1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
/*
* Copyright (C) 2010 Regents of the University of Michigan
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Pedigree.h"
#include "Constant.h"
#include "MathConstant.h"
#include "Error.h"
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <limits.h>
Family::Family(Pedigree & pedigree, int _first, int _last, int _serial) :
ped(pedigree)
{
serial = _serial;
first = _first;
last = _last;
count = last - first + 1;
path = new int [count];
famid = ped[first].famid;
founders = mzTwins = 0;
for (int i=first; i<=last; i++)
if (ped[i].isFounder())
{
ped[i].traverse = founders;
path[founders++] = ped[i].serial;
}
else
{
ped[i].traverse = -1;
if (ped[i].isMzTwin(ped[i]))
for (int j = first; j < i; j++)
if (ped[i].isMzTwin(ped[j]))
{
mzTwins++;
break;
}
}
nonFounders = count - founders;
generations = nonFounders == 0 ? 1 : 2;
int next = founders;
while (next < count)
{
bool check = false;
// Create traversal where path ancestors precede their offspring
for (int i=first; i<=last; i++)
if (ped[i].traverse == -1)
{
int fatherSerial = ped[i].father->traverse;
int motherSerial = ped[i].mother->traverse;
if (fatherSerial >= 0 && motherSerial >= 0)
{
check = true;
ped[i].traverse = next;
path[next++] = i;
if (fatherSerial >= founders || motherSerial >= founders)
generations = 3;
// If this individual is part of a set of MZ twins
if (ped[i].zygosity & 1)
for (int j = 0; j < ped[i].sibCount; j++)
{
Person & sib = *ped[i].sibs[j];
// Insert all co-twins at the same position in traversal
// order
if (sib.traverse == -1 && ped[i].zygosity == sib.zygosity)
{
sib.traverse = next;
path[next++] = sib.serial;
}
}
}
}
if (!check) ShowInvalidCycles();
}
}
Family::~Family()
{
delete [] path;
}
void Family::ShowInvalidCycles()
{
// Try and identify key individuals responsible for
// pedigree mess-up ... when this function is called
// pedigree has been traversed top-down and individuals
// that are correctly specified have IDs of >= 0.
// This routine traverses the pedigree bottom up to
// identify a subset of individuals likely to be causing
// the problem
IntArray descendants(ped.count);
descendants.Zero();
for (int i = first; i <= last; i++)
if (ped[i].traverse == -1)
{
descendants[ped[i].father->serial]++;
descendants[ped[i].mother->serial]++;
}
IntArray stack;
for (int i = first; i <= last; i++)
if (ped[i].traverse == -1 && descendants[i] == 0)
{
stack.Push(i);
do
{
int j = stack.Pop();
if (ped[j].traverse != -1) continue;
ped[j].traverse = 9999;
if (--descendants[ped[j].father->serial] == 0)
stack.Push(ped[j].father->serial);
if (--descendants[ped[j].mother->serial] == 0)
stack.Push(ped[j].mother->serial);
}
while (stack.Length());
}
printf("The structure of family %s requires\n"
"an individual to be his own ancestor.\n\n"
"To identify the problem(s), examine the\n"
"following key individuals:\n\n",
(const char *) famid);
for (int i = first; i <= last; i++)
if (ped[i].traverse == -1)
printf("Problem Person: %s\n", (const char *) ped[i].pid);
error("Invalid pedigree structure.");
}
int Family::ConnectedGroups(IntArray * groupMembership)
{
IntArray groups(count);
// Use the quick union algorithm to identify connected groups
groups.SetSequence(0, 1);
for (int i = count - 1; i >= founders; i--)
{
// Lookup parents
int group0 = i;
int group1 = ped[path[i]].father->traverse;
int group2 = ped[path[i]].mother->traverse;
// Identify their corresponding groupings
while (groups[group0] != group0) group0 = groups[group0];
while (groups[group1] != group1) group1 = groups[group1];
while (groups[group2] != group2) group2 = groups[group2];
int group = group1 < group2 ? group1 : group2;
if (group0 < group) group = group0;
groups[group0] = groups[group1] = groups[group2] = group;
}
// Count groupings
int groupCount = 0;
for (int i = 0; i < founders; i++)
if (groups[i] == i)
groupCount++;
if (groupMembership == NULL)
return groupCount;
// Flatten tree so all items point to root
for (int i = 1; i < count; i++)
groups[i] = groups[groups[i]];
// Update group membership info
int group = 0;
groupMembership->Dimension(count);
for (int i = 0; i < count; i++)
if (groups[i] == i)
(*groupMembership)[i] = ++group;
else
(*groupMembership)[i] = (*groupMembership)[groups[i]];
#if 0
// This stretch of code outputs family structure and group membership
// And should usually be commented out!
for (int j = first; j <= last; j++)
printf("%s %s %s %s %d %d\n",
(const char *) famid, (const char *) ped[j].pid,
(const char *) ped[j].fatid, (const char *) ped[j].motid,
ped[j].sex, groups[ped[j].traverse]);
#endif
return groupCount;
}
/*
int Family::ConnectedGroups(IntArray * groupMembership)
{
IntArray * stack = new IntArray[count];
IntArray groups(count);
groups.Zero();
int group = 0;
int seed = count - 1;
// Search for connected sets of individuals until everyone is accounted for
while (true)
{
while ((seed >= 0) && (groups[seed] != 0))
seed--;
if (seed == -1)
break;
Mark(seed, ++group, stack, groups);
for (int j = seed; j >= founders; j--)
if (groups[j] == 0)
{
int fat_j = ped[path[j]].father->traverse;
int mot_j = ped[path[j]].mother->traverse;
if (groups[fat_j] == group || groups[mot_j] == group)
Mark(j, group, stack, groups);
else
stack[mot_j].Push(j),
stack[fat_j].Push(j);
}
for (int j = 0; j < count; j++)
stack[j].Clear();
}
if (groupMembership != NULL)
(*groupMembership) = groups;
// This stretch of code outputs family structure and group membership
// And should usually be commented out!
#if 0
for (int j = first; j <= last; j++)
printf("%s %s %s %s %d %d\n",
(const char *) famid, (const char *) ped[j].pid,
(const char *) ped[j].fatid, (const char *) ped[j].motid,
ped[j].sex, groups[ped[j].traverse]);
#endif
delete [] stack;
return group;
}
void Family::Mark(int j, int group, IntArray * stack, IntArray & groups)
{
if (groups[j] == group) return;
groups[j] = group;
while (stack[j].Length())
Mark(stack[j].Pop(), group, stack, groups);
if (j < founders) return;
Mark(ped[path[j]].father->traverse, group, stack, groups);
Mark(ped[path[j]].mother->traverse, group, stack, groups);
}
*/
|