File: Full.pm

package info (click to toggle)
libstatistics-descriptive-perl 3.0801-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 404 kB
  • sloc: perl: 2,026; makefile: 2
file content (1514 lines) | stat: -rw-r--r-- 38,479 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
package Statistics::Descriptive::Full;
$Statistics::Descriptive::Full::VERSION = '3.0801';
use strict;
use warnings;

use Carp;
use POSIX ();
use Statistics::Descriptive::Smoother;

use vars qw($a $b %fields);

use parent qw(Statistics::Descriptive::Sparse);

use List::MoreUtils ();
use List::Util      ();

## no critic (ProhibitExplicitReturnUndef)
##Create a list of fields not to remove when data is updated
%fields = (
    _permitted => undef,    ##Place holder for the inherited key hash
    data       => undef,    ##Our data
    samples    => undef,    ##Number of samples for each value of the data set
    presorted  => undef,    ##Flag to indicate the data is already sorted
    _reserved  => undef,    ##Place holder for this lookup hash
);

__PACKAGE__->_make_private_accessors(
    [
        qw(data samples frequency geometric_mean harmonic_mean
            least_squares_fit median mode
            skewness kurtosis median_absolute_deviation
        )
    ]
);
__PACKAGE__->_make_accessors( [qw(presorted _reserved _trimmed_mean_cache)] );

sub _clear_fields
{
    my $self = shift;

    # Empty array ref for holding data later!
    $self->_data( [] );
    $self->_samples( [] );
    $self->_reserved( \%fields );
    $self->presorted(0);
    $self->_trimmed_mean_cache( +{} );

    return;
}

##Have to override the base method to add the data to the object
##The proxy method from above is still valid
sub new
{
    my $proto = shift;
    my $class = ref($proto) || $proto;

    # Create my self re SUPER
    my $self = $class->SUPER::new();
    bless( $self, $class );    #Re-anneal the object
    $self->_clear_fields();
    return $self;
}

sub _is_reserved
{
    my $self  = shift;
    my $field = shift;

    return exists( $self->_reserved->{$field} );
}

sub _delete_all_cached_keys
{
    my $self = shift;

    my %keys = %{$self};

    # Remove reserved keys for this class from the deletion list
    delete @keys{ keys %{ $self->_reserved } };
    delete @keys{ keys %{ $self->_permitted } };
    delete $keys{_trimmed_mean_cache};

KEYS_LOOP:
    foreach my $key ( keys %keys )
    {    # Check each key in the object
        delete $self->{$key};    # Delete any out of date cached key
    }
    $self->{_trimmed_mean_cache} = {};    #  just reset this one
    return;
}

##Clear a stat.  More efficient than destroying an object and calling
##new.
sub clear
{
    my $self = shift;                     ##Myself
    my $key;

    if ( !$self->count() )
    {
        return;
    }

    $self->_delete_all_cached_keys();
    $self->SUPER::clear();
    $self->_clear_fields();
}

sub add_data
{
    my $self = shift;    ##Myself

    my $aref;

    if ( ref $_[0] eq 'ARRAY' )
    {
        $aref = $_[0];
    }
    else
    {
        $aref = \@_;
    }

    ##If we were given no data, we do nothing.
    return 1 if ( !@{$aref} );

    my $oldmean;
    my ( $min, $max, $sum, $sumsq );
    my $count = $self->count;

    #  $count is modified lower down, but we need this flag after that
    my $has_existing_data = $count;

    # Take care of appending to an existing data set
    if ($has_existing_data)
    {
        $min   = $self->min();
        $max   = $self->max();
        $sum   = $self->sum();
        $sumsq = $self->sumsq();
    }
    else
    {
        $min   = $aref->[0];
        $max   = $aref->[0];
        $sum   = 0;
        $sumsq = 0;
    }

    #  need to allow for already having data
    $sum   += List::Util::sum(@$aref);
    $sumsq += List::Util::sum( map { $_**2 } @$aref );
    $max = List::Util::max( $max, @$aref );
    $min = List::Util::min( $min, @$aref );
    $count += scalar @$aref;
    my $mean = $sum / $count;

    $self->min($min);
    $self->max($max);
    $self->sample_range( $max - $min );
    $self->sum($sum);
    $self->sumsq($sumsq);
    $self->mean($mean);
    $self->count($count);

    ##Variance isn't commonly enough
    ##used to recompute every single data add, so just clear its cache.
    $self->_variance(undef);

    push @{ $self->_data() }, @{$aref};

    #  no need to clear keys if we are a newly populated object,
    #  and profiling shows it takes a long time when creating
    #  and populating many stats objects
    if ($has_existing_data)
    {
        ##Clear the presorted flag
        $self->presorted(0);
        $self->_delete_all_cached_keys();
    }

    return 1;
}

sub add_data_with_samples
{
    my ( $self, $aref_values ) = @_;

    return 1 if ( !@{$aref_values} );

    my $aref_data    = [ map { keys %$_ } @{$aref_values} ];
    my $aref_samples = [ map { values %$_ } @{$aref_values} ];

