File: Regression.pm

package info (click to toggle)
libstatistics-regression-perl 0.53%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 104 kB
  • sloc: perl: 357; makefile: 2
file content (772 lines) | stat: -rw-r--r-- 23,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
package Statistics::Regression;

$VERSION = '0.53';
my $DATE = "2007/07/07";
my $MNAME= "$0::Statistics::Regression";

use strict;
use warnings FATAL => qw{ uninitialized };

use Carp;

################################################################
=pod

=head1 NAME

  Regression.pm - weighted linear regression package (line+plane fitting)


=head1 SYNOPSIS

  use Statistics::Regression;

  # Create regression object
  my $reg = Statistics::Regression->new( "sample regression", [ "const", "someX", "someY" ] );

  # Add data points
  $reg->include( 2.0, [ 1.0, 3.0, -1.0 ] );
  $reg->include( 1.0, [ 1.0, 5.0, 2.0 ] );
  $reg->include( 20.0, [ 1.0, 31.0, 0.0 ] );
  $reg->include( 15.0, [ 1.0, 11.0, 2.0 ] );

or

  my %d;
  $d{const} = 1.0; $d{someX}= 5.0; $d{someY}= 2.0; $d{ignored}="anything else";
  $reg->include( 3.0, \%d );  # names are picked off the Regression specification

Please note that *you* must provide the constant if you want one.

  # Finally, print the result
  $reg->print();

This prints the following:

  ****************************************************************
  Regression 'sample regression'
  ****************************************************************
  Name           	       Theta	      StdErr	 T-stat
  [0='const']    	      0.2950	      6.0512	   0.05
  [1='someX']    	      0.6723	      0.3278	   2.05
  [2='someY']    	      1.0688	      2.7954	   0.38

  R^2= 0.808, N= 4
  ****************************************************************



The hash input method has the advantage that you can now just
fill the observation hashes with all your variables, and use the
same code to run regression, changing the regression
specification at one and only one spot (the new() invokation).
You do not need to change the inputs in the include() statement.
For example,

  my @obs;  ## a global variable.  observations are like: %oneobs= %{$obs[1]};

  sub run_regression {
    my $reg = Statistics::Regression->new( $_[0], $_[2] );
    foreach my $obshashptr (@obs) { $reg->include( $_[1], $_[3] ); }
    $reg->print();
  }

  run_regression("bivariate regression",  $obshashptr->{someY}, [ "const", "someX" ] );
  run_regression("trivariate regression",  $obshashptr->{someY}, [ "const", "someX", "someZ" ] );



Of course, you can use the subroutines to do the printing work yourself:

  my @theta  = $reg->theta();
  my @se     = $reg->standarderrors();
  my $rsq    = $reg->rsq();
  my $adjrsq = $reg->adjrsq();
  my $ybar   = $reg->ybar();  ## the average of the y vector
  my $sst    = $reg->sst();  ## the sum-squares-total
  my $sigmasq= $reg->sigmasq();  ## the variance of the residual
  my $k      = $reg->k();   ## the number of variables
  my $n      = $reg->n();   ## the number of observations

In addition, there are some other helper routines, and a
subroutine linearcombination_variance().  If you don't know what
this is, don't use it.


=head1 BACKGROUND WARNING

You should have an understanding of OLS regressions if you want
to use this package.  You can get this from an introductory
college econometrics class and/or from most intermediate college
statistics classes.  If you do not have this background
knowledge, then this package will remain a mystery to you.
There is no support for this package--please don't expect any.


=head1 DESCRIPTION

Regression.pm is a multivariate linear regression package.  That
is, it estimates the c coefficients for a line-fit of the type

  y= c(0)*x(0) + c(1)*x1 + c(2)*x2 + ... + c(k)*xk

given a data set of N observations, each with k independent x
variables and one y variable.  Naturally, N must be greater than
k---and preferably considerably greater.  Any reasonable
undergraduate statistics book will explain what a regression is.
Most of the time, the user will provide a constant ('1') as x(0)
for each observation in order to allow the regression package to
fit an intercept.


