex_t index, int baseCount) const
{
str.clear();
if (baseCount > 0)
{
for (int i=0; i<baseCount; i++)
{
str.push_back((*this)[index + i]);
}
}
else
{
// if caller passed negative basecount, give them
// the read for the 3' end
for (int i=0; i< -baseCount; i++)
{
str.push_back(BaseAsciiMap::base2complement[(int)(*this)[index + i]]);
}
}
}
void GenomeSequence::getString(String &str, genomeIndex_t index, int baseCount) const
{
std::string string;
getString(string, index, baseCount);
str = string.c_str();
}
void GenomeSequence::getHighLightedString(std::string &str, genomeIndex_t index, int baseCount, genomeIndex_t highLightStart, genomeIndex_t highLightEnd) const
{
str.clear();
if (baseCount > 0)
{
for (int i=0; i<baseCount; i++)
{
char base = (*this)[index + i];
if (in(index+i, highLightStart, highLightEnd))
base = tolower(base);
str.push_back(base);
}
}
else
{
// if caller passed negative basecount, give them
// the read for the 3' end
for (int i=0; i< -baseCount; i++)
{
char base = BaseAsciiMap::base2complement[(int)(*this)[index + i]];
if (in(index+i, highLightStart, highLightEnd))
base = tolower(base);
str.push_back(base);
}
}
}
void GenomeSequence::print30(genomeIndex_t index) const
{
std::cout << "index: " << index << "\n";
for (genomeIndex_t i=index-30; i<index+30; i++)
std::cout << (*this)[i];
std::cout << "\n";
for (genomeIndex_t i=index-30; i<index; i++)
std::cout << " ";
std::cout << "^";
std::cout << std::endl;
}
void GenomeSequence::getMismatchHatString(std::string &result, const std::string &read, genomeIndex_t location) const
{
result = "";
for (uint32_t i=0; i < read.size(); i++)
{
if (read[i] == (*this)[location+i])
result.push_back(' ');
else
result.push_back('^');
}
}
void GenomeSequence::getMismatchString(std::string &result, const std::string &read, genomeIndex_t location) const
{
result = "";
for (uint32_t i=0; i < read.size(); i++)
{
if (read[i] == (*this)[location+i])
result.push_back(toupper(read[i]));
else
result.push_back(tolower(read[i]));
}
}
genomeIndex_t GenomeSequence::simpleLocalAligner(std::string &read, std::string &quality, genomeIndex_t index, int windowSize) const
{
int bestScore = 1000000; // either mismatch count or sumQ
genomeIndex_t bestMatchLocation = INVALID_GENOME_INDEX;
for (int i=-windowSize; i<windowSize; i++)
{
int newScore;
if (i<0 && ((uint32_t) -i) > index) continue;
if (index + i + read.size() >= getNumberBases()) continue;
if (quality=="")
{
newScore = this->getMismatchCount(read, index + i);
}
else
{
newScore = this->getSumQ(read, quality, index + i);
}
if (newScore < bestScore)
{
bestScore = newScore;
bestMatchLocation = index + i;
}
}
return bestMatchLocation;
}
std::ostream &operator << (std::ostream &stream, genomeSequenceMmapHeader &h)
{
stream << (MemoryMapArrayHeader &) h;
stream << "chromosomeCount: " << h._chromosomeCount << std::endl;
stream << "isColorSpace: " << h._colorSpace << std::endl;
stream << "chromosomeCount: " << h._chromosomeCount << std::endl;
uint64_t totalSize = 0;
for (uint32_t i=0; i < h._chromosomeCount; i++)
{
totalSize += h._chromosomes[i].size;
stream << "Chromosome Index " << i << " name: " << h._chromosomes[i].name << std::endl;
stream << "Chromosome Index " << i << " whole genome start: " << h._chromosomes[i].start << std::endl;
stream << "Chromosome Index " << i << " whole genome size: " << h._chromosomes[i].size << std::endl;
stream << "Chromosome Index " << i << " md5 checksum: " << h._chromosomes[i].md5 << std::endl;
stream << "Chromosome Index " << i << " assemblyID: " << h._chromosomes[i].assemblyID << std::endl;
stream << "Chromosome Index " << i << " species: " << h._chromosomes[i].species << std::endl;
stream << "Chromosome Index " << i << " URI: " << h._chromosomes[i].uri << std::endl;
}
stream << "Total Genome Size: " << totalSize << " bases."<< std::endl;
if (totalSize != h.elementCount)
{
stream << "Total Genome Size: does not match elementCount!\n";
}
stream << std::endl;
return stream;
}
void GenomeSequence::getChromosomeAndIndex(std::string &s, genomeIndex_t i) const
{
int whichChromosome = 0;
whichChromosome = getChromosome(i);
if (whichChromosome == INVALID_CHROMOSOME_INDEX)
{
s = "invalid genome index"; // TODO include the index in error
}
else
{
std::ostringstream buf;
genomeIndex_t chromosomeIndex = i - getChromosomeStart(whichChromosome) + 1;
buf << header->_chromosomes[whichChromosome].name << ":" << chromosomeIndex;
#if 0
buf << " (GenomeIndex " << i << ")";
#endif
s = buf.str();
}
return;
}
void GenomeSequence::getChromosomeAndIndex(String& s, genomeIndex_t i) const
{
std::string ss;
getChromosomeAndIndex(ss, i);
s = ss.c_str();
return;
}
//
// This is intended to be a helper routine to get dbSNP files
// loaded. In some cases, we will load into an mmap() file (ie
// when we are creating it), in others, we will simply be loading
// an existing dbSNP file into RAM (when the binary file does not
// exist or when we are running with useMemoryMapFlag == false.
