File: PCA.pm

package info (click to toggle)
libstatistics-pca-perl 0.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 148 kB
  • sloc: perl: 321; makefile: 2
file content (789 lines) | stat: -rw-r--r-- 27,899 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
#!/usr/bin/perl -w
package Statistics::PCA;
#package Statistics::PCA;
use strict;
use warnings;
use Carp;
use Math::Cephes::Matrix qw(mat);
use List::Util qw(sum);
use Math::MatrixReal;
use Text::SimpleTable;
use Math::Cephes qw(:utils);
use Contextual::Return;
=head1 NAME

Statistics::PCA - A simple Perl implementation of Principal Component Analysis.

=cut
=head1 VERSION

This document describes Statistics::PCA version 0.0.1

=cut
=head1 SYNOPSIS

    use Statistics::PCA;

    # Create new Statistics::PCA object.
    my $pca = Statistics::PCA->new;

    #                  Var1    Var2    Var3    Var4...
    my @Obs1 = (qw/    32      26      51      12    /);
    my @Obs2 = (qw/    17      13      34      35    /);
    my @Obs3 = (qw/    10      94      83      45    /);
    my @Obs4 = (qw/    3       72      72      67    /);
    my @Obs5 = (qw/    10      63      35      34    /);

    # Load data. Data is loaded as a LIST-of-LISTS (LoL) pointed to by a named argument 'data'. Requires argument for format (see METHODS).
    $pca->load_data ( { format => 'table', data => [ \@Obs1, \@Obs2, \@Obs3, \@Obs4, \@Obs5 ], } ) ;

    # Perform the PCA analysis. Takes optional argument 'eigen' (see METHODS). 
    #$pca->pca( { eigen => 'C' } );
    $pca->pca();

    # Access results. The return value of this method is context-dependent (see METHODS). To print a report to STDOUT call in VOID-context.
    $pca->results();
  
=cut
=head1 DESCRIPTION

Principal component analysis (PCA) transforms higher-dimensional data consisting of a number of possibly correlated variables into a smaller number of
uncorrelated variables termed principal components (PCs). The higher the ranking of the PCs the greater the amount of
variability that the PC accounts for. This PCA procedure involves the calculation of the eigenvalue decomposition using either the Math::Cephes::Matrix or
Math::MatrixReal modules (see METHODS) from a data covariance matrix after mean centering the data. See
http://en.wikipedia.org/wiki/Principal_component_analysis for more details.

=cut
=head1 METHODS

=cut
use version; our $VERSION = qv('0.0.1');


#y////////////////////////////////////////////// CONSTRUCTOR AND DATA LOADING /////////////////////////////////////////
#=fs CONSTRUCTOR AND DATA LOADING

#sub diag {
#    my $self = shift;
#    print Dumper $self;
#    return;
#}

=head2 new

Create a new Statistics::PCA object.

    my $pca = Statistics::PCA->new;

=cut
sub new {
    my $class = shift;
    my $self = {};
    bless $self, $class;
    return $self;
}
    
#/ this will work for a matrix of values where ALL data is complete - i.e. 
=head2 load_data

Used for loading data into object. Data is fed as a reference to a LoL within an anonymous hash using the
named argument 'data'. Data may be entered in one of two forms specified by the obligatory named argument 'format'.
Data may either be entered in standard 'table' fashion (with rows corresponding to observations and columns corresponding
to variables). Thus to enter the following table of data:

            Var1    Var2    Var3    Var4

    Obs1    32      26      51      12  
    Obs2    17      13      34      35        
    Obs3    10      94      83      45        
    Obs4    3       72      72      67        
    Obs5    10      63      35      34 ...

