1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/*
* Copyright (C) 2012 Regents of the University of Michigan
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "VcfGenotypeSample.h"
#include <stdlib.h>
#include <sstream>
const int VcfGenotypeSample::INVALID_GT = -1;
const int VcfGenotypeSample::MISSING_GT = -2;
const std::string VcfGenotypeSample::MISSING_FIELD = ".";
VcfGenotypeSample::VcfGenotypeSample()
: VcfGenotypeField(),
myFormatPtr(NULL),
myPhased(false),
myUnphased(false),
myHasAllGenotypeAlleles(false),
myNewGT(false),
myGTs()
{
}
VcfGenotypeSample::~VcfGenotypeSample()
{
myFormatPtr = NULL;
}
bool VcfGenotypeSample::read(IFILE filePtr, VcfGenotypeFormat& format)
{
static const char* GT_DELIM = "\n\t:|/.";
static const int END_GT = 2; // Ends at index 2 or less
static const int PHASED_CHAR_POS = 3;
static const int UNPHASED_CHAR_POS = 4;
static const int MISSING_GT_POS = 5;
// Clear out any previously set values.
reset();
myFormatPtr = &format;
int gtIndex = format.getGTIndex();
// Read the subfields.
SUBFIELD_READ_STATUS readStatus = MORE_SUBFIELDS;
std::string* nextType = NULL;
int subFieldIndex = 0;
while(readStatus == MORE_SUBFIELDS)
{
// Get the field to write into.
if(format.storeIndex(subFieldIndex))
{
nextType = &(myGenotypeSubFields.getNextEmpty());
// Check if this is the GT field.
if(subFieldIndex == gtIndex)
{
// There is a GT field, so set that all GT fields are there.
// if any are missing it will be turned back to false.
myHasAllGenotypeAlleles = true;
// This is the GT field, so parse manually looking to see if it
// is phased and store the genotypes.
int stopChar = END_GT + 1;
// Read until a new subfield is found.
while(stopChar > END_GT)
{
// TODO have an option to autoparse the genotypes?
// todo - store the previous nextType len in order to
// do string conversion to ints...
stopChar = filePtr->readTilChar(GT_DELIM, *nextType);
if(stopChar == PHASED_CHAR_POS)
{
nextType->push_back('|');
myPhased = true;
}
else if(stopChar == UNPHASED_CHAR_POS)
{
nextType->push_back('/');
myUnphased = true;
}
else if(stopChar == MISSING_GT_POS)
{
nextType->push_back('.');
myHasAllGenotypeAlleles = false;
}
}
// Check if this is the END_GT signal.
readStatus = getReadStatus(stopChar);
}
else
{
// more subfields to read.
readStatus = readGenotypeSubField(filePtr, nextType);
}
}
else
{
readStatus = readGenotypeSubField(filePtr, NULL);
}
++subFieldIndex;
}
// subFieldIndex contains the number of fields in this sample.
if(subFieldIndex > format.getOrigNumFields())
{
throw(std::runtime_error("VCF Number of Fields in a Sample does not match the Format."));
}
else if(subFieldIndex < format.getOrigNumFields())
{
// If there are no fields for this sample, enter the missing value.
if(myGenotypeSubFields.size() == 0)
{
myGenotypeSubFields.getNextEmpty() = MISSING_FIELD;
}
}
// Return true if there is a tab - it is just END_OF_FIELD.
return(readStatus == END_OF_FIELD);
}
bool VcfGenotypeSample::write(IFILE filePtr)
{
if(myNewGT)
{
updateGTString();
}
return(VcfGenotypeField::write(filePtr));
}
const std::string* VcfGenotypeSample::getString(const std::string& key)
{
if(myFormatPtr == NULL)
{
return(NULL);
}
int index = myFormatPtr->getIndex(key);
if(index != VcfGenotypeFormat::GENOTYPE_INDEX_NA)
{
// Check if it is out of range for this sample - means it
// is missing for this sample.
