1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
package Statistics::Descriptive;
##This module draws heavily from perltoot v0.4 from Tom Christiansen.
require 5.00404; ##Yes, this is underhanded, but makes support for me easier
##Not only that, but it's the latest "safe" version of
##Perl5. 01-03 weren't bug free.
$VERSION = '2.6';
$Tolerance = 0.0;
use POSIX qw/ceil/;
package Statistics::Descriptive::Sparse;
use strict;
use vars qw($VERSION $AUTOLOAD %fields);
use Carp;
##Define the fields to be used as methods
%fields = (
count => 0,
mean => 0,
sum => 0,
variance => undef,
pseudo_variance => 0,
min => undef,
max => undef,
mindex => undef,
maxdex => undef,
standard_deviation => undef,
sample_range => undef,
);
sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {
%fields,
_permitted => \%fields,
};
bless ($self, $class);
return $self;
}
sub add_data {
my $self = shift; ##Myself
my $oldmean;
my ($min,$mindex,$max,$maxdex);
my $aref;
if (ref $_[0] eq 'ARRAY') {
$aref = $_[0];
}
else {
$aref = \@_;
}
##Take care of appending to an existing data set
$min = (defined ($self->{min}) ? $self->{min} : $aref->[0]);
$max = (defined ($self->{max}) ? $self->{max} : $aref->[0]);
$maxdex = $self->{maxdex} || 0;
$mindex = $self->{mindex} || 0;
##Calculate new mean, pseudo-variance, min and max;
foreach ( @{ $aref } ) {
$oldmean = $self->{mean};
$self->{sum} += $_;
$self->{count}++;
if ($_ >= $max) {
$max = $_;
$maxdex = $self->{count}-1;
}
if ($_ <= $min) {
$min = $_;
$mindex = $self->{count}-1;
}
$self->{mean} += ($_ - $oldmean) / $self->{count};
$self->{pseudo_variance} += ($_ - $oldmean) * ($_ - $self->{mean});
}
$self->{min} = $min;
$self->{mindex} = $mindex;
$self->{max} = $max;
$self->{maxdex} = $maxdex;
$self->{sample_range} = $self->{max} - $self->{min};
if ($self->{count} > 1) {
$self->{variance} = $self->{pseudo_variance} / ($self->{count} -1);
$self->{standard_deviation} = sqrt( $self->{variance});
}
return 1;
}
sub AUTOLOAD {
my $self = shift;
my $type = ref($self)
or croak "$self is not an object";
my $name = $AUTOLOAD;
$name =~ s/.*://; ##Strip fully qualified-package portion
return if $name eq "DESTROY";
unless (exists $self->{'_permitted'}->{$name} ) {
croak "Can't access `$name' field in class $type";
}
##Read only method
return $self->{$name};
}
1;
package Statistics::Descriptive::Full;
use Carp;
use strict;
use vars qw(@ISA $a $b %fields);
@ISA = qw(Statistics::Descriptive::Sparse);
##Create a list of fields not to remove when data is updated
%fields = (
_permitted => undef, ##Place holder for the inherited key hash
data => undef, ##Our data
presorted => undef, ##Flag to indicate the data is already sorted
_reserved => undef, ##Place holder for this lookup hash
);
##Have to override the base method to add the data to the object
##The proxy method from above is still valid
sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self = $class->SUPER::new(); ##Create my self re SUPER
$self->{data} = []; ##Empty array ref for holding data later!
$self->{'_reserved'} = \%fields;
$self->{presorted} = 0;
bless ($self, $class); #Re-anneal the object
return $self;
}
sub add_data {
my $self = shift;
my $key;
my $aref;
if (ref $_[0] eq 'ARRAY') {
$aref = $_[0];
}
else {
$aref = \@_;
}
$self->SUPER::add_data($aref); ##Perform base statistics on the data
push @{ $self->{data} }, @{ $aref };
##Clear the presorted flag
$self->{'presorted'} = 0;
##Need to delete all cached keys
foreach $key (keys %{ $self }) { # Check each key in the object
# If it's a reserved key for this class, keep it
next if exists $self->{'_reserved'}->{$key};
# If it comes from the base class, keep it
next if exists $self->{'_permitted'}->{$key};
delete $self->{$key}; # Delete the out of date cached key
}
return 1;
}
sub get_data {
my $self = shift;
return @{ $self->{data} };
}
sub sort_data {
my $self = shift;
##Sort the data in descending order
$self->{data} = [ sort {$a <=> $b} @{$self->{data}} ];
$self->presorted(1);
##Fix the maxima and minima indices
$self->{mindex} = 0;
$self->{maxdex} = $#{$self->{data}};
return 1;
}
sub presorted {
my $self = shift;
if ($@) { ##Assign
$self->{'presorted'} = shift;
return 1;
}
else { ##Inquire
return $self->{'presorted'};
}
}
sub percentile {
my $self = shift;
my $percentile = shift || 0;
##Since we're returning a single value there's no real need
##to cache this.