The data is passed as an LoL with the with each nested ARRAY reference corresponding to a row of observations in the
data table and the 'format' argument value 'table' as follows:

    #                       Var1    Var2    Var3    Var4 ...
    my $data  =   [   
                    [qw/    32      26      51      12    /],     # Obs1
                    [qw/    17      13      34      35    /],     # Obs2
                    [qw/    10      94      83      45    /],     # Obs3
                    [qw/    3       72      72      67    /],     # Obs4
                    [qw/    10      63      35      34    /],     # Obs5 ...
                ];

    $pca->load_data ( { format => 'table', data => $data, } );

Alternatively you may enter the data in a variable-centric fashion where each nested ARRAY reference corresponds to a 
single variable within the data (i.e. the transpose of the above table-fashion). To pass the above data in this fashion
use the 'format' argument with value 'variable' as follows:

    #                           Obs1    Obs2    Obs3    Obs4    Obs5 ...
    my $transpose = [
                        [qw/    32      17      10      3       10    /],   # Var1
                        [qw/    26      13      94      72      63    /],   # Var2
                        [qw/    51      34      83      72      35    /],   # Var3
                        [qw/    12      35      45      67      34    /],   # Var4 ...
                    ];

    $pca->load_data ( { format => 'variable', data => $transpose, } ) ;

=cut
sub load_data {
    #my ( $self, $data ) = @_;
    my ( $self, $h_ref ) = @_;
    croak qq{\nArguments must be passed as HASH reference.} if ( ( $h_ref ) && ( ref $h_ref ne q{HASH} ) );
    
    my $data_dirty = $h_ref->{data};
    
    #y clean it now to stop strange internal references
    my $data = _deep_copy_references($data_dirty);

    croak qq{\nYou must specify a data format} if ( !exists $h_ref->{format} );
    my $format_val = $h_ref->{format};

    my %formating = (   table       =>  sub {   $self->_transpose($data);                           },
                        #y no point in have direct method its so short just put it here
                        #variable    =>  sub {   $self->_direct              },      # just do the calculations directly and put the data in
                        variable    =>  sub {
                                                $self->{summaries}{var_num} = scalar ( @{$data} ); 
                                                $self->{summaries}{var_length} = scalar ( @{$data->[0]} );
                                                $self->{data}{transpose_temp} = $data; return;     },
                    );

    my $format = $formating{$format_val};
    croak qq{\nYou must pass a recognised option: \"table\", \"variable\"} if ( !defined $format );

    #y &{$cd}() = &$cd() = &$cd = $cd->();
    $format->();

    $self->_data_checks;

    #y adjust flag
    $self->{flags}{data_loaded} = 1;

    return;

}

sub _direct {
    my ( $self, $a_ref ) = @_;

    my $var_num = scalar ( @{$a_ref} );
   
    my $var_length = scalar ( @{$a_ref->[0]} );

    $self->{data}{transpose_temp} = $a_ref;
    $self->{summaries}{var_num} = $var_num;
    $self->{summaries}{var_length} = $var_length;

    return;
}

sub _transpose {
    
    my ( $self, $a_ref ) = @_;

    my $var_length = scalar ( @{$a_ref} );

    my $done = [];
    for my $col ( 0..$#{$a_ref->[0]} ) {
        push @{$done}, [ map { $_->[$col] } @{$a_ref} ];
        }

    my $var_num = scalar ( @{$done} );
    
    $self->{data}{transpose_temp} = $done;
    $self->{summaries}{var_num} = $var_num;
    $self->{summaries}{var_length} = $var_length;
    
    return;
}

sub _data_checks {

    my $self = shift; 

    my $data_a_ref = $self->{data}{transpose_temp};

    my $rows = $self->{summaries}{var_num};
    croak qq{\nI need some data - there are too few rows in your data.\n} if ( !$rows || $rows == 1 );

    my $cols = $self->{summaries}{var_length};
    croak qq{\nI need some data - there are too few columns in your data.\n} if ( !$cols || $cols == 1 );

    for my $row (@{$data_a_ref}) {

        croak qq{\n\nData set must be passed as ARRAY references.\n} if ( ref $row ne q{ARRAY} );
        croak qq{\n\nAll rows must have the same number of columns.\n} if ( scalar( @{$row} ) != $cols );

    }
  
    #/ all fine and dandy.
    print qq{\nData has $rows variables and $cols observations. Passing data to object.};
    $self->{data}{transpose} = $data_a_ref;
    delete $self->{data}{transpose_temp};

    return;
}

#=fe


#y/////////////////////////////////////////////////////// ANALYSIS ////////////////////////////////////////////////////
#=fs ANALYSIS

=head2 pca

To perform the PCA analysis. This method takes the optional named argument 'eigen' that takes the values 'M' or 'C' to
calculate the eigenvalue decomposition using either the Math::MatrixReal or Math::Cephes::Matrix modules respectively
(defaults to 'M' without argument).