//
// Assume that dbSNP exists, is writable, and is the right size.
//
// Using the dbSNPFilename given, mark each dbSNP position
// with a bool true.
//
// Return value:
// True: if populateDBSNP() succeed
// False: if not succeed
bool GenomeSequence::populateDBSNP(
mmapArrayBool_t &dbSNP,
IFILE inputFile) const
{
assert(dbSNP.getElementCount() == getNumberBases());
if(inputFile == NULL)
{
// FAIL, file not opened.
return(false);
}
std::string chromosomeName;
std::string position;
genomeIndex_t chromosomePosition1; // 1-based
uint64_t ignoredLineCount = 0;
// Read til the end of the file.
char* postPosPtr = NULL;
while(!inputFile->ifeof())
{
chromosomeName.clear();
position.clear();
// Read the chromosome
if(inputFile->readTilTab(chromosomeName) <= 0)
{
// hit either eof or end of line, check if
// it is a header.
if(chromosomeName.size()>0 && chromosomeName[0]=='#')
{
// header, so just continue.
continue;
}
// Not the header, so this line is poorly formatted.
++ignoredLineCount;
// Continue to the next line.
continue;
}
// Check if it is a header line.
if(chromosomeName.size()>0 && chromosomeName[0]=='#')
{
// did not hit eof or end of line,
// so discard the rest of the line.
inputFile->discardLine();
continue;
}
// Not a header, so read the position.
if(inputFile->readTilTab(position) > 0)
{
// Additional data on the line, so discard it.
inputFile->discardLine();
}
// Convert the position to a string.
chromosomePosition1 = strtoul(position.c_str(), &postPosPtr, 0);
if(postPosPtr == position.c_str())
{
++ignoredLineCount;
continue;
}
// 1-based genome index.
genomeIndex_t genomeIndex =
getGenomePosition(chromosomeName.c_str(), chromosomePosition1);
// if the genome index is invalid, ignore it
if((genomeIndex == INVALID_GENOME_INDEX) ||
(genomeIndex > getNumberBases()))
{
ignoredLineCount++;
continue;
}
dbSNP.set(genomeIndex, true);
}
if (ignoredLineCount > 0)
{
std::cerr << "GenomeSequence::populateDBSNP: ignored " << ignoredLineCount << " SNP positions due to invalid format of line." << std::endl;
return false;
}
return true;
}
bool GenomeSequence::loadDBSNP(
mmapArrayBool_t &dbSNP,
const char *inputFileName) const
{
//
// the goal in this section of code is to allow the user
// to either specify a valid binary version of the SNP file,
// or the original text file that it gets created from.
//
// To do this, we basically open, sniff the error message,
// and if it claims it is not a binary version of the file,
// we go ahead and treat it as the text file and use the
// GenomeSequence::populateDBSNP method to load it.
//
// Further checking is really needed to ensure users don't
// mix a dbSNP file for a different reference, since it is really
// easy to do.
//
if (strlen(inputFileName)!=0)
{
std::cerr << "Load dbSNP file '" << inputFileName << "': " << std::flush;
if (dbSNP.open(inputFileName, O_RDONLY))
{
//
// failed to open, possibly due to bad magic.
//
// this is really awful ... need to have a return
// code that is smart enough to avoid this ugliness:
//
if (dbSNP.getErrorString().find("wrong type of file")==std::string::npos)
{
std::cerr << "Error: " << dbSNP.getErrorString() << std::endl;
exit(1);
}
//
// we have a file, assume we can load it as a text file
//
IFILE inputFile = ifopen(inputFileName, "r");
if(inputFile == NULL)
{
std::cerr << "Error: failed to open " << inputFileName << std::endl;
exit(1);
}
std::cerr << "(as text file) ";
// anonymously (RAM resident only) create:
dbSNP.create(getNumberBases());
// now load it into RAM
populateDBSNP(dbSNP, inputFile);
ifclose(inputFile);
}
else
{
std::cerr << "(as binary mapped file) ";
}
std::cerr << "DONE!" << std::endl;
return false;
}
else
{
return true;
}
}
#if defined(TEST)
void simplestExample(void)
{
GenomeSequence reference;
genomeIndex_t index;
// a particular reference is set by:
// reference.setFastaName("/usr/cluster/share/karma/human_g1k_v37_12CS.fa")
//
// In the above example, the suffix .fa is stripped and replaced with .umfa,
// which contains the actual file being opened.
