1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
Source: libstatistics-pca-perl
Maintainer: Debian Perl Group <pkg-perl-maintainers@lists.alioth.debian.org>
Uploaders: Etienne Mollier <etienne.mollier@mailoo.org>
Section: perl
Testsuite: autopkgtest-pkg-perl
Priority: optional
Build-Depends: debhelper-compat (= 13),
libmodule-build-perl,
perl
Build-Depends-Indep: libcontextual-return-perl <!nocheck>,
libmath-cephes-perl <!nocheck>,
libmath-matrixreal-perl <!nocheck>,
libtest-simple-perl <!nocheck>,
libtext-simpletable-perl <!nocheck>
Standards-Version: 4.5.0
Vcs-Browser: https://salsa.debian.org/perl-team/modules/packages/libstatistics-pca-perl
Vcs-Git: https://salsa.debian.org/perl-team/modules/packages/libstatistics-pca-perl.git
Homepage: https://metacpan.org/release/Statistics-PCA
Rules-Requires-Root: no
Package: libstatistics-pca-perl
Architecture: all
Depends: ${misc:Depends},
${perl:Depends},
libcontextual-return-perl,
libmath-cephes-perl,
libmath-matrixreal-perl,
libtext-simpletable-perl
Description: perl module for principal component analysis (PCA)
Statistics::PCA provides functions for principal component analysis (PCA).
PCA transforms higher-dimensional data consisting of a number of possibly
correlated variables into a smaller number of uncorrelated variables termed
principal components (PCs). The higher the ranking of the PCs the greater the
amount of variability that the PC accounts for.
.
This PCA procedure involves the calculation of the eigenvalue decomposition
from a data covariance matrix after mean centering the data.
.
See https://en.wikipedia.org/wiki/Principal_component_analysis
|