    $self->add_data($aref_data);
    push @{ $self->_samples() }, @{$aref_samples};

    return 1;
}

sub get_data
{
    my $self = shift;
    return @{ $self->_data() };
}

sub get_data_without_outliers
{
    my $self = shift;

    if ( $self->count() < $Statistics::Descriptive::Min_samples_number )
    {
        carp(
"Need at least $Statistics::Descriptive::Min_samples_number samples\n"
        );
        return;
    }

    if ( !defined $self->{_outlier_filter} )
    {
        carp("Outliers filter not defined\n");
        return;
    }

    my $outlier_candidate_index = $self->_outlier_candidate_index;
    my $possible_outlier = ( $self->_data() )->[$outlier_candidate_index];
    my $is_outlier = $self->{_outlier_filter}->( $self, $possible_outlier );

    return $self->get_data unless $is_outlier;

    # Removing the outlier from the dataset
    my @good_indexes =
        grep { $_ != $outlier_candidate_index } ( 0 .. $self->count() - 1 );

    my @data          = $self->get_data;
    my @filtered_data = @data[@good_indexes];
    return @filtered_data;
}

sub set_outlier_filter
{
    my ( $self, $code_ref ) = @_;

    if ( !$code_ref || ref($code_ref) ne "CODE" )
    {
        carp("Need to pass a code reference");
        return;
    }

    $self->{_outlier_filter} = $code_ref;
    return 1;
}

sub _outlier_candidate_index
{
    my $self = shift;

    my $mean                    = $self->mean();
    my $outlier_candidate_index = 0;
    my $max_std_deviation       = abs( ( $self->_data() )->[0] - $mean );
    foreach my $idx ( 1 .. ( $self->count() - 1 ) )
    {
        my $curr_value = ( $self->_data() )->[$idx];
        if ( $max_std_deviation < abs( $curr_value - $mean ) )
        {
            $outlier_candidate_index = $idx;
            $max_std_deviation       = abs( $curr_value - $mean );
        }
    }
    return $outlier_candidate_index;
}

sub set_smoother
{
    my ( $self, $args ) = @_;

    $args->{data}    = $self->_data();
    $args->{samples} = $self->_samples();

    $self->{_smoother} = Statistics::Descriptive::Smoother->instantiate($args);
}

sub get_smoothed_data
{
    my ( $self, $args ) = @_;

    if ( !defined $self->{_smoother} )
    {
        carp("Smoother object not defined\n");
        return;
    }
    $self->{_smoother}->get_smoothed_data();
}

sub maxdex
{
    my $self = shift;

    return undef if !$self->count;
    my $maxdex;

    if ( $self->presorted )
    {
        $maxdex = $self->count - 1;
    }
    else
    {
        my $max = $self->max;
        $maxdex = List::MoreUtils::first_index { $_ == $max } $self->get_data;
    }

    $self->{maxdex} = $maxdex;

    return $maxdex;
}

sub mindex
{
    my $self = shift;

    return undef if !$self->count;

    #my $maxdex = $self->{maxdex};
    #return $maxdex if defined $maxdex;
    my $mindex;

    if ( $self->presorted )
    {
        $mindex = 0;
    }
    else
    {
        my $min = $self->min;
        $mindex = List::MoreUtils::first_index { $_ == $min } $self->get_data;
    }

    $self->{mindex} = $mindex;

    return $mindex;
}

sub sort_data
{
    my $self = shift;

    if ( !$self->presorted() )
    {
        ##Sort the data in descending order
        $self->_data( [ sort { $a <=> $b } @{ $self->_data() } ] );
        $self->presorted(1);
        ##Fix the maxima and minima indices - no, this is unnecessary now we have methods
        #$self->mindex(0);
        #$self->maxdex($#{$self->_data()});
    }

    return 1;
}

sub percentile
{
    my $self       = shift;
    my $percentile = shift || 0;
    ##Since we're returning a single value there's no real need
    ##to cache this.

    ##If the requested percentile is less than the "percentile bin
    ##size" then return undef.  Check description of RFC 2330 in the
    ##POD below.
    my $count = $self->count();

    if ( ( !$count ) || ( $percentile < 100 / $count ) )
    {
        return;    #  allow for both scalar and list context
    }

    $self->sort_data();
    my $num   = $count * $percentile / 100;
    my $index = &POSIX::ceil($num) - 1;
    my $val   = $self->_data->[$index];
    return wantarray
        ? ( $val, $index )
        : $val;
}

sub _calc_new_median
{
    my $self  = shift;
    my $count = $self->count();

    ##Even or odd
    if ( $count % 2 )
    {
        return $self->_data->[ ( $count - 1 ) / 2 ];
    }
    else
    {
        return (
            (
                $self->_data->[ ($count) / 2 ] +
                    $self->_data->[ ( $count - 2 ) / 2 ]
            ) / 2
        );
    }
}

sub median
{
    my $self = shift;

    return undef if !$self->count;