=head1 ALGORITHM

=head2 Original Algorithm (ALGOL-60):

	W.  M.  Gentleman, University of Waterloo, "Basic
	Description For Large, Sparse Or Weighted Linear Least
	Squares Problems (Algorithm AS 75)," Applied Statistics
	(1974) Vol 23; No. 3

Gentleman's algorithm is I<the> statistical standard. Insertion
of a new observation can be done one observation at any time
(WITH A WEIGHT!), and still only takes a low quadratic time.
The storage space requirement is of quadratic order (in the
indep variables). A practically infinite number of observations
can easily be processed!

=head2 Internal Data Structures

R=Rbar is an upperright triangular matrix, kept in normalized
form with implicit 1's on the diagonal.  D is a diagonal scaling
matrix.  These correspond to "standard Regression usage" as

                X' X  = R' D R

A backsubsitution routine (in thetacov) allows to invert the R
matrix (the inverse is upper-right triangular, too!). Call this
matrix H, that is H=R^(-1).

	  (X' X)^(-1) = [(R' D^(1/2)') (D^(1/2) R)]^(-1)
	  = [ R^-1 D^(-1/2) ] [ R^-1 D^(-1/2) ]'


=head1 BUGS/PROBLEMS

None known.

=over 4

=item Perl Problem

Unfortunately, perl is unaware of IEEE number representations.
This makes it a pain to test whether an observation contains any
missing variables (coded as 'NaN' in Regression.pm).

=back

=for comment
pod2html -noindex -title "perl weighted least squares regression package" Regression.pm > Regression.html


=head1 VERSION and RECENT CHANGES

2007/04/04:  Added Coefficient Standard Errors

2007/07/01:  Added self-test use (if invoked as perl Regression.pm)
	     at the end.  cleaned up some print sprintf.
             changed syntax on new() to eliminate passing K.

2007/07/07:  allowed passing hash with names to include().


=head1 AUTHOR

Naturally, Gentleman invented this algorithm.  It was adaptated
by Ivo Welch.  Alan Miller (alan\@dmsmelb.mel.dms.CSIRO.AU)
pointed out nicer ways to compute the R^2. Ivan Tubert-Brohman
helped wrap the module as as a standard CPAN distribution.

=head1 LICENSE

This module is released for free public use under a GPL license.

(C) Ivo Welch, 2001,2004, 2007.

=cut


################################################################
#### let's start with handling of missing data ("nan" or "NaN")
################################################################
use constant TINY => 1e-8;
my $nan= "NaN";

sub isNaN { 
  if ($_[0] !~ /[0-9nan]/) { confess "$MNAME:isNaN: definitely not a number in NaN: '$_[0]'"; }
  return ($_[0]=~ /NaN/i) || ($_[0] != $_[0]);
}


################################################################
### my $reg = Statistics::Regression->new($regname, \@var_names)
###
### Receives the number of variables on each observations (i.e.,
### an integer) and returns the blessed data structure as a
### Statistics::Regression object. Also takes an optional name
### for this regression to remember, as well as a reference to a
### k*1 array of names for the X coefficients.
###
### I have now made it mandatory to give some names.
###
################################################################
sub new {
  my $classname= shift;  (!ref($classname)) or confess "$MNAME:new: bad class call to new ($classname).\n";
  my $regname= shift || "no-name";
  my $xnameptr= shift;

