1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
|
package Statistics::Regression;
$VERSION = '0.53';
my $DATE = "2007/07/07";
my $MNAME= "$0::Statistics::Regression";
use strict;
use warnings FATAL => qw{ uninitialized };
use Carp;
################################################################
=pod
=head1 NAME
Regression.pm - weighted linear regression package (line+plane fitting)
=head1 SYNOPSIS
use Statistics::Regression;
# Create regression object
my $reg = Statistics::Regression->new( "sample regression", [ "const", "someX", "someY" ] );
# Add data points
$reg->include( 2.0, [ 1.0, 3.0, -1.0 ] );
$reg->include( 1.0, [ 1.0, 5.0, 2.0 ] );
$reg->include( 20.0, [ 1.0, 31.0, 0.0 ] );
$reg->include( 15.0, [ 1.0, 11.0, 2.0 ] );
or
my %d;
$d{const} = 1.0; $d{someX}= 5.0; $d{someY}= 2.0; $d{ignored}="anything else";
$reg->include( 3.0, \%d ); # names are picked off the Regression specification
Please note that *you* must provide the constant if you want one.
# Finally, print the result
$reg->print();
This prints the following:
****************************************************************
Regression 'sample regression'
****************************************************************
Name Theta StdErr T-stat
[0='const'] 0.2950 6.0512 0.05
[1='someX'] 0.6723 0.3278 2.05
[2='someY'] 1.0688 2.7954 0.38
R^2= 0.808, N= 4
****************************************************************
The hash input method has the advantage that you can now just
fill the observation hashes with all your variables, and use the
same code to run regression, changing the regression
specification at one and only one spot (the new() invokation).
You do not need to change the inputs in the include() statement.
For example,
my @obs; ## a global variable. observations are like: %oneobs= %{$obs[1]};
sub run_regression {
my $reg = Statistics::Regression->new( $_[0], $_[2] );
foreach my $obshashptr (@obs) { $reg->include( $_[1], $_[3] ); }
$reg->print();
}
run_regression("bivariate regression", $obshashptr->{someY}, [ "const", "someX" ] );
run_regression("trivariate regression", $obshashptr->{someY}, [ "const", "someX", "someZ" ] );
Of course, you can use the subroutines to do the printing work yourself:
my @theta = $reg->theta();
my @se = $reg->standarderrors();
my $rsq = $reg->rsq();
my $adjrsq = $reg->adjrsq();
my $ybar = $reg->ybar(); ## the average of the y vector
my $sst = $reg->sst(); ## the sum-squares-total
my $sigmasq= $reg->sigmasq(); ## the variance of the residual
my $k = $reg->k(); ## the number of variables
my $n = $reg->n(); ## the number of observations
In addition, there are some other helper routines, and a
subroutine linearcombination_variance(). If you don't know what
this is, don't use it.
=head1 BACKGROUND WARNING
You should have an understanding of OLS regressions if you want
to use this package. You can get this from an introductory
college econometrics class and/or from most intermediate college
statistics classes. If you do not have this background
knowledge, then this package will remain a mystery to you.
There is no support for this package--please don't expect any.
=head1 DESCRIPTION
Regression.pm is a multivariate linear regression package. That
is, it estimates the c coefficients for a line-fit of the type
y= c(0)*x(0) + c(1)*x1 + c(2)*x2 + ... + c(k)*xk
given a data set of N observations, each with k independent x
variables and one y variable. Naturally, N must be greater than
k---and preferably considerably greater. Any reasonable
undergraduate statistics book will explain what a regression is.
Most of the time, the user will provide a constant ('1') as x(0)
for each observation in order to allow the regression package to
fit an intercept.
=head1 ALGORITHM
=head2 Original Algorithm (ALGOL-60):
W. M. Gentleman, University of Waterloo, "Basic
Description For Large, Sparse Or Weighted Linear Least
Squares Problems (Algorithm AS 75)," Applied Statistics
(1974) Vol 23; No. 3
Gentleman's algorithm is I<the> statistical standard. Insertion
of a new observation can be done one observation at any time
(WITH A WEIGHT!), and still only takes a low quadratic time.