    ##Cached?
    if ( !defined( $self->_median() ) )
    {
        $self->sort_data();
        $self->_median( $self->_calc_new_median() );
    }
    return $self->_median();
}

sub quantile
{
    my ( $self, $QuantileNumber ) = @_;

    unless ( defined $QuantileNumber and $QuantileNumber =~ m/^0|1|2|3|4$/ )
    {
        carp("Bad quartile type, must be 0, 1, 2, 3 or 4\n");
        return;
    }

    #  check data count after the args are checked - should help debugging
    return undef if !$self->count;

    $self->sort_data();

    return $self->_data->[0] if ( $QuantileNumber == 0 );

    my $count = $self->count();

    return $self->_data->[ $count - 1 ] if ( $QuantileNumber == 4 );

    my $K_quantile = ( ( $QuantileNumber / 4 ) * ( $count - 1 ) + 1 );
    my $F_quantile = $K_quantile - POSIX::floor($K_quantile);
    $K_quantile = POSIX::floor($K_quantile);

    # interpolation
    my $aK_quantile = $self->_data->[ $K_quantile - 1 ];
    return $aK_quantile if ( $F_quantile == 0 );
    my $aKPlus_quantile = $self->_data->[$K_quantile];

    # Calcul quantile
    my $quantile =
        $aK_quantile + ( $F_quantile * ( $aKPlus_quantile - $aK_quantile ) );

    return $quantile;
}

sub _real_calc_trimmed_mean
{
    my $self  = shift;
    my $lower = shift;
    my $upper = shift;

    my $lower_trim = int( $self->count() * $lower );
    my $upper_trim = int( $self->count() * $upper );
    my ( $val, $oldmean ) = ( 0, 0 );
    my ( $tm_count, $tm_mean, $index ) = ( 0, 0, $lower_trim );

    $self->sort_data();
    while ( $index <= $self->count() - $upper_trim - 1 )
    {
        $val     = $self->_data()->[$index];
        $oldmean = $tm_mean;
        ++$index;
        ++$tm_count;
        $tm_mean += ( $val - $oldmean ) / $tm_count;
    }

    return $tm_mean;
}

sub trimmed_mean
{
    my $self = shift;
    my ( $lower, $upper );

    #upper bound is in arg list or is same as lower
    if ( @_ == 1 )
    {
        ( $lower, $upper ) = ( $_[0], $_[0] );
    }
    else
    {
        ( $lower, $upper ) = ( $_[0], $_[1] );
    }

    #  check data count after the args
    return undef if !$self->count;

    ##Cache
    my $thistm = join ':', $lower, $upper;
    my $cache  = $self->_trimmed_mean_cache();
    if ( !exists( $cache->{$thistm} ) )
    {
        $cache->{$thistm} = $self->_real_calc_trimmed_mean( $lower, $upper );
    }

    return $cache->{$thistm};
}

sub _test_for_too_small_val
{
    my $self = shift;
    my $val  = shift;

    return ( abs($val) <= $Statistics::Descriptive::Tolerance );
}

sub _calc_harmonic_mean
{
    my $self = shift;

    my $hs = 0;

    foreach my $item ( @{ $self->_data() } )
    {
        ##Guarantee that there are no divide by zeros
        if ( $self->_test_for_too_small_val($item) )
        {
            return;
        }

        $hs += 1 / $item;
    }

    if ( $self->_test_for_too_small_val($hs) )
    {
        return;
    }

    return $self->count() / $hs;
}

sub harmonic_mean
{
    my $self = shift;

    if ( !defined( $self->_harmonic_mean() ) )
    {
        $self->_harmonic_mean( scalar( $self->_calc_harmonic_mean() ) );
    }

    return $self->_harmonic_mean();
}

sub mode
{
    my $self = shift;

    if ( !defined( $self->_mode() ) )
    {
        my $mode       = 0;
        my $occurances = 0;

        my %count;

        foreach my $item ( @{ $self->_data() } )
        {
            my $count = ++$count{$item};
            if ( $count > $occurances )
            {
                $mode       = $item;
                $occurances = $count;
            }
        }

        $self->_mode(
              ( $occurances > 1 )
            ? { exists => 1, mode => $mode }
            : { exists => 0, }
        );
    }

    my $m = $self->_mode;

    return $m->{'exists'} ? $m->{mode} : undef;
}

sub geometric_mean
{
    my $self = shift;

    return undef if !$self->count;

    if ( !defined( $self->_geometric_mean() ) )
    {
        my $gm       = 1;
        my $exponent = 1 / $self->count();

        for my $val ( @{ $self->_data() } )
        {
            if ( $val < 0 )
            {
                return undef;
            }
            $gm *= $val**$exponent;
        }