if(index >= myGenotypeSubFields.size())
{
// missing for this sample.
return(&MISSING_FIELD);
}
if((key == "GT") && myNewGT)
{
updateGTString();
}
return(&(myGenotypeSubFields.get(index)));
}
// key was not found, so return NULL.
return(NULL);
}
bool VcfGenotypeSample::setString(const std::string& key, const std::string& value)
{
if(myFormatPtr == NULL)
{
return(false);
}
int index = myFormatPtr->getIndex(key);
if(index != VcfGenotypeFormat::GENOTYPE_INDEX_NA)
{
// Found the type, so set it.
myGenotypeSubFields.get(index) = value;
if(key == "GT")
{
myGTs.clear();
myNewGT = false;
if(value.find('|') != std::string::npos)
{
myPhased = true;
}
if(value.find('/') != std::string::npos)
{
myUnphased = true;
}
if(value.find('.') != std::string::npos)
{
myHasAllGenotypeAlleles = false;
}
else
{
myHasAllGenotypeAlleles = true;
}
}
return(true);
}
// field was not found, so return false.
return(false);
}
int VcfGenotypeSample::getGT(unsigned int index)
{
if(myGTs.empty())
{
if(!parseGT())
{
// Failed to parse GT, so return INVALID_GT.
return(INVALID_GT);
}
}
if(index < myGTs.size())
{
return(myGTs[index]);
}
// Out of range index.
return(INVALID_GT);
}
void VcfGenotypeSample::setGT(unsigned int index, int newGt)
{
if(myGTs.empty())
{
if(!parseGT())
{
// Failed to parse GT, so return INVALID_GT.
throw(std::runtime_error("VCF failed to parse GT."));
}
}
if(index < myGTs.size())
{
if(myGTs[index] != newGt)
{
myNewGT = true;
myGTs[index] = newGt;
}
}
else
{
// Out of range index.
throw(std::runtime_error("VCF setGT called with out of range GT index."));
}
}
int VcfGenotypeSample::getNumGTs()
{
if(myGTs.empty())
{
if(!parseGT())
{
return(0);
}
}
return(myGTs.size());
}
void VcfGenotypeSample::internal_reset()
{
myFormatPtr = NULL;
myPhased = false;
myUnphased = false;
myHasAllGenotypeAlleles = false;
myGTs.clear();
myNewGT = false;
}
bool VcfGenotypeSample::parseGT()
{
// Parse the GT.
const std::string* gtStr = getString("GT");
myGTs.clear();
myNewGT = false;
if(gtStr == NULL)
{
// GT field not found.
return(false);
}
// Parse til the end of the GT string
char* startPos = NULL;
char* endPos = (char*)gtStr->c_str();
while((endPos != NULL) && (*endPos != '\0'))
{
startPos = endPos;
if(*startPos == '.')
{
endPos = startPos + 1;
// unknown, so set this index to be MISSING_GT.
myGTs.push_back(MISSING_GT);
continue;
}
if(*startPos == '|')
{
endPos = startPos + 1;
continue;
}
if(*startPos == '/')
{
endPos = startPos + 1;
continue;
}
// Should be an int, so parse it.
unsigned long gtLong = strtoul(startPos, &endPos, 10);
myGTs.push_back((int)gtLong);
}
return(true);
}
void VcfGenotypeSample::updateGTString()
{
if(myNewGT)
{
int index = myFormatPtr->getIndex("GT");
if(index != VcfGenotypeFormat::GENOTYPE_INDEX_NA)
{
// Check if it is out of range for this sample - means it
// is missing for this sample.
if(index < myGenotypeSubFields.size())
{
std::stringstream gtSS;
char phaseChar = '/';
if(myPhased)
{
phaseChar = '|';
}
gtSS << myGTs[0];
for(unsigned int i = 1; i < myGTs.size(); i++)
{
gtSS << phaseChar << myGTs[i];
}
myGenotypeSubFields.get(index) = gtSS.str();
myNewGT = false;
}
}
}
}
|