The storage space requirement is of quadratic order (in the
indep variables). A practically infinite number of observations
can easily be processed!
=head2 Internal Data Structures
R=Rbar is an upperright triangular matrix, kept in normalized
form with implicit 1's on the diagonal. D is a diagonal scaling
matrix. These correspond to "standard Regression usage" as
X' X = R' D R
A backsubsitution routine (in thetacov) allows to invert the R
matrix (the inverse is upper-right triangular, too!). Call this
matrix H, that is H=R^(-1).
(X' X)^(-1) = [(R' D^(1/2)') (D^(1/2) R)]^(-1)
= [ R^-1 D^(-1/2) ] [ R^-1 D^(-1/2) ]'
=head1 BUGS/PROBLEMS
None known.
=over 4
=item Perl Problem
Unfortunately, perl is unaware of IEEE number representations.
This makes it a pain to test whether an observation contains any
missing variables (coded as 'NaN' in Regression.pm).
=back
=for comment
pod2html -noindex -title "perl weighted least squares regression package" Regression.pm > Regression.html
=head1 VERSION and RECENT CHANGES
2007/04/04: Added Coefficient Standard Errors
2007/07/01: Added self-test use (if invoked as perl Regression.pm)
at the end. cleaned up some print sprintf.
changed syntax on new() to eliminate passing K.
2007/07/07: allowed passing hash with names to include().
=head1 AUTHOR
Naturally, Gentleman invented this algorithm. It was adaptated
by Ivo Welch. Alan Miller (alan\@dmsmelb.mel.dms.CSIRO.AU)
pointed out nicer ways to compute the R^2. Ivan Tubert-Brohman
helped wrap the module as as a standard CPAN distribution.
=head1 LICENSE
This module is released for free public use under a GPL license.
(C) Ivo Welch, 2001,2004, 2007.
=cut
################################################################
#### let's start with handling of missing data ("nan" or "NaN")
################################################################
use constant TINY => 1e-8;
my $nan= "NaN";
sub isNaN {
if ($_[0] !~ /[0-9nan]/) { confess "$MNAME:isNaN: definitely not a number in NaN: '$_[0]'"; }
return ($_[0]=~ /NaN/i) || ($_[0] != $_[0]);
}
################################################################
### my $reg = Statistics::Regression->new($regname, \@var_names)
###
### Receives the number of variables on each observations (i.e.,
### an integer) and returns the blessed data structure as a
### Statistics::Regression object. Also takes an optional name
### for this regression to remember, as well as a reference to a
### k*1 array of names for the X coefficients.
###
### I have now made it mandatory to give some names.
###
################################################################
sub new {
my $classname= shift; (!ref($classname)) or confess "$MNAME:new: bad class call to new ($classname).\n";
my $regname= shift || "no-name";
my $xnameptr= shift;
(defined($regname)) or confess "$MNAME:new: bad name in for regression. no undef allowed.\n";
(!ref($regname)) or confess "$MNAME:new: bad name in for regression.\n";
(defined($xnameptr)) or confess "$MNAME:new: You must provide variable names, because this tells me the number of columns. no undef allowed.\n";
(ref($xnameptr) eq "ARRAY") or confess "$MNAME:new: bad xnames for regression. Must be pointer.\n";
my $K= (@{$xnameptr});
if (!defined($K)) { confess "$MNAME:new: cannot determine the number of variables"; }
if ($K<=1) { confess "$MNAME:new: Cannot run a regression without at least two variables."; }
sub zerovec {
my @rv;
for (my $i=0; $i<=$_[0]; ++$i) { $rv[$i]=0; }
return \@rv;
}
bless {
k => $K,
regname => $regname,
xnames => $xnameptr,
# constantly updated
n => 0,
sse => 0,
syy => 0,
sy => 0,
wghtn => 0,
d => zerovec($K),
thetabar => zerovec($K),
rbarsize => ($K+1)*$K/2+1,
rbar => zerovec(($K+1)*$K/2+1),
# other constants
neverabort => 0,
# computed on demand
theta => undef,
sigmasq => undef,
rsq => undef,
adjrsq => undef
}, $classname;