  (defined($regname)) or confess "$MNAME:new: bad name in for regression.  no undef allowed.\n";
  (!ref($regname)) or confess "$MNAME:new: bad name in for regression.\n";
  (defined($xnameptr)) or confess "$MNAME:new: You must provide variable names, because this tells me the number of columns.  no undef allowed.\n";
  (ref($xnameptr) eq "ARRAY") or confess "$MNAME:new: bad xnames for regression. Must be pointer.\n";

  my $K= (@{$xnameptr});

  if (!defined($K)) { confess "$MNAME:new: cannot determine the number of variables"; }
  if ($K<=1) { confess "$MNAME:new: Cannot run a regression without at least two variables."; }

  sub zerovec {
    my @rv;
    for (my $i=0; $i<=$_[0]; ++$i) { $rv[$i]=0; } 
    return \@rv;
  }

  bless {
	 k => $K,
	 regname => $regname,
	 xnames => $xnameptr,

	 # constantly updated
	 n => 0,
	 sse => 0,
	 syy => 0,
	 sy => 0,
	 wghtn => 0,
	 d => zerovec($K),
	 thetabar => zerovec($K),
	 rbarsize => ($K+1)*$K/2+1,
	 rbar => zerovec(($K+1)*$K/2+1),

	 # other constants
	 neverabort => 0,

	 # computed on demand
	 theta => undef,
	 sigmasq => undef,
	 rsq => undef,
	 adjrsq => undef
	}, $classname;
}


################################################################
### $reg->include( $y, [ $x1, $x2, $x3 ... $xk ], $weight );
###
### Add one new observation. The weight is optional. Note that
### inclusion with a weight of -1 can be used to delete an
### observation.
###
### The error checking and transfer of arguments is clutzy, but
### works.  if I had POSIX assured, I could do better number
### checking.  right now, I don't do any.
###
### Returns the number of observations so far included.
################################################################
sub include {
  my $this = shift;
  my $yelement= shift;
  my $xin= shift;
  my $weight= shift || 1.0;

  # modest input checking;
  (ref($this)) or confess "$MNAME:include: bad class call to include.\n";
  (defined($yelement)) or confess "$MNAME:include: bad call for y to include.  no undef allowed.\n";
  (!ref($yelement)) or confess "$MNAME:include: bad call for y to include.  need scalar.\n";
  (defined($xin)) or confess "$MNAME:include: bad call for x to include.  no undef allowed.\n";
  (ref($xin)) or confess "$MNAME:include: bad call for x to include. need reference.\n";
  (!ref($weight)) or confess "$MNAME:include: bad call for weight to include. need scalar.\n";


  # omit observations with missing observations;
  (defined($yelement)) or confess "$MNAME:include: you must give a y value (predictor).";
  (isNaN($yelement)) and return $this->{n};  # ignore this observation;
  ## should check for number, not string


  # check and transfer the X vector
  my @xrow;
  if (ref($xin) eq "ARRAY") { @xrow= @{$xin}; }
  else {
    my $xctr=0;
    foreach my $nm (@{$this->{xnames}}) {
      (defined($xin->{$nm})) or confess "$MNAME:include: Variable '$nm' needs to be set in hash.\n";
      $xrow[$xctr]= $xin->{$nm};
      ++$xctr;
    }
  }

  my @xcopy;
  for (my $i=1; $i<=$this->{k}; ++$i) { 
    (defined($xrow[$i-1]))
      or confess "$MNAME:include: Internal Error: at N=".($this->{n}).", the x[".($i-1)."] is undef.  use NaN for missing.";
    (isNaN($xrow[$i-1])) and return $this->{n};
    $xcopy[$i]= $xrow[$i-1];
    ## should check for number, not string
  }

  ################ now comes the real routine

  $this->{syy}+= ($weight*($yelement*$yelement));
  $this->{sy}+= ($weight*($yelement));
  if ($weight>=0.0) { ++$this->{n}; } else { --$this->{n}; }