##If the requested percentile is less than the "percentile bin
##size" then return undef. Check description of RFC 2330 in the
##POD below.
my $count = $self->{'count'};
return undef if $percentile < 100 / $count;
$self->sort_data() unless $self->{'presorted'};
my $num = $count*$percentile/100;
my $index = &POSIX::ceil($num) - 1;
return wantarray
? (${ $self->{data} }[ $index ], $index)
: ${ $self->{data} }[ $index ];
}
sub median {
my $self = shift;
##Cached?
return $self->{median} if defined $self->{median};
$self->sort_data() unless $self->{'presorted'};
my $count = $self->{count};
if ($count % 2) { ##Even or odd
return $self->{median} = @{ $self->{data} }[($count-1)/2];
}
else {
return $self->{median} =
(@{$self->{data}}[($count)/2] + @{$self->{data}}[($count-2)/2] ) / 2;
}
}
sub trimmed_mean {
my $self = shift;
my ($lower,$upper);
#upper bound is in arg list or is same as lower
if (@_ == 1) {
($lower,$upper) = ($_[0],$_[0]);
}
else {
($lower,$upper) = ($_[0],$_[1]);
}
##Cache
my $thistm = join ':','tm',$lower,$upper;
return $self->{$thistm} if defined $self->{$thistm};
my $lower_trim = int ($self->{count}*$lower);
my $upper_trim = int ($self->{count}*$upper);
my ($val,$oldmean) = (0,0);
my ($tm_count,$tm_mean,$index) = (0,0,$lower_trim);
$self->sort_data() unless $self->{'presorted'};
while ($index <= $self->{count} - $upper_trim -1) {
$val = @{ $self->{data} }[$index];
$oldmean = $tm_mean;
$index++;
$tm_count++;
$tm_mean += ($val - $oldmean) / $tm_count;
}
return $self->{$thistm} = $tm_mean;
}
sub harmonic_mean {
my $self = shift;
return $self->{harmonic_mean} if defined $self->{harmonic_mean};
my $hs = 0;
for (@{ $self->{data} }) {
##Guarantee that there are no divide by zeros
return $self->{harmonic_mean} = undef
unless abs($_) > $Statistics::Descriptive::Tolerance;
$hs += 1/$_;
}
return $self->{harmonic_mean} = undef
unless abs($hs) > $Statistics::Descriptive::Tolerance;
return $self->{harmonic_mean} = $self->{count}/$hs;
}
sub mode {
my $self = shift;
return $self->{mode} if defined $self->{mode};
my ($md,$occurances,$flag) = (0,0,1);
my %count;
foreach (@{ $self->{data} }) {
$count{$_}++;
$flag = 0 if ($count{$_} > 1);
}
#Distribution is flat, no mode exists
if ($flag) {
return undef;
}
foreach (keys %count) {
if ($count{$_} > $occurances) {
$occurances = $count{$_};
$md = $_;
}
}
return $self->{mode} = $md;
}
sub geometric_mean {
my $self = shift;
return $self->{geometric_mean} if defined $self->{geometric_mean};
my $gm = 1;
my $exponent = 1/$self->{count};
for (@{ $self->{data} }) {
return undef if $_ < 0;
$gm *= $_**$exponent;
}
return $self->{geometric_mean} = $gm;
}
sub frequency_distribution {
my $self = shift;
my $element;
my @k = ();
return undef if $self->{count} < 2; #Must have at least two elements
##Cache
return %{$self->{frequency}}
if ((defined $self->{frequency}) and !@_);
my %bins;
my $partitions = shift;
if (ref($partitions) eq 'ARRAY') {
@k = @{ $partitions };
return undef unless @k; ##Empty array
if (@k > 1) {
##Check for monotonicity
$element = $k[0];
for (@k[1..$#k]) {
if ($element > $_) {
carp "Non monotonic array cannot be used as frequency bins!\n";
return undef;
}
}
}
%bins = map { $_ => 0 } @k;
}
else {
return undef unless $partitions >= 1;
my $interval = $self->{sample_range}/$partitions;
my $iter = $self->{min};
while (($iter += $interval) < $self->{max}) {
$bins{$iter} = 0;
push @k, $iter; ##Keep the "keys" unstringified
}
$bins{$self->{max}} = 0;
push @k, $self->{max};
}
ELEMENT: foreach $element (@{$self->{data}}) {
for (@k) {
if ($element <= $_) {
$bins{$_}++;
next ELEMENT;