        $self->_geometric_mean($gm);
    }

    return $self->_geometric_mean();
}

sub skewness
{
    my $self = shift;

    if ( !defined( $self->_skewness() ) )
    {
        my $n  = $self->count();
        my $sd = $self->standard_deviation();

        my $skew;

        #  skip if insufficient records
        if ( $sd && $n > 2 )
        {

            my $mean = $self->mean();

            my $sum_pow3;
            foreach my $rec ( $self->get_data )
            {
                $sum_pow3 += ( ( $rec - $mean ) / $sd )**3;
            }

            my $correction = $n / ( ( $n - 1 ) * ( $n - 2 ) );

            $skew = $correction * $sum_pow3;
        }

        $self->_skewness($skew);
    }

    return $self->_skewness();
}

sub kurtosis
{
    my $self = shift;

    if ( !defined( $self->_kurtosis() ) )
    {
        my $kurt;

        my $n  = $self->count();
        my $sd = $self->standard_deviation();

        if ( $sd && $n > 3 )
        {

            my $mean = $self->mean();

            my $sum_pow4;
            foreach my $rec ( $self->get_data )
            {
                $sum_pow4 += ( ( $rec - $mean ) / $sd )**4;
            }

            my $correction1 =
                ( $n * ( $n + 1 ) ) / ( ( $n - 1 ) * ( $n - 2 ) * ( $n - 3 ) );
            my $correction2 =
                ( 3 * ( $n - 1 )**2 ) / ( ( $n - 2 ) * ( $n - 3 ) );

            $kurt = ( $correction1 * $sum_pow4 ) - $correction2;
        }

        $self->_kurtosis($kurt);
    }

    return $self->_kurtosis();
}

sub frequency_distribution_ref
{
    my $self = shift;
    my @k    = ();

    # Must have at least two elements
    if ( $self->count() < 2 )
    {
        return undef;
    }

    if ( ( !@_ ) && ( defined $self->_frequency() ) )
    {
        return $self->_frequency();
    }

    my %bins;
    my $partitions = shift;

    if ( ref($partitions) eq 'ARRAY' )
    {
        @k = @{$partitions};
        return undef unless @k;    ##Empty array
        if ( @k > 1 )
        {
            ##Check for monotonicity
            my $element = $k[0];
            for my $next_elem ( @k[ 1 .. $#k ] )
            {
                if ( $element > $next_elem )
                {
                    carp
"Non monotonic array cannot be used as frequency bins!\n";
                    return undef;
                }
                $element = $next_elem;
            }
        }
        %bins = map { $_ => 0 } @k;
    }
    else
    {
        return undef unless $partitions >= 1;
        my $interval = $self->sample_range() / $partitions;
        foreach my $idx ( 1 .. ( $partitions - 1 ) )
        {
            push @k, ( $self->min() + $idx * $interval );
        }

        $bins{ $self->max() } = 0;

        push @k, $self->max();
    }

ELEMENT:
    foreach my $element ( @{ $self->_data() } )
    {
        foreach my $limit (@k)
        {
            if ( $element <= $limit )
            {
                $bins{$limit}++;
                next ELEMENT;
            }
        }
    }

    return $self->_frequency( \%bins );
}

sub frequency_distribution
{
    my $self = shift;

    my $ret = $self->frequency_distribution_ref(@_);

    if ( !defined($ret) )
    {
        return undef;
    }
    else
    {
        return %$ret;
    }
}

sub least_squares_fit
{
    my $self = shift;
    return () if $self->count() < 2;

    ##Sigma sums
    my ( $sigmaxy, $sigmax, $sigmaxx, $sigmayy, $sigmay ) =
        ( 0, 0, 0, 0, $self->sum );
    my ( $xvar, $yvar, $err );

    ##Work variables
    my ( $iter, $y, $x, $denom ) = ( 0, 0, 0, 0 );
    my $count = $self->count();
    my @x;

    ##Outputs
    my ( $m, $q, $r, $rms );

    if ( !defined $_[1] )
    {
        @x = 1 .. $self->count();
    }
    else
    {
        @x = @_;
        if ( $self->count() != scalar @x )
        {
            carp "Range and domain are of unequal length.";
            return ();
        }
    }
    foreach my $x_val (@x)
    {
        $y = $self->_data->[$iter];
        $sigmayy += $y * $y;
        $sigmaxx += $x_val * $x_val;
        $sigmaxy += $x_val * $y;
        $sigmax  += $x_val;
        ++$iter;
    }
    $denom = $count * $sigmaxx - $sigmax * $sigmax;
    return ()
        unless abs($denom) > $Statistics::Descriptive::Tolerance;

    $m = ( $count * $sigmaxy - $sigmax * $sigmay ) / $denom;
    $q = ( $sigmaxx * $sigmay - $sigmax * $sigmaxy ) / $denom;

    $xvar = $sigmaxx - $sigmax * $sigmax / $count;
    $yvar = $sigmayy - $sigmay * $sigmay / $count;