    $pca->pca();   
    $pca->pca( { eigen => 'M' } );
    $pca->pca( { eigen => 'C' } );

=cut
sub pca {
    
    my ( $self, $h_ref ) = @_;
    croak qq{\nArguments must be passed as HASH reference.} if ( ( $h_ref ) && ( ref $h_ref ne q{HASH} ) );
    
    exists $h_ref->{eigen} || print qq{\nUsing default option of Math::MatrixReal to calculate eigen values.};
    
    my $eigen = exists $h_ref->{eigen} ? $h_ref->{eigen} : q{M};

    croak qq{\nI don\'t recognise that value for the \'eigen\' option - requires \'M\' or \'C\' (defaults to \'M\' without option).}
          if ( $eigen !~ /\A[MC]\z/xms );

    $self->_calculate_averages;
    $self->_calculate_adjustment;
    $self->_calculate_CVs;

    if ( $eigen eq q{M} ) { $self->_calculate_eigens_matrixreal; }
    # overkill here
    elsif ( $eigen eq q{C} ) { $self->_calculate_eigens_cephes; }

    #y re-orders eigenvalues and eigenvectors according to eigenvalue - thus everything from here is in correct order 
    $self->_rank_eigenvalues;

    #y we have ranked data - should put in new positions? so now we do the calculations
    $self->_calculate_components;

    #y generates the prcomp eigenvectors calculation - returns it as an object and also stores the raw data as self->{self}{eigen}
    $self->_transform;

    return;
}

sub _calculate_averages {
    my $self = shift;
    my $new_data = $self->{data}{transpose};

    my $totals_ref = [];

    for my $row ( 0..($self->{summaries}{var_num}-1) ) { 

       my $sum = sum @{$new_data->[$row]};
       my $length = scalar ( @{$new_data->[$row]} );
       my $average = $sum / $length;

       push @{$totals_ref}, { sum => $sum, length => $length, average => $average};
       
   }

       $self->{summaries}{totals} = $totals_ref;
       return;
}

sub _calculate_adjustment {
    my $self = shift;
    
    my $trans = $self->{data}{transpose};

    my $totals = $self->{summaries}{totals};

    my $adjust = [];

    for my $row ( 0..($self->{summaries}{var_num}-1) ) {

        @{$adjust->[$row]} = map { $_ - $totals->[$row]{average} } @{$trans->[$row]};

    }

    $self->{data}{adjusted} = $adjust;
}

sub _calculate_CVs {
    my $self = shift;

    my $adjusted = $self->{data}{adjusted};
    my $var_num = $self->{summaries}{var_num};
    my $length = $self->{summaries}{var_length};
    my $sum = 0;
    my $covariance_matrix_ref = [];

    for my $row ( 0..($var_num-1) ) {

        for my $col ( 0..($var_num-1) ) {
               
            my $sum = 0;
            for my $iteration (0..$#{$adjusted->[0]}) {

                my $val = $adjusted->[$col][$iteration] * $adjusted->[$row][$iteration];
                    
                $sum += $val;
            }
                
            my $cv = $sum / ($length-1);

            $covariance_matrix_ref->[$col][$row] = $cv;
        }
    }

    $self->{summaries}{covariate_matrix} = $covariance_matrix_ref;
    return;

}

sub _calculate_eigens_matrixreal {
    my $self = shift;

    my $covariance_matrix_ref = $self->{summaries}{covariate_matrix};

    my $covariance_matrix_perl = Math::MatrixReal->new_from_cols ( $covariance_matrix_ref ) ;
    my ($eigen_val_perl, $eigen_vec_perl) = $covariance_matrix_perl->sym_diagonalize();
    my $eigen_vec_perl_T = ~$eigen_vec_perl;
    my $eigen_val_perl_T = ~$eigen_val_perl;

    my $overall_alt = [];
    @{$overall_alt} = map { +{ solution => $_+1, eigenvalue => $eigen_val_perl_T->[0][0][$_], eigenvector => $eigen_vec_perl_T->[0][$_] } } (0..$#{$eigen_val_perl_T->[0][0]});
    