}
}
}
return %{$self->{frequency}} = %bins;
}
sub least_squares_fit {
my $self = shift;
return () if $self->{count} < 2;
##Sigma sums
my ($sigmaxy, $sigmax, $sigmaxx, $sigmayy, $sigmay) = (0,0,0,0,$self->sum);
my ($xvar, $yvar, $err);
##Work variables
my ($iter,$y,$x,$denom) = (0,0,0,0);
my $count = $self->{count};
my @x;
##Outputs
my ($m, $q, $r, $rms);
if (!defined $_[1]) {
@x = 1..$self->{count};
}
else {
@x = @_;
if ( $self->{count} != scalar @x) {
carp "Range and domain are of unequal length.";
return ();
}
}
foreach $x (@x) {
$y = $self->{data}[$iter];
$sigmayy += $y * $y;
$sigmaxx += $x * $x;
$sigmaxy += $x * $y;
$sigmax += $x;
$iter++;
}
$denom = $count * $sigmaxx - $sigmax*$sigmax;
return ()
unless abs( $denom ) > $Statistics::Descriptive::Tolerance;
$m = ($count*$sigmaxy - $sigmax*$sigmay) / $denom;
$q = ($sigmaxx*$sigmay - $sigmax*$sigmaxy ) / $denom;
$xvar = $sigmaxx - $sigmax*$sigmax / $count;
$yvar = $sigmayy - $sigmay*$sigmay / $count;
$denom = sqrt( $xvar * $yvar );
return () unless (abs( $denom ) > $Statistics::Descriptive::Tolerance);
$r = ($sigmaxy - $sigmax*$sigmay / $count )/ $denom;
$iter = 0;
$rms = 0.0;
foreach (@x) {
##Error = Real y - calculated y
$err = $self->{data}[$iter] - ( $m * $_ + $q );
$rms += $err*$err;
$iter++;
}
$rms = sqrt($rms / $count);
return @{ $self->{least_squares_fit} } = ($q, $m, $r, $rms);
}
1;
package Statistics::Descriptive;
##All modules return true.
1;
__END__
=head1 NAME
Statistics::Descriptive - Module of basic descriptive statistical functions.
=head1 SYNOPSIS
use Statistics::Descriptive;
$stat = Statistics::Descriptive::Full->new();
$stat->add_data(1,2,3,4); $mean = $stat->mean();
$var = $stat->variance();
$tm = $stat->trimmed_mean(.25);
$Statistics::Descriptive::Tolerance = 1e-10;
=head1 DESCRIPTION
This module provides basic functions used in descriptive statistics.
It has an object oriented design and supports two different types of
data storage and calculation objects: sparse and full. With the sparse
method, none of the data is stored and only a few statistical measures
are available. Using the full method, the entire data set is retained
and additional functions are available.
Whenever a division by zero may occur, the denominator is checked to be
greater than the value C<$Statistics::Descriptive::Tolerance>, which
defaults to 0.0. You may want to change this value to some small
positive value such as 1e-24 in order to obtain error messages in case
of very small denominators.
Many of the methods (both Sparse and Full) cache values so that subsequent
calls with the same arguments are faster.
=head1 METHODS
=head2 Sparse Methods
=over 5
=item $stat = Statistics::Descriptive::Sparse->new();
Create a new sparse statistics object.
=item $stat->add_data(1,2,3);
Adds data to the statistics variable. The cached statistical values are
updated automatically.
=item $stat->count();
Returns the number of data items.
=item $stat->mean();
Returns the mean of the data.
=item $stat->sum();
Returns the sum of the data.
=item $stat->variance();
Returns the variance of the data. Division by n-1 is used.
=item $stat->standard_deviation();
Returns the standard deviation of the data. Division by n-1 is used.
=item $stat->min();
Returns the minimum value of the data set.
=item $stat->mindex();
Returns the index of the minimum value of the data set.
=item $stat->max();
Returns the maximum value of the data set.
=item $stat->maxdex();
Returns the index of the maximum value of the data set.
=item $stat->sample_range();
Returns the sample range (max - min) of the data set.