    $denom = sqrt( $xvar * $yvar );
    return () unless ( abs($denom) > $Statistics::Descriptive::Tolerance );
    $r = ( $sigmaxy - $sigmax * $sigmay / $count ) / $denom;

    $iter = 0;
    $rms  = 0.0;
    foreach (@x)
    {
        ##Error = Real y - calculated y
        $err = $self->_data->[$iter] - ( $m * $_ + $q );
        $rms += $err * $err;
        ++$iter;
    }

    $rms = sqrt( $rms / $count );

    $self->_least_squares_fit( [ $q, $m, $r, $rms ] );

    return @{ $self->_least_squares_fit() };
}

sub median_absolute_deviation
{
    my ($self) = @_;

    if ( !defined( $self->_median_absolute_deviation() ) )
    {
        my $stat = $self->new;
        $stat->add_data( map { abs( $_ - $self->median ) } $self->get_data );
        $self->_median_absolute_deviation( $stat->median );
    }

    return $self->_median_absolute_deviation();
}

sub summary
{
    my ($self) = @_;

    my $FMT = '%.5e';

    return
        sprintf( "Min: $FMT\nMax: $FMT\nMean: $FMT\nMedian: $FMT\n"
            . "1st quantile: $FMT\n3rd quantile: $FMT\n",
        $self->min, $self->max, $self->mean, $self->median, $self->quantile(1),
        $self->quantile(3), );

}
1;

__END__

=pod

=encoding UTF-8

=head1 NAME

Statistics::Descriptive - Module of basic descriptive statistical functions.

=head1 VERSION

version 3.0801

=head1 SYNOPSIS

    use Statistics::Descriptive;
    my $stat = Statistics::Descriptive::Full->new();
    $stat->add_data(1,2,3,4);
    my $mean = $stat->mean();
    my $var = $stat->variance();
    my $tm = $stat->trimmed_mean(.25);
    $Statistics::Descriptive::Tolerance = 1e-10;

=head1 DESCRIPTION

This module provides basic functions used in descriptive statistics.
It has an object oriented design and supports two different types of
data storage and calculation objects: sparse and full. With the sparse
method, none of the data is stored and only a few statistical measures
are available. Using the full method, the entire data set is retained
and additional functions are available.

Whenever a division by zero may occur, the denominator is checked to be
greater than the value C<$Statistics::Descriptive::Tolerance>, which
defaults to 0.0. You may want to change this value to some small
positive value such as 1e-24 in order to obtain error messages in case
of very small denominators.

Many of the methods (both Sparse and Full) cache values so that subsequent
calls with the same arguments are faster.

=head1 METHODS

=head2 Sparse Methods

=over 5

=item $stat = Statistics::Descriptive::Sparse->new();

Create a new sparse statistics object.

=item $stat->clear();

Effectively the same as

  my $class = ref($stat);
  undef $stat;
  $stat = new $class;

except more efficient.

=item $stat->add_data(1,2,3);

Adds data to the statistics variable. The cached statistical values are
updated automatically.

=item $stat->count();

Returns the number of data items.

=item $stat->mean();

Returns the mean of the data.

=item $stat->sum();

Returns the sum of the data.

=item $stat->variance();

Returns the variance of the data.  Division by n-1 is used.

=item $stat->standard_deviation();

Returns the standard deviation of the data. Division by n-1 is used.

=item $stat->min();

Returns the minimum value of the data set.

=item $stat->mindex();

Returns the index of the minimum value of the data set.

=item $stat->max();

Returns the maximum value of the data set.

=item $stat->maxdex();

Returns the index of the maximum value of the data set.

=item $stat->sample_range();

Returns the sample range (max - min) of the data set.

=back

=head2 Full Methods

Similar to the Sparse Methods above, any Full Method that is called caches
the current result so that it doesn't have to be recalculated.  In some
cases, several values can be cached at the same time.

=over 5

=item $stat = Statistics::Descriptive::Full->new();

Create a new statistics object that inherits from
Statistics::Descriptive::Sparse so that it contains all the methods
described above.

=item $stat->add_data(1,2,4,5);

Adds data to the statistics variable.  All of the sparse statistical
values are updated and cached.  Cached values from Full methods are
deleted since they are no longer valid.

I<Note:  Calling add_data with an empty array will delete all of your
Full method cached values!  Cached values for the sparse methods are
not changed>

=item $stat->add_data_with_samples([{1 => 10}, {2 => 20}, {3 => 30},]);

Add data to the statistics variable and set the number of samples each value
has been built with. The data is the key of each element of the input array
ref, while the value is the number of samples: [{data1 => smaples1}, {data2 =>
samples2}, ...].

B<NOTE:> The number of samples is only used by the smoothing function and is
ignored otherwise. It is not equivalent to repeat count. In order to repeat
a certain datum more than one time call add_data() like this:

    my $value = 5;
    my $repeat_count = 10;
    $stat->add_data(
        [ ($value) x $repeat_count ]
    );

=item $stat->get_data();

Returns a copy of the data array.