  $this->{wghtn}+= $weight;

  for (my $i=1; $i<=$this->{k};++$i) {
    if ($weight==0.0) { return $this->{n}; }
    if (abs($xcopy[$i])>(TINY)) {
      my $xi=$xcopy[$i];

      my $di=$this->{d}->[$i];
      my $dprimei=$di+$weight*($xi*$xi);
      my $cbar= $di/$dprimei;
      my $sbar= $weight*$xi/$dprimei;
      $weight*=($cbar);
      $this->{d}->[$i]=$dprimei;
      my $nextr=int( (($i-1)*( (2.0*$this->{k}-$i))/2.0+1) );
      if (!($nextr<=$this->{rbarsize}) ) { confess "$MNAME:include: Internal Error 2"; }
      my $xk;
      for (my $kc=$i+1;$kc<=$this->{k};++$kc) {
	$xk=$xcopy[$kc]; $xcopy[$kc]=$xk-$xi*$this->{rbar}->[$nextr];
	$this->{rbar}->[$nextr]= $cbar * $this->{rbar}->[$nextr]+$sbar*$xk;
	++$nextr;
      }
      $xk=$yelement; $yelement-= $xi*$this->{thetabar}->[$i];
      $this->{thetabar}->[$i]= $cbar*$this->{thetabar}->[$i]+$sbar*$xk;
    }
  }
  $this->{sse}+=$weight*($yelement*$yelement);

  # indicate that Theta is garbage now
  $this->{theta}= undef;
  $this->{sigmasq}= undef; $this->{rsq}= undef; $this->{adjrsq}= undef;

  return $this->{n};
}


################################################################
###
### $reg->rsq(), $reg->adjrsq(), $reg->sigmasq(), $reg->ybar(),
### $reg->sst(), $reg->k(), $reg->n()
###
### These methods provide common auxiliary information.  rsq,
### adjrsq, sigmasq, sst, and ybar have not been checked but are
### likely correct.  The results are stored for later usage,
### although this is somewhat unnecessary because the
### computation is so simple anyway.
################################################################

sub rsq {
  my $this= shift;
  return $this->{rsq}= 1.0- $this->{sse} / $this->sst();
}

sub adjrsq {
  my $this= shift;
  return $this->{adjrsq}= 1.0- (1.0- $this->rsq())*($this->{n}-1)/($this->{n} - $this->{k});
}

sub sigmasq {
  my $this= shift;
  return $this->{sigmasq}= ($this->{n}<=$this->{k}) ? "Inf" : ($this->{sse}/($this->{n} - $this->{k}));
}

sub ybar {
  my $this= shift;
  return $this->{ybar}= $this->{sy}/$this->{wghtn};
}

sub sst {
  my $this= shift;
  return $this->{sst}= ($this->{syy} - $this->{wghtn}*($this->ybar())**2);
}

sub k {
  my $this= shift;
  return $this->{k};
}
sub n {
  my $this= shift;
  return $this->{n};
}



################################################################
###  $reg->print()  [no arguments!]
###
### prints the estimated coefficients, and R^2 and N. For an
### example see the Synopsis.
################################################################
sub print {
  my $this= shift;

  print "****************************************************************\n";
  print "Regression '$this->{regname}'\n";
  print "****************************************************************\n";

  my $theta= $this->theta();
  my @standarderrors= $this->standarderrors();

  printf "%-15s\t%12s\t%12s\t%7s\n", "Name", "Theta", "StdErr", "T-stat";
  for (my $i=0; $i< $this->k(); ++$i) {
    my $name= "[$i".(defined($this->{xnames}->[$i]) ? "='$this->{xnames}->[$i]'":"")."]";
    printf "%-15s\t", $name;
    printf "%12.4f\t", $theta->[$i];
    printf "%12.4f\t", $standarderrors[$i];
    printf "%7.2f", ($theta->[$i]/$standarderrors[$i]);
    printf "\n";
  }

  print "\nR^2= ".sprintf("%.3f", $this->rsq()).", N= ".$this->n().", K= ".$this->k()."\n";
  print "****************************************************************\n";
}