=back
=head2 Full Methods
Similar to the Sparse Methods above, any Full Method that is called caches
the current result so that it doesn't have to be recalculated. In some
cases, several values can be cached at the same time.
=over 5
=item $stat = Statistics::Descriptive::Full->new();
Create a new statistics object that inherits from
Statistics::Descriptive::Sparse so that it contains all the methods
described above.
=item $stat->add_data(1,2,4,5);
Adds data to the statistics variable. All of the sparse statistical
values are updated and cached. Cached values from Full methods are
deleted since they are no longer valid.
I<Note: Calling add_data with an empty array will delete all of your
Full method cached values! Cached values for the sparse methods are
not changed>
=item $stat->get_data();
Returns a copy of the data array.
=item $stat->sort_data();
Sort the stored data and update the mindex and maxdex methods. This
method uses perl's internal sort.
=item $stat->presorted(1);
=item $stat->presorted();
If called with a non-zero argument, this method sets a flag that says
the data is already sorted and need not be sorted again. Since some of
the methods in this class require sorted data, this saves some time.
If you supply sorted data to the object, call this method to prevent
the data from being sorted again. The flag is cleared whenever add_data
is called. Calling the method without an argument returns the value of
the flag.
=item $x = $stat->percentile(25);
=item ($x, $index) = $stat->percentile(25);
Sorts the data and returns the value that corresponds to the
percentile as defined in RFC2330:
=over 4
=item
For example, given the 6 measurements:
-2, 7, 7, 4, 18, -5
Then F(-8) = 0, F(-5) = 1/6, F(-5.0001) = 0, F(-4.999) = 1/6, F(7) =
5/6, F(18) = 1, F(239) = 1.
Note that we can recover the different measured values and how many
times each occurred from F(x) -- no information regarding the range
in values is lost. Summarizing measurements using histograms, on the
other hand, in general loses information about the different values
observed, so the EDF is preferred.
Using either the EDF or a histogram, however, we do lose information
regarding the order in which the values were observed. Whether this
loss is potentially significant will depend on the metric being
measured.
We will use the term "percentile" to refer to the smallest value of x
for which F(x) >= a given percentage. So the 50th percentile of the
example above is 4, since F(4) = 3/6 = 50%; the 25th percentile is
-2, since F(-5) = 1/6 < 25%, and F(-2) = 2/6 >= 25%; the 100th
percentile is 18; and the 0th percentile is -infinity, as is the 15th
percentile.
Care must be taken when using percentiles to summarize a sample,
because they can lend an unwarranted appearance of more precision
than is really available. Any such summary must include the sample
size N, because any percentile difference finer than 1/N is below the
resolution of the sample.
=back
(Taken from:
I<RFC2330 - Framework for IP Performance Metrics>,
Section 11.3. Defining Statistical Distributions.
RFC2330 is available from:
http://www.cis.ohio-state.edu/htbin/rfc/rfc2330.html.)
If the percentile method is called in a list context then it will
also return the index of the percentile.
=item $stat->median();
Sorts the data and returns the median value of the data.
=item $stat->harmonic_mean();
Returns the harmonic mean of the data. Since the mean is undefined
if any of the data are zero or if the sum of the reciprocals is zero,
it will return undef for both of those cases.
=item $stat->geometric_mean();
Returns the geometric mean of the data.
=item $stat->mode();
Returns the mode of the data.
=item $stat->trimmed_mean(ltrim[,utrim]);
C<trimmed_mean(ltrim)> returns the mean with a fraction C<ltrim>
of entries at each end dropped. C<trimmed_mean(ltrim,utrim)>
returns the mean after a fraction C<ltrim> has been removed from the
lower end of the data and a fraction C<utrim> has been removed from the
upper end of the data. This method sorts the data before beginning
to analyze it.
All calls to trimmed_mean() are cached so that they don't have to be
calculated a second time.
=item $stat->frequency_distribution($partitions);
=item $stat->frequency_distribution(\@bins);
=item $stat->frequency_distribution();
C<frequency_distribution($partitions)> slices the data into
C<$partition> sets (where $partition is greater than 1) and counts the
number of items that fall into each partition. It returns an
associative array where the keys are the numerical values of the
partitions used. The minimum value of the data set is not a key and the
maximum value of the data set is always a key. The number of entries
for a particular partition key are the number of items which are
greater than the previous partition key and less then or equal to the
current partition key. As an example,
$stat->add_data(1,1.5,2,2.5,3,3.5,4);
%f = $stat->frequency_distribution(2);
for (sort {$a <=> $b} keys %f) {
print "key = $_, count = $f{$_}\n";
}
prints
key = 2.5, count = 4
key = 4, count = 3
since there are four items less than or equal to 2.5, and 3 items
greater than 2.5 and less than 4.