=item $stat->get_data_without_outliers();

Returns a copy of the data array without outliers. The number minimum of
samples to apply the outlier filtering is C<$Statistics::Descriptive::Min_samples_number>,
4 by default.

A function to detect outliers need to be defined (see C<set_outlier_filter>),
otherwise the function will return an undef value.

The filtering will act only on the most extreme value of the data set
(i.e.: value with the highest absolute standard deviation from the mean).

If there is the need to remove more than one outlier, the filtering
need to be re-run for the next most extreme value with the initial outlier removed.

This is not always needed since the test (for example Grubb's test) usually can only detect
the most exreme value. If there is more than one extreme case in a set,
then the standard deviation will be high enough to make neither case an outlier.

=item $stat->set_outlier_filter($code_ref);

Set the function to filter out the outlier.

C<$code_ref> is the reference to the subroutine implementing the filtering
function.

Returns C<undef> for invalid values of C<$code_ref> (i.e.: not defined or not a
code reference), C<1> otherwise.

=over 4

=item

Example #1: Undefined code reference

    my $stat = Statistics::Descriptive::Full->new();
    $stat->add_data(1, 2, 3, 4, 5);

    print $stat->set_outlier_filter(); # => undef

=item

Example #2: Valid code reference

    sub outlier_filter { return $_[1] > 1; }

    my $stat = Statistics::Descriptive::Full->new();
    $stat->add_data( 1, 1, 1, 100, 1, );

    print $stat->set_outlier_filter( \&outlier_filter ); # => 1
    my @filtered_data = $stat->get_data_without_outliers();
    # @filtered_data is (1, 1, 1, 1)

In this example the series is really simple and the outlier filter function as well.
For more complex series the outlier filter function might be more complex
(see Grubbs' test for outliers).

The outlier filter function will receive as first parameter the Statistics::Descriptive::Full object,
as second the value of the candidate outlier. Having the object in the function
might be useful for complex filters where statistics property are needed (again see Grubbs' test for outlier).

=back

=item $stat->set_smoother({ method => 'exponential', coeff => 0, });

Set the method used to smooth the data and the smoothing coefficient.
See C<Statistics::Smoother> for more details.

=item $stat->get_smoothed_data();

Returns a copy of the smoothed data array.

The smoothing method and coefficient need to be defined (see C<set_smoother>),
otherwise the function will return an undef value.

=item $stat->sort_data();

Sort the stored data and update the mindex and maxdex methods.  This
method uses perl's internal sort.

=item $stat->presorted(1);

=item $stat->presorted();

If called with a non-zero argument, this method sets a flag that says
the data is already sorted and need not be sorted again.  Since some of
the methods in this class require sorted data, this saves some time.
If you supply sorted data to the object, call this method to prevent
the data from being sorted again. The flag is cleared whenever add_data
is called.  Calling the method without an argument returns the value of
the flag.

=item $stat->skewness();

Returns the skewness of the data.
A value of zero is no skew, negative is a left skewed tail,
positive is a right skewed tail.
This is consistent with Excel.

=item $stat->kurtosis();

Returns the kurtosis of the data.
Positive is peaked, negative is flattened.

=item $x = $stat->percentile(25);

=item ($x, $index) = $stat->percentile(25);

Sorts the data and returns the value that corresponds to the
percentile as defined in RFC2330:

=over 4

=item

For example, given the 6 measurements:

-2, 7, 7, 4, 18, -5

Then F(-8) = 0, F(-5) = 1/6, F(-5.0001) = 0, F(-4.999) = 1/6, F(7) =
5/6, F(18) = 1, F(239) = 1.

Note that we can recover the different measured values and how many
times each occurred from F(x) -- no information regarding the range
in values is lost.  Summarizing measurements using histograms, on the
other hand, in general loses information about the different values
observed, so the EDF is preferred.

Using either the EDF or a histogram, however, we do lose information
regarding the order in which the values were observed.  Whether this
loss is potentially significant will depend on the metric being
measured.

We will use the term "percentile" to refer to the smallest value of x
for which F(x) >= a given percentage.  So the 50th percentile of the
example above is 4, since F(4) = 3/6 = 50%; the 25th percentile is
-2, since F(-5) = 1/6 < 25%, and F(-2) = 2/6 >= 25%; the 100th
percentile is 18; and the 0th percentile is -infinity, as is the 15th
percentile, which for ease of handling and backward compatibility is returned
as undef() by the function.

Care must be taken when using percentiles to summarize a sample,
because they can lend an unwarranted appearance of more precision
than is really available.  Any such summary must include the sample
size N, because any percentile difference finer than 1/N is below the
resolution of the sample.