################################################################
### $theta = $reg->theta or @theta = $reg->theta
###
### This is the work horse.  It estimates and returns the vector
### of coefficients. In scalar context returns an array
### reference; in list context it returns the list of
### coefficients.
################################################################
sub theta {
  my $this= shift;

  if (defined($this->{theta})) { 
    return wantarray ? @{$this->{theta}} : $this->{theta}; 
  }

  if ($this->{n} < $this->{k}) { return; }
  for (my $i=($this->{k}); $i>=1; --$i) {
    $this->{theta}->[$i]= $this->{thetabar}->[$i];
    my $nextr= int (($i-1)*((2.0*$this->{k}-$i))/2.0+1);
    if (!($nextr<=$this->{rbarsize})) { confess "$MNAME:theta: Internal Error 3"; }
    for (my $kc=$i+1;$kc<=$this->{k};++$kc) {
      $this->{theta}->[$i]-=($this->{rbar}->[$nextr]*$this->{theta}->[$kc]);
      ++$nextr;
    }
  }


  my $ref = $this->{theta}; shift(@$ref); # we are counting from 0

  # if in a scalar context, otherwise please return the array directly
  wantarray ? @{$this->{theta}} : $this->{theta};
}

################################################################
### @se= $reg->standarderrors()
###
### This is the most difficult routine.  Take it on faith.
###
###  R=Rbar is an upperright triangular matrix, kept in normalized
###  form with implicit 1's on the diagonal.  D is a diagonal scaling
###  matrix.  These correspond to "standard Regression usage" as
###
###                X' X  = R' D R
###
###  A backsubsitution routine (in thetacov) allows to invert the R
###  matrix (the inverse is upper-right triangular, too!). Call this
###  matrix H, that is H=R^(-1).
###
###	  (X' X)^(-1) = [(R' D^(1/2)') (D^(1/2) R)]^(-1)
###	  = [ R^-1 D^(-1/2) ] [ R^-1 D^(-1/2) ]'
###
###  Let's work this for our example, where
###
###  $reg->include( 2.0, [ 1.0, 3.0, -1.0 ] );
###  $reg->include( 1.0, [ 1.0, 5.0, 2.0 ] );
###  $reg->include( 20.0, [ 1.0, 31.0, 0.0 ] );
###  $reg->include( 15.0, [ 1.0, 11.0, 2.0 ] );
###
###  For debuggin, the X'X matrix for our example is
###	4, 50, 3
###	50 1116 29
###	3 29 9
###
###  Its inverse is
###	 0.70967 -0.027992 -0.146360
###	-0.02799  0.002082  0.002622
###	-0.14636  0.002622  0.151450
###
###  Internally, this is kept as follows
###
###  R is 1, 0, 0
###       12.5 1 0
###       0.75 -0.0173 1
###
###  d is the diagonal(4,491,6.603) matrix, which as 1/sqrt becomes dhi= 0.5, 0.04513, 0.3892
###
###  R * d * R' is indeed the X' X matrix.
###
###  The inverse of R is
###
###  1, 0, 0
###  -12.5 1 0
###  -0.9664 0.01731 1
###
###  in R, t(solve(R) %*% dhi) %*% t( t(solve(R) %*% dhi) ) is the correct inverse.
###
### The routine has a debug switch which makes it come out very verbose.
################################################################
my $debug=0;

sub standarderrors {
  my $this= shift;
  our $K= $this->{k};  # convenience

  our @u;
  sub ui {
    if ($debug) {
      ($_[0]<1)||($_[0]>$K) and confess "$MNAME:standarderrors: bad index 0 $_[0]\n";
      ($_[1]<1)||($_[1]>$K) and confess "$MNAME:standarderrors: bad index 1 $_[0]\n";
    }
    return (($K*($_[0]-1))+($_[1]-1));
  }
  sub giveuclear { 
    for (my $i=0; $i<($K**2); ++$i) { $u[$i]=0.0; }
    return (wantarray) ? @u : \@u;
  }

  sub u { return $u[ui($_[0], $_[1])]; }
  sub setu { return $u[ui($_[0], $_[1])]= $_[2]; }
  sub add2u { return $u[ui($_[0], $_[1])]+= $_[2]; }
  sub mult2u { return $u[ui($_[0], $_[1])]*= $_[2]; }