    $self->{summaries}{eigen}{raw} = $overall_alt;
    
    return;
}

sub _calculate_eigens_cephes {
    my $self = shift;
    
    my $covariance_matrix_ref = $self->{summaries}{covariate_matrix};
    my $covariance_matrix = mat ( $covariance_matrix_ref ) ;

    my ($eigen_val, $eigen_vec) = $covariance_matrix->eigens();
    my $eigen_vec_ref = $eigen_vec->coef;

#print Dumper       $eigen_val,                       $eigen_vec_ref;
#print Dumper       $eigen_val_perl_T->[0][0],        $eigen_vec_perl_T->[0];

    #y we don´t need it but we will force perl to intepret {} as anon HASH and not BATCH with '+' 
    my $overall = [];

    #@{$overall} = map { +{ solution => $_, eigenvalue => $eigen_val->[$_], eigenvector => $eigen_vec_ref->[$_] } } (0..$#{$eigen_val});
    @{$overall} = map { +{ solution => $_+1, eigenvalue => $eigen_val->[$_], eigenvector => $eigen_vec_ref->[$_] } } (0..$#{$eigen_val});

    $self->{summaries}{eigen}{raw} = $overall;
    return;
}

sub _deep_copy_references { 
     my $ref = shift;
     if (!ref $ref) { $ref; } 
     #y/ this check for a_refs in which case we will access the whole thing as @{$a_ref}
     elsif (ref $ref eq q{ARRAY} ) { 
       [ map { _deep_copy_references($_) } @{$ref} ]; 
    } 
    #y/ this checks for hash refs - in which case it will be handled by fully derferencing: %{$ref}
    elsif (ref $ref eq q{HASH} )  { 
    #y intepreter forced to read this as an anon HASH and not BATCH  by prepending +
    + {   map { $_ => _deep_copy_references($ref->{$_}) } (keys %{$ref})    }; 
    } 
    else { die "what type is $_?" }
}

sub _rank_eigenvalues {
    my $self = shift;
    my $overall = $self->{summaries}{eigen}{raw}; 

    #/ deep copy to stop fuss!
    my $overall_clean = _deep_copy_references($overall);

    my $overall_sorted = [];
    #/ Can't use "my $a" in sort comparison at The_PCA_method.pl line 255 - cos $a was declared as lexical and $a/$b are globals...
    @{$overall_sorted} = sort { $b->{eigenvalue} <=> $a->{eigenvalue} } @{$overall_clean};

    $self->{summaries}{eigen}{sorted} = $overall_sorted; 

    $self->_add_rank;
    return;
}

sub _add_rank {
    my $self = shift;
    my $overall_sorted = $self->{summaries}{eigen}{sorted};

#@{$overall_sorted} = sort { $b->{eigenvalue} <=> $a->{eigenvalue} } map { my $temp = $_; $overall_sorted->[$temp]{rank} = $temp+1 } (0..$#{$overall_clean});

    for my $pos ( (0..$#{$overall_sorted}) ) {
                #my $overall_sorted->[$pos]{rank} = $pos;
    $overall_sorted->[$pos]{PC} = $pos+1;
    }
    return;
}

sub _calculate_components {
    my $self = shift;
    my $sorted_eigen = $self->{summaries}{eigen}{sorted};

# we will calculate stdev - this is EITHER stdev of the transformed data OR more generally the stdev of the eigenvalue of the solution. 

    my $total_variance = sum map { $_->{eigenvalue} } @{$sorted_eigen};

    my $cumulative_variance = 0;

    for my $hash_ref (@{$sorted_eigen}) {
        
        # use this twice to unpack it
        my $variance_aka_eigenvalue = $hash_ref->{eigenvalue};
        
        #my $stdev = sqrt($variance_aka_eigenvalue);
        $hash_ref->{stdev} = sqrt($variance_aka_eigenvalue);
        
        # use this twice so put it in variable
        #$hash_ref->{proportion_of_variance} = ( $variance_aka_eigenvalue / $total_variance );
        my $proportion_of_variance = ($variance_aka_eigenvalue / $total_variance);
        $hash_ref->{proportion_of_variance} = $proportion_of_variance;