=back

(Taken from:
I<RFC2330 - Framework for IP Performance Metrics>,
Section 11.3.  Defining Statistical Distributions.
RFC2330 is available from:
L<http://www.ietf.org/rfc/rfc2330.txt> .)

If the percentile method is called in a list context then it will
also return the index of the percentile.

=item $x = $stat->quantile($Type);

Sorts the data and returns estimates of underlying distribution quantiles based on one
or two order statistics from the supplied elements.

This method use the same algorithm as Excel and R language (quantile B<type 7>).

The generic function quantile produces sample quantiles corresponding to the given probabilities.

B<$Type> is an integer value between 0 to 4 :

  0 => zero quartile (Q0) : minimal value
  1 => first quartile (Q1) : lower quartile = lowest cut off (25%) of data = 25th percentile
  2 => second quartile (Q2) : median = it cuts data set in half = 50th percentile
  3 => third quartile (Q3) : upper quartile = highest cut off (25%) of data, or lowest 75% = 75th percentile
  4 => fourth quartile (Q4) : maximal value

Example :

  my @data = (1..10);
  my $stat = Statistics::Descriptive::Full->new();
  $stat->add_data(@data);
  print $stat->quantile(0); # => 1
  print $stat->quantile(1); # => 3.25
  print $stat->quantile(2); # => 5.5
  print $stat->quantile(3); # => 7.75
  print $stat->quantile(4); # => 10

=item $stat->median();

Sorts the data and returns the median value of the data.

=item $stat->harmonic_mean();

Returns the harmonic mean of the data.  Since the mean is undefined
if any of the data are zero or if the sum of the reciprocals is zero,
it will return undef for both of those cases.

=item $stat->geometric_mean();

Returns the geometric mean of the data.

=item my $mode = $stat->mode();

Returns the mode of the data. The mode is the most commonly occurring datum.
See L<http://en.wikipedia.org/wiki/Mode_%28statistics%29> . If all values
occur only once, then mode() will return undef.

=item $stat->trimmed_mean(ltrim[,utrim]);

C<trimmed_mean(ltrim)> returns the mean with a fraction C<ltrim>
of entries at each end dropped. C<trimmed_mean(ltrim,utrim)>
returns the mean after a fraction C<ltrim> has been removed from the
lower end of the data and a fraction C<utrim> has been removed from the
upper end of the data.  This method sorts the data before beginning
to analyze it.

All calls to trimmed_mean() are cached so that they don't have to be
calculated a second time.

=item $stat->frequency_distribution_ref($partitions);

=item $stat->frequency_distribution_ref(\@bins);

=item $stat->frequency_distribution_ref();

C<frequency_distribution_ref($partitions)> slices the data into
C<$partition> sets (where $partition is greater than 1) and counts the
number of items that fall into each partition. It returns a reference to
a hash where the keys are the numerical values of the
partitions used. The minimum value of the data set is not a key and the
maximum value of the data set is always a key. The number of entries
for a particular partition key are the number of items which are
greater than the previous partition key and less then or equal to the
current partition key. As an example,

   $stat->add_data(1,1.5,2,2.5,3,3.5,4);
   $f = $stat->frequency_distribution_ref(2);
   for (sort {$a <=> $b} keys %$f) {
      print "key = $_, count = $f->{$_}\n";
   }

prints

   key = 2.5, count = 4
   key = 4, count = 3

since there are four items less than or equal to 2.5, and 3 items
greater than 2.5 and less than 4.

C<frequency_distribution_refs(\@bins)> provides the bins that are to be used
for the distribution.  This allows for non-uniform distributions as
well as trimmed or sample distributions to be found.  C<@bins> must
be monotonic and contain at least one element.  Note that unless the
set of bins contains the range that the total counts returned will
be less than the sample size.

Calling C<frequency_distribution_ref()> with no arguments returns the last
distribution calculated, if such exists.

=item my %hash = $stat->frequency_distribution($partitions);

=item my %hash = $stat->frequency_distribution(\@bins);

=item my %hash = $stat->frequency_distribution();

Same as C<frequency_distribution_ref()> except that returns the hash clobbered
into the return list. Kept for compatibility reasons with previous
versions of Statistics::Descriptive and using it is discouraged.

=item $stat->median_absolute_deviation()

The median absolute deviation.

=item $stat->summary()

Returns a textual summary of the distribution - min, max, median, mean and
quantiles.

(New in version 3.0700 .)

=item $stat->least_squares_fit();

=item $stat->least_squares_fit(@x);

C<least_squares_fit()> performs a least squares fit on the data,
assuming a domain of C<@x> or a default of 1..$stat->count().  It
returns an array of four elements C<($q, $m, $r, $rms)> where

=over 4

=item C<$q and $m>

satisfy the equation C($y = $m*$x + $q).

=item C<$r>

is the Pearson linear correlation cofficient.

=item C<$rms>

is the root-mean-square error.

=back

If case of error or division by zero, the empty list is returned.