  (defined($K)) or confess "$MNAME:standarderrors: Internal Error: I forgot the number of variables.\n";
  if ($debug) {
    print "The Start Matrix is:\n";
    for (my $i=1; $i<=$K; ++$i) {
      print "[$i]:\t";
      for (my $j=1; $j<=$K; ++$j) {
	print $this->rbr($i, $j)."\t";
      }
      print "\n";
    }
    print "The Start d vector is:\n";
    for (my $i=1; $i<=$K; ++$i) {
      print "".$this->{d}[$i]."\t";
    }
    print "\n";
  }

  sub rbrindex {
    return ($_[0] == $_[1]) ? -9 :
      ($_[0]>$_[1]) ? -8 :
	((($_[0]-1.0)* (2.0*$K-$_[0])/2.0+1.0) + $_[1] - 1 - $_[0] ); }

  # now a real member routine;
  sub rbr {
    my $this= shift;
    return ($_[0] == $_[1]) ? 1 : ( ($_[0]>$_[1]) ? 0 : ($this->{rbar}[rbrindex($_[0],$_[1])]));
  }

  my $u= giveuclear();

  for (my $j=$K; $j>=1; --$j) {
    setu($j,$j, 1.0/($this->rbr($j,$j)));
    for (my $k=$j-1; $k>=1; --$k) {
      setu($k,$j,0);
      for (my $i=$k+1; $i<=$j; ++$i) { add2u($k,$j, $this->rbr($k,$i)*u($i,$j)); }
      mult2u($k,$j, (-1.0)/$this->rbr($k,$k));
    }
  }

  if ($debug) {
    print "The Inverse Matrix of R is:\n";
    for (my $i=1; $i<=$K; ++$i) {
      print "[$i]:\t";
      for (my $j=1; $j<=$K; ++$j) {
	print $u[ui($i,$j)]."\t";
      }
      print "\n";
    }
  }

  for (my $i=1;$i<=$K;++$i) {
    for (my $j=1;$j<=$K;++$j) {
      if (abs($this->{d}[$j])<TINY) {
	mult2u($i,$j, sqrt(1.0/TINY));
	if (abs($this->{d}[$j])==0.0) {
	  if ($this->{neverabort}) {
	    for (my $i=0; $i<($K**2); ++$i) { $u[$i]= "NaN"; }
	    return undef;
	  }
	  else { confess "$MNAME:standarderrors: I cannot compute the theta-covariance matrix for variable $j ".($this->{d}[$j])."\n"; }
	}
      }
      else { mult2u($i,$j, sqrt(1.0/$this->{d}[$j])); }
    }
  }

  if ($debug) {
    print "The Inverse Matrix of R multipled by D^(-1/2) is:\n";
    for (my $i=1; $i<=$K; ++$i) {
      print "[$i]:\t";
      for (my $j=1; $j<=$K; ++$j) {
	print $u[ui($i,$j)]."\t";
      }
      print "\n";
    }
  }

  $this->{sigmasq}= ($this->{n}<=$K) ? "Inf" : ($this->{sse}/($this->{n} - $K));
  my @xpxinv;
  for (my $i=1;$i<=$K; ++$i) {
    for (my $j=$i;$j<=$K;++$j) {
      my $indexij= ui($i,$j);
      $xpxinv[$indexij]= 0.0;
      for (my $k=1;$k<=$K;++$k) {
	$xpxinv[$indexij] += $u[ui($i,$k)]*$u[ui($j,$k)];
      }
      $xpxinv[ui($j,$i)]= $xpxinv[$indexij]; # this is symmetric
    }
  }

  if ($debug) {
    print "The full inverse matrix of X'X is:\n";
    for (my $i=1; $i<=$K; ++$i) {
      print "[$i]:\t";
      for (my $j=1; $j<=$K; ++$j) {
	print $xpxinv[ui($i,$j)]."\t";
      }
      print "\n";
    }
    print "The sigma^2 is ".$this->{sigmasq}."\n";
  }