        $cumulative_variance += $proportion_of_variance;
        $hash_ref->{cumulative_variance} = $cumulative_variance;
    }   
    
    $self->{summaries}{total_variance} = $total_variance;
    
    return;
}

sub _create_row_matrix_of_eigenvectors {

    my $self = shift;
    
    my $sorted_eigen = $self->{summaries}{eigen}{sorted};
    my $eigen_vectors = [];
    
    @{$eigen_vectors} = map { $_->{eigenvector} } @{$sorted_eigen};
  
    #y we turn it into a matrix object - should use _from_rows?
    my $eigen_matrix_object = Math::MatrixReal->new_from_cols( $eigen_vectors );
  
    #y we take the transpose which will be multiplied by the row_adjusted_matrix_object - i.e. transpose
    my $row_eigen_matrix_object = ~$eigen_matrix_object;
    
    my $eigen_vectors_copy = _deep_copy_references ($eigen_vectors);
    $self->{pca}{eigenvectors} = $eigen_vectors_copy;

    return $row_eigen_matrix_object;
}

sub _create_row_matrix_of_adjusted {
    my $self = shift;

    # unpack adjusted data
    my $adjusted = $self->{data}{adjusted};

    #my $adjusted_data_m = Math::MatrixReal->new_from_cols( $pca->{data}{adjusted} );
    my $adjusted_data_matrix_object = Math::MatrixReal->new_from_cols( $adjusted );

    #y take transpose
    my $row_adjusted_data_matrix = ~$adjusted_data_matrix_object;

    return $row_adjusted_data_matrix;

}

sub _transform {

    my $self = shift;
    my $row_mat_Eigen_object = $self->_create_row_matrix_of_eigenvectors;
    my $row_mat_Adjust_object = $self->_create_row_matrix_of_adjusted;

    #y this is the actual pca output - but needs to be transposed    
    my $product_matrix = $row_mat_Eigen_object->multiply($row_mat_Adjust_object);
    
        #y/ code from MatrixReal: map { $this->[0][$_] = [ @$empty ] } ( 0 .. $rows-1);
        #y/ i.e. all matrix data is put into ->[0]
    $self->{pca}{transform} = $product_matrix->[0];

    return;

}

#=fe


#y/////////////////////////////////////////////////////// RESULTS /////////////////////////////////////////////////////
#=fs RESULTS

=head2 results

Used to access the results of the PCA analysis. This method is context-dependent and will return a variety of different
values depending on whether it is called in VOID or LIST context and the arguments its passed. 
In VOID-context it prints a formatted table of the computed results to STDOUT.

    $pca->results;

In LIST context this method takes an obligatory argument that determines its return values. To return an ordered list
(ordered by PC ranking) of the proportions of total variance of each PC pass 'proportion' to the method.

    my @list = $pca->results('proportion');
    print qq{\nOrdered list of individual proportions of variance: @list};

To return an ordered list of the cumulative variance of the PCs pass argument 'cumulative'.

    @list = $pca->results('cumulative');
    print qq{\nOrdered list of cumulative variance of the PCs: @list};

To return an ordered list of the individual standard deviations of the PCs pass argument 'stdev'.

    @list = $pca->results('stdev');
    print qq{\nOrdered list of individual standard deviations of the PCs: @list};

To return an ordered list of the individual eigenvalues of the PCs pass argument 'eigenvalue'.

    @list = $pca->results('eigenvalue');
    print qq{\nOrdered list of individual eigenvalues of the PCs: @list};

To return an ordered list of ARRAY references containing the eigenvectors of the PCs pass argument 'eigenvector'.

    # Returns an ordered list of array references containing the eigenvectors for the components
    @list = $pca->results('eigenvector');
    use Data::Dumper;
    print Dumper \@list;

To return an ordered list of ARRAY references containing more detailed information about each PC use the 'full'
argument. Each nested ARRAY reference consists of an ordered list of: PC rank, PC stdev, PC proportion of variance, 
PC cumulative_variance, PC eigenvalue and a further nested ARRAY reference containing the PC eigenvector.
    