The array that is returned can be "coerced" into a hash structure
by doing the following:

  my %hash = ();
  @hash{'q', 'm', 'r', 'err'} = $stat->least_squares_fit();

Because calling C<least_squares_fit()> with no arguments defaults
to using the current range, there is no caching of the results.

=back

=head1 REPORTING ERRORS

I read my email frequently, but since adopting this module I've added 2
children and 1 dog to my family, so please be patient about my response
times.  When reporting errors, please include the following to help
me out:

=over 4

=item *

Your version of perl.  This can be obtained by typing perl C<-v> at
the command line.

=item *

Which version of Statistics::Descriptive you're using.  As you can
see below, I do make mistakes.  Unfortunately for me, right now
there are thousands of CD's with the version of this module with
the bugs in it.  Fortunately for you, I'm a very patient module
maintainer.

=item *

Details about what the error is.  Try to narrow down the scope
of the problem and send me code that I can run to verify and
track it down.

=back

=head1 AUTHOR

Current maintainer:

Shlomi Fish, L<http://www.shlomifish.org/> , C<shlomif@cpan.org>

Previously:

Colin Kuskie

My email address can be found at http://www.perl.com under Who's Who
or at: https://metacpan.org/author/COLINK .

=head1 CONTRIBUTORS

Fabio Ponciroli & Adzuna Ltd. team (outliers handling)

=head1 REFERENCES

RFC2330, Framework for IP Performance Metrics

The Art of Computer Programming, Volume 2, Donald Knuth.

Handbook of Mathematica Functions, Milton Abramowitz and Irene Stegun.

Probability and Statistics for Engineering and the Sciences, Jay Devore.

=head1 COPYRIGHT

Copyright (c) 1997,1998 Colin Kuskie. All rights reserved.  This
program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

Copyright (c) 1998 Andrea Spinelli. All rights reserved.  This program
is free software; you can redistribute it and/or modify it under the
same terms as Perl itself.

Copyright (c) 1994,1995 Jason Kastner. All rights
reserved.  This program is free software; you can redistribute it
and/or modify it under the same terms as Perl itself.

=head1 LICENSE

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=for :stopwords cpan testmatrix url bugtracker rt cpants kwalitee diff irc mailto metadata placeholders metacpan

=head1 SUPPORT

=head2 Websites

The following websites have more information about this module, and may be of help to you. As always,
in addition to those websites please use your favorite search engine to discover more resources.

=over 4

=item *

MetaCPAN

A modern, open-source CPAN search engine, useful to view POD in HTML format.

L<https://metacpan.org/release/Statistics-Descriptive>

=item *

RT: CPAN's Bug Tracker

The RT ( Request Tracker ) website is the default bug/issue tracking system for CPAN.

L<https://rt.cpan.org/Public/Dist/Display.html?Name=Statistics-Descriptive>

=item *

CPANTS

The CPANTS is a website that analyzes the Kwalitee ( code metrics ) of a distribution.

L<http://cpants.cpanauthors.org/dist/Statistics-Descriptive>

=item *

CPAN Testers

The CPAN Testers is a network of smoke testers who run automated tests on uploaded CPAN distributions.

L<http://www.cpantesters.org/distro/S/Statistics-Descriptive>

=item *

CPAN Testers Matrix

The CPAN Testers Matrix is a website that provides a visual overview of the test results for a distribution on various Perls/platforms.

L<http://matrix.cpantesters.org/?dist=Statistics-Descriptive>

=item *

CPAN Testers Dependencies

The CPAN Testers Dependencies is a website that shows a chart of the test results of all dependencies for a distribution.

L<http://deps.cpantesters.org/?module=Statistics::Descriptive>

=back

=head2 Bugs / Feature Requests

Please report any bugs or feature requests by email to C<bug-statistics-descriptive at rt.cpan.org>, or through
the web interface at L<https://rt.cpan.org/Public/Bug/Report.html?Queue=Statistics-Descriptive>. You will be automatically notified of any
progress on the request by the system.

=head2 Source Code

The code is open to the world, and available for you to hack on. Please feel free to browse it and play
with it, or whatever. If you want to contribute patches, please send me a diff or prod me to pull
from your repository :)

L<https://github.com/shlomif/perl-Statistics-Descriptive>

  git clone git://github.com/shlomif/perl-Statistics-Descriptive.git

=head1 AUTHOR

Shlomi Fish <shlomif@cpan.org>

=head1 BUGS

Please report any bugs or feature requests on the bugtracker website
L<https://github.com/shlomif/perl-Statistics-Descriptive/issues>

When submitting a bug or request, please include a test-file or a
patch to an existing test-file that illustrates the bug or desired
feature.

=head1 COPYRIGHT AND LICENSE

This software is copyright (c) 1997 by Jason Kastner, Andrea Spinelli, Colin Kuskie, and others.

This is free software; you can redistribute it and/or modify it under
the same terms as the Perl 5 programming language system itself.

=cut