//
if (reference.open())
{
perror("GenomeSequence::open");
exit(1);
}
index = 1000000000; // 10^9
//
// Write the base at the given index. Here, index is 0 based,
// and is across the whole genome, as all chromosomes are sequentially
// concatenated, so the allowed range is
//
// 0.. (reference.getChromosomeStart(last) + reference.getChromosomeSize(last))
//
// (where int last = reference.getChromosomeCount() - 1;)
//
std::cout << "base[" << index << "] = " << reference[index] << std::endl;
//
// Example for finding chromosome and one based chromosome position given
// and absolute position on the genome in 'index':
//
int chr = reference.getChromosome(index);
genomeIndex_t chrIndex = index - reference.getChromosomeStart(chr) + 1; // 1-based
std::cout << "genome index " << index << " corresponds to chromosome " << chr << " position " << chrIndex << std::endl;
//
// Example for finding an absolute genome index position when the
// chromosome name and one based position are known:
//
const char *chromosomeName = "5";
chr = reference.getChromosome(chromosomeName); // 0-based
chrIndex = 100000; // 1-based
index = reference.getChromosomeStart(chr) + chrIndex - 1;
std::cout << "Chromosome '" << chromosomeName << "' position " << chrIndex << " corresponds to genome index position " << index << std::endl;
reference.close();
}
void testGenomeSequence(void)
{
GenomeSequence reference;
#if 0
std::string referenceName = "someotherreference";
if (reference.setFastaName(referenceName))
{
std::cerr << "failed to open reference file "
<< referenceName
<< std::endl;
exit(1);
}
#endif
std::cerr << "open and prefetch the reference genome: ";
// open it
if (reference.open())
{
exit(1);
}
std::cerr << "done!" << std::endl;
//
// For the human genome, genomeIndex ranges from 0 to 3.2x10^9
//
genomeIndex_t genomeIndex; // 0 based
unsigned int chromosomeIndex; // 1 based
unsigned int chromosome; // 0..23 or so
std::string chromosomeName;
//
// Here we'll start with a chromosome name, then obtain the genome
// index, and use it to find the base we want:
//
chromosomeName = "2";
chromosomeIndex = 1234567;
// this call is slow (string search for chromsomeName):
genomeIndex = reference.getGenomePosition(chromosomeName.c_str(), chromosomeIndex);
assert(genomeIndex!=INVALID_GENOME_INDEX);
std::cout << "Chromosome " << chromosomeName << ", index ";
std::cout << chromosomeIndex << " contains base " << reference[genomeIndex];
std::cout << " at genome index position " << genomeIndex << std::endl;
//
// now reverse it - given a genomeIndex from above, find the chromosome
// name and index:
//
// slow (binary search on genomeIndex):
chromosome = reference.getChromosome(genomeIndex);
unsigned int newChromosomeIndex;
// not slow:
newChromosomeIndex = genomeIndex - reference.getChromosomeStart(chromosome) + 1;
assert(chromosomeIndex == newChromosomeIndex);
// more testing... at least test and use PackedRead:
//
PackedRead pr;
pr.set("ATCGATCG", 0);
assert(pr.size()==8);
assert(pr[0]==BaseAsciiMap::base2int[(int) 'A']);
assert(pr[1]==BaseAsciiMap::base2int[(int) 'T']);
assert(pr[2]==BaseAsciiMap::base2int[(int) 'C']);
assert(pr[3]==BaseAsciiMap::base2int[(int) 'G']);
pr.set("ATCGATCG", 1);
assert(pr.size()==9);
pr.set("", 0);
assert(pr.size()==0);
pr.set("", 1);
assert(pr.size()==1);
pr.set("", 2);
assert(pr.size()==2);
pr.set("", 3);
assert(pr.size()==3);
assert(pr[0]==BaseAsciiMap::base2int[(int) 'N']);
assert(pr[1]==BaseAsciiMap::base2int[(int) 'N']);
assert(pr[2]==BaseAsciiMap::base2int[(int) 'N']);
pr.set("C", 1);
assert(pr.size()==2);
assert(pr[0]==BaseAsciiMap::base2int[(int) 'N']);
assert(pr[1]==BaseAsciiMap::base2int[(int) 'C']);
}
//
// After I build libcsg, I compile and run this test code using:
//
// g++ -DTEST -o try GenomeSequence.cpp -L. -lcsg -lm -lz -lssl
// you also may need -fno-rtti
// ./try
//
int main(int argc, const char **argv)
{
#if 1
simplestExample();
#else
testGenomeSequence();
#endif
exit(0);
}
#endif
|