    @list = $pca->results('full');
    for my $i (@list) {
        print qq{\nPC rank: $i->[0]}
              . qq{\nPC stdev $i->[1]}
              . qq{\nPC proportion of variance $i->[2]}
              . qq{\nPC cumulative variance $i->[3]}
              . qq{\nPC eigenvalue $i->[4]}
        }

To return an ordered LoL of the transformed data for each of the PCs pass 'transformed' to the method. 

    @list = $pca->results('transformed');
    print qq{\nThe transformed data for 'the' principal component (first PC): @{$list[0]} };

=cut
sub results {
    my ( $self, $arg ) = @_;
    return  (  
    VOID    { $self->_print           }  
    # either have specific methods for type of return! or simply have this and an arguement
    LIST    { $self->_results_in_list($arg) } 
    #y total variance is popintless without individual and if you´ve got individual total is trivial so leave these returns are they are.
    # nao faz sentido - nao eh uma teste
    #BOOL    { $F > $standard_F ? 1 : undef;    } 
            );                          
}

sub _print { 

    my $self = shift;
    print qq{\n=======================\nRESULTS OF PCA ANALYSIS\n=======================\n};

    $self->print_total_variance;
    $self->print_variance;
    $self->print_eigenvectors;
    $self->print_transform;
    
    return;
}

#/ should really get the vectors directly from summaries and not re-enter them in the object!!! - especially now that you can just use rank for PC number
sub print_eigenvectors {
    my $self = shift;
    $self->_print_private(q{eigenvectors});
}

sub print_transform {
    my $self = shift;
    $self->_print_private(q{transform});
}

sub print_total_variance {
    my $self = shift;
    print qq{\nTotal Variance = }, sprintf (q{%.8f}, $self->{summaries}{total_variance}), qq{\n};
    return;
}

sub print_variance {
    my $self = shift;
    
    my $sorted_eigen = $self->{summaries}{eigen}{sorted};
    
    print qq{\nTable of Standard Deviations and Variances:\n};

    # just create a first columnm that´s empty for names of rows
    my @config_full = ( [22, q{}] );

    # column calculations... 
    #/ really ought to get PC name from rank attribute
    #my @config = map { [ 12, q{PC_}.$_ ] } ( 1..(scalar (@{$sorted_eigen})) );
    #my @config = map { [ 12, q{PC_}.$_->{rank} ] } ( 0..(scalar ($#{$sorted_eigen})) );

    #r/ PC is rank - i.e. it is the 'principal' compoenent 
    my @config = map { [ 12, q{PC_}.$_->{PC} ] } (@{$sorted_eigen});

    # make the actual configuring array
    push @config_full, @config;
    
    my $table = Text::SimpleTable->new(@config_full);

    my @row1 = (); # no need to initialise, but whatever...
    for my $hash_ref (@{$sorted_eigen}) { push @row1, sprintf (q{%.8f}, $hash_ref->{stdev}); }
    $table->row( q{Standard Deviation}, @row1 );
    $table->hr;

    my @row2 = (); # no need to initialise, but whatever...
    for my $hash_ref (@{$sorted_eigen}) { push @row2, sprintf (q{%.8f}, $hash_ref->{proportion_of_variance}); }
    $table->row( q{Proportion of Variance}, @row2 );
    $table->hr;

    my @row3 = (); # no need to initialise, but whatever...
    for my $hash_ref (@{$sorted_eigen}) { push @row3, sprintf (q{%.8f}, $hash_ref->{cumulative_variance}); }
    $table->row( q{Cumulative Variance}, @row3 );
    
    print $table->draw;
    return;
}

sub _print_private {
    my ( $self, $arg ) = @_;

    #/ twat used numeric ==
    $arg eq q{eigenvectors} and print qq{\nTable of vectors:\n};
    $arg eq q{transform} and print qq{\nTable of Transformed data:\n};

    my $blah = $self->{pca}{$arg};

    my @config_full = ( [5, q{}] );
    #y column calculations...
    my @config = map { [ 12, q{PC_}.$_ ] } ( 1..(scalar (@{$blah})) );
    push @config_full, @config;
    
    my $t2 = Text::SimpleTable->new(@config_full);