C<frequency_distribution(\@bins)> provides the bins that are to be used
for the distribution. This allows for non-uniform distributions as
well as trimmed or sample distributions to be found. C<@bins> must
be monotonic and contain at least one element. Note that unless the
set of bins contains the range that the total counts returned will
be less than the sample size.
Calling C<frequency_distribution()> with no arguments returns the last
distribution calculated, if such exists.
=item $stat->least_squares_fit();
=item $stat->least_squares_fit(@x);
C<least_squares_fit()> performs a least squares fit on the data,
assuming a domain of C<@x> or a default of 1..$stat->count(). It
returns an array of four elements C<($q, $m, $r, $rms)> where
=over 4
=item C<$q and $m>
satisfy the equation C($y = $m*$x + $q).
=item C<$r>
is the Pearson linear correlation cofficient.
=item C<$rms>
is the root-mean-square error.
=back
If case of error or division by zero, the empty list is returned.
The array that is returned can be "coerced" into a hash structure
by doing the following:
my %hash = ();
@hash{'q', 'm', 'r', 'err'} = $stat->least_squares_fit();
Because calling C<least_squares_fit()> with no arguments defaults
to using the current range, there is no caching of the results.
=back
=head1 REPORTING ERRORS
I read my email frequently, but since adopting this module I've added 2
children and 1 dog to my family, so please be patient about my response
times. When reporting errors, please include the following to help
me out:
=over 4
=item *
Your version of perl. This can be obtained by typing perl C<-v> at
the command line.
=item *
Which version of Statistics::Descriptive you're using. As you can
see below, I do make mistakes. Unfortunately for me, right now
there are thousands of CD's with the version of this module with
the bugs in it. Fortunately for you, I'm a very patient module
maintainer.
=item *
Details about what the error is. Try to narrow down the scope
of the problem and send me code that I can run to verify and
track it down.
=back
=head1 AUTHOR
Colin Kuskie
My email address can be found at http://www.perl.com under Who's Who
or at: http://search.cpan.org/author/COLINK/.
=head1 REFERENCES
RFC2330, Framework for IP Performance Metrics
The Art of Computer Programming, Volume 2, Donald Knuth.
Handbook of Mathematica Functions, Milton Abramowitz and Irene Stegun.
Probability and Statistics for Engineering and the Sciences, Jay Devore.
=head1 COPYRIGHT
Copyright (c) 1997,1998 Colin Kuskie. All rights reserved. This
program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
Copyright (c) 1998 Andrea Spinelli. All rights reserved. This program
is free software; you can redistribute it and/or modify it under the
same terms as Perl itself.
Copyright (c) 1994,1995 Jason Kastner. All rights
reserved. This program is free software; you can redistribute it
and/or modify it under the same terms as Perl itself.
=head1 REVISION HISTORY
=item v2.3
Rolled into November 1998
Code provided by Andrea Spinelli to prevent division by zero and to
make consistent return values for undefined behavior. Andrea also
provided a test bench for the module.
A bug fix for the calculation of frequency distributions. Thanks to Nick
Tolli for alerting this to me.
Added 4 lines of code to Makefile.PL to make it easier for the ActiveState
installation tool to use. Changes work fine in perl5.004_04, haven't
tested them under perl5.005xx yet.
=item v2.2
Rolled into March 1998.
Fixed problem with sending 0's and -1's as data. The old 0 : true ? false
thing. Use defined to fix.
Provided a fix for AUTOLOAD/DESTROY/Carp bug. Very strange.
=item v2.1
August 1997
Fixed errors in statistics algorithms caused by changing the
interface.
=item v2.0
August 1997
Fixed errors in removing cached values (they weren't being removed!)
and added sort_data and presorted methods.
June 1997
Transferred ownership of the module from Jason to Colin.
Rewrote OO interface, modified function distribution, added mindex,
maxdex.
=item v1.1
April 1995
Added LeastSquaresFit and FrequencyDistribution.
=item v1.0
March 1995
Released to comp.lang.perl and placed on archive sites.
=item v.20
December 1994
Complete rewrite after extensive and invaluable e-mail
correspondence with Anno Siegel.
=item v.10
December 1994
Initital concept, released to perl5-porters list.
=cut
|