  ## 99% of the usage here will be to print the diagonal elements of sqrt ( (X' X) sigma^2 )
  ## so, let's make this our first returned object;

  my @secoefs;
  for (my $i=1; $i<=$K; ++$i) {
    $secoefs[$i-1]= sqrt($xpxinv[ui($i,$i)] * $this->{sigmasq});
  }
  if ($debug) { for (my $i=0; $i<$K; ++$i) { print " $secoefs[$i] "; } print "\n"; }

  # the following are clever return methods;  if the user goes over the secoefs,
  # almost surely an error will result, because he will run into xpxinv.  For special
  # usage, however, xpxinv may still be useful.

  return ( @secoefs, \@xpxinv, $this->sigmasq );
}


################################
sub linearcombination_variance {
  my $this= shift;
  our $K= $this->{k};  # convenience

  my @linear= @_;

  ($#linear+1 == $K) or confess "$MNAME:linearcombination_variance: ".
    "Sorry, you must give a vector of length $K, not ".($#linear+1)."\n";

  my @allback= $this->standarderrors();  # compute everything we need;

  my $xpxinv= $allback[$this->{k}];
  my $sigmasq= $allback[$this->{k}+1];

  my $sum=0;
  for (my $i=1; $i<=$K; ++$i) {
    for (my $j=1; $j<=$K; ++$j) {
      $sum+= $linear[$i-1]*$linear[$j-1]*$xpxinv->[ui($i,$j)];
    }
  }
  $sum*=$sigmasq;
  return $sum;
}


################################################################
### sub dump() was used internally for debugging.
################################################################
sub dump {
  my $this= $_[0];
  print "****************************************************************\n";
  print "Regression '$this->{regname}'\n";
  print "****************************************************************\n";
  sub print1val {
    no strict;
    print "$_[1]($_[2])=\t". ((defined($_[0]->{ $_[2] }) ? $_[0]->{ $_[2] } : "intentionally undef"));

    my $ref=$_[0]->{ $_[2] };

    if (ref($ref) eq 'ARRAY') {
      my $arrayref= $ref;
      print " $#$arrayref+1 elements:\n";
      if ($#$arrayref>30) {
	print "\t";
	for(my $i=0; $i<$#$arrayref+1; ++$i) { print "$i='$arrayref->[$i]';"; }
	print "\n";
      }
      else {
	for(my $i=0; $i<$#$arrayref+1; ++$i) { print "\t$i=\t'$arrayref->[$i]'\n"; }
      }
    }
    elsif (ref($ref) eq 'HASH') {
      my $hashref= $ref;
      print " ".scalar(keys(%$hashref))." elements\n";
      while (my ($key, $val) = each(%$hashref)) {
	print "\t'$key'=>'$val';\n";
      }
    }
    else {
      print " [was scalar]\n"; }
  }

  while (my ($key, $val) = each(%$this)) {
    $this->print1val($key, $key);
  }
  print "****************************************************************\n";
}

################################################################
### The Test Program.  Invoke as "perl Regression.pm".
################################################################


if ($0 eq "Regression.pm") {

  # Create regression object
  my $reg = Statistics::Regression->new( "sample regression", [ "const", "someX", "someY" ] );

  # Add data points
  $reg->include( 2.0, [ 1.0, 3.0, -1.0 ] );
  $reg->include( 1.0, [ 1.0, 5.0, 2.0 ] );
  $reg->include( 20.0, [ 1.0, 31.0, 0.0 ] );

  my %inhash= ( const => 1.0, someX => 11.0, someY => 2.0, ignored => "ignored" );
  $reg->include( 15.0, \%inhash );
  # $reg->include( 15.0, [ 1.0, 11.0, 2.0 ] );

  # Print the result
  $reg->print();
}


1;