    #y all have same component number so who gives a shit
    for my $row (0..$#{$blah->[0]}) {
        my @data;
        for my $col (0..$#{$blah}) {
            push @data, sprintf (q{%.8f}, $blah->[$col][$row] );
        }
            $t2->row( $row+1, @data );
    }
    print $t2->draw;
    return;
}

sub _results_in_list {
    my ( $self, $arg ) = @_;

    #/ twat need to make ALL of sorted an array and dereference each for key using map 
    #y really need to re-write the first ref of these due to code re-usage
    my %options = ( cumulative  =>  sub { ( map { $_->{cumulative_variance}     } @{$self->{summaries}{eigen}{sorted}} )   },
                    proportion  =>  sub { ( map { $_->{proportion_of_variance}  } @{$self->{summaries}{eigen}{sorted}} )   },
                    stdev       =>  sub { ( map { $_->{stdev}                   } @{$self->{summaries}{eigen}{sorted}} )   },
                    eigenvalue  =>  sub { ( map { $_->{eigenvalue}              } @{$self->{summaries}{eigen}{sorted}} )   },
                    #y these are already in the form of array refs
                    #eigenvector =>  sub { ( map { $_->{eigenvector}             } @{$self->{summaries}{eigen}{sorted}} )   },
                    eigenvector =>  sub { ( @{$self->{pca}{eigenvectors}} )                                                 },
                    #y put it into ordered list
                    # to convert this one we need to convert the whole thing to a numeric iterator and dereference each accordingly - not worth it
                    full        =>  sub { ( map { [ $_->{PC}, $_->{stdev}, $_->{proportion_of_variance}, 
                                                    $_->{cumulative_variance}, $_->{eigenvalue}, $_->{eigenvector}, ] 
                                                                                } @{$self->{summaries}{eigen}{sorted}} )   },
                    transformed =>  sub { ( @{$self->{pca}{transform}} )                                                   },
   
                 );

   #/ either use exists on the key value - OR - assign it to a variable and check the variable for defindness... e.g. my $setting =....
    #croak qq{\nYou must pass a recognised option: \"cumulative\", \"proportion\"} if ( !exists   
    my $setting = $options{$arg};
    croak qq{\nYou must pass a recognised option: \"cumulative\", \"proportion\", \"stdev\", \"eigenvalue\"...} if ( !defined $setting );

    #y &{$cd}();
    #y &$cd();
    #y &$cd;
    #y $cd->();

    $setting->();
    # return;
}

#=fe


1; # Magic true value required at end of module

__END__

#=over
#=item C<< Error message here, perhaps with %s placeholders >>
#=item C<< Another error message here >>
#=back

=head1 DEPENDENCIES

'version'                   =>  '0',
'Carp'                      => '1.08', 
'Math::Cephes::Matrix'      => '0.47', 
'Math::Cephes'              => '0.47', 
'List::Util'                => '1.19', 
'Math::MatrixReal'          => '2.05', 
'Text::SimpleTable'         => '2.0',
'Contextual::Return'        => '0.2.1',

=cut

=head1 AUTHOR

Daniel S. T. Hughes  C<< <dsth@cpan.org> >>

=cut

=head1 LICENCE AND COPYRIGHT

Copyright (c) 2009, Daniel S. T. Hughes C<< <dsth@cantab.net> >>. All rights reserved.

This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself. See L<perlartistic>.

=cut

=head1 DISCLAIMER OF WARRANTY

Because this software is licensed free of charge, there is no warranty
for the software, to the extent permitted by applicable law. Except when
otherwise stated in writing the copyright holders and/or other parties
provide the software "as is" without warranty of any kind, either
expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the software is with
you. Should the software prove defective, you assume the cost of all
necessary servicing, repair, or correction.

In no event unless required by applicable law or agreed to in writing
will any copyright holder, or any other party who may modify and/or
redistribute the software as permitted by the above licence, be
liable to you for damages, including any general, special, incidental,
or consequential damages arising out of the use or inability to use
the software (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a
failure of the software to operate with any other software), even if
such holder or other party has been advised of the possibility of
such damages.

=cut