1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
/*
* Copyright (C) 2010 Regents of the University of Michigan
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PACKEDVECTOR_H
#define __PACKEDVECTOR_H
// STL:
#include <ostream>
#include <sstream>
#include <string>
#include "Generic.h"
//
// This file implements a packed vector template based on the
// getter/setter code used in MemoryMapArray.h
//
template <
uint32_t accessorFunc(std::vector<uint8_t> &base, uint32_t index),
void setterFunc(std::vector<uint8_t> &base, uint32_t index, uint32_t value),
size_t elementCount2BytesFunc(uint32_t elementCount)
>
class PackedVector
{
protected:
std::vector<uint8_t> m_data;
size_t m_elementCount;
double m_growthRateMultiplier;
double m_growthRateAdder;
public:
PackedVector() :
m_elementCount(0),
m_growthRateMultiplier(1.20),
m_growthRateAdder(128) {;}
// accessing
inline uint32_t operator[](uint32_t i)
{
return accessorFunc(m_data, i);
}
inline void set(uint32_t i, uint32_t v)
{
setterFunc(m_data, i, v);
}
size_t getElementCount() const
{
return m_elementCount;
}
double getUtilization() {
return elementCount2BytesFunc(m_elementCount) / (double) m_data.capacity();
}
void reserve(uint32_t reserveElements) {
m_data.reserve(elementCount2BytesFunc(reserveElements));
}
size_t size() {return m_elementCount;}
void resize(uint32_t newSize) {
m_elementCount = newSize;
m_data.resize(elementCount2BytesFunc(m_elementCount));
}
// it's a bit of a challenge to optimize this...
void push_back(uint32_t value) {
m_elementCount++;
if(elementCount2BytesFunc(m_elementCount) >= m_data.size()) {
if( (elementCount2BytesFunc(m_elementCount)) > m_data.capacity())
{
size_t newCapacity = (size_t) (m_data.capacity() * m_growthRateMultiplier);
// for small capacities, small fractional multipliers don't work,
// so we check and do a linear increase in those cases:
if(newCapacity == m_data.capacity()) {
newCapacity = (size_t) (m_data.capacity() + m_growthRateAdder);
}
m_data.reserve(newCapacity);
}
}
m_data.resize(elementCount2BytesFunc(m_elementCount));
set(m_elementCount-1, value);
}
};
typedef PackedVector<
PackedAccess_1Bit,
PackedAssign_1Bit,
Packed1BitElementCount2Bytes
> PackedVectorBool_t;
typedef PackedVector<
PackedAccess_2Bit,
PackedAssign_2Bit,
Packed2BitElementCount2Bytes
> PackedVector2Bit_t;
typedef PackedVector<
PackedAccess_4Bit,
PackedAssign_4Bit,
Packed4BitElementCount2Bytes
> PackedVector4Bit_t;
#endif
|