}
################################################################
### $reg->include( $y, [ $x1, $x2, $x3 ... $xk ], $weight );
###
### Add one new observation. The weight is optional. Note that
### inclusion with a weight of -1 can be used to delete an
### observation.
###
### The error checking and transfer of arguments is clutzy, but
### works. if I had POSIX assured, I could do better number
### checking. right now, I don't do any.
###
### Returns the number of observations so far included.
################################################################
sub include {
my $this = shift;
my $yelement= shift;
my $xin= shift;
my $weight= shift || 1.0;
# modest input checking;
(ref($this)) or confess "$MNAME:include: bad class call to include.\n";
(defined($yelement)) or confess "$MNAME:include: bad call for y to include. no undef allowed.\n";
(!ref($yelement)) or confess "$MNAME:include: bad call for y to include. need scalar.\n";
(defined($xin)) or confess "$MNAME:include: bad call for x to include. no undef allowed.\n";
(ref($xin)) or confess "$MNAME:include: bad call for x to include. need reference.\n";
(!ref($weight)) or confess "$MNAME:include: bad call for weight to include. need scalar.\n";
# omit observations with missing observations;
(defined($yelement)) or confess "$MNAME:include: you must give a y value (predictor).";
(isNaN($yelement)) and return $this->{n}; # ignore this observation;
## should check for number, not string
# check and transfer the X vector
my @xrow;
if (ref($xin) eq "ARRAY") { @xrow= @{$xin}; }
else {
my $xctr=0;
foreach my $nm (@{$this->{xnames}}) {
(defined($xin->{$nm})) or confess "$MNAME:include: Variable '$nm' needs to be set in hash.\n";
$xrow[$xctr]= $xin->{$nm};
++$xctr;
}
}
my @xcopy;
for (my $i=1; $i<=$this->{k}; ++$i) {
(defined($xrow[$i-1]))
or confess "$MNAME:include: Internal Error: at N=".($this->{n}).", the x[".($i-1)."] is undef. use NaN for missing.";
(isNaN($xrow[$i-1])) and return $this->{n};
$xcopy[$i]= $xrow[$i-1];
## should check for number, not string
}
################ now comes the real routine
$this->{syy}+= ($weight*($yelement*$yelement));
$this->{sy}+= ($weight*($yelement));
if ($weight>=0.0) { ++$this->{n}; } else { --$this->{n}; }
$this->{wghtn}+= $weight;
for (my $i=1; $i<=$this->{k};++$i) {
if ($weight==0.0) { return $this->{n}; }
if (abs($xcopy[$i])>(TINY)) {
my $xi=$xcopy[$i];
my $di=$this->{d}->[$i];
my $dprimei=$di+$weight*($xi*$xi);
my $cbar= $di/$dprimei;
my $sbar= $weight*$xi/$dprimei;
$weight*=($cbar);
$this->{d}->[$i]=$dprimei;
my $nextr=int( (($i-1)*( (2.0*$this->{k}-$i))/2.0+1) );
if (!($nextr<=$this->{rbarsize}) ) { confess "$MNAME:include: Internal Error 2"; }
my $xk;
for (my $kc=$i+1;$kc<=$this->{k};++$kc) {
$xk=$xcopy[$kc]; $xcopy[$kc]=$xk-$xi*$this->{rbar}->[$nextr];
$this->{rbar}->[$nextr]= $cbar * $this->{rbar}->[$nextr]+$sbar*$xk;
++$nextr;
}
$xk=$yelement; $yelement-= $xi*$this->{thetabar}->[$i];
$this->{thetabar}->[$i]= $cbar*$this->{thetabar}->[$i]+$sbar*$xk;
}
}
$this->{sse}+=$weight*($yelement*$yelement);
# indicate that Theta is garbage now
$this->{theta}= undef;
$this->{sigmasq}= undef; $this->{rsq}= undef; $this->{adjrsq}= undef;
return $this->{n};
}
################################################################
###
### $reg->rsq(), $reg->adjrsq(), $reg->sigmasq(), $reg->ybar(),
### $reg->sst(), $reg->k(), $reg->n()
###
### These methods provide common auxiliary information. rsq,
### adjrsq, sigmasq, sst, and ybar have not been checked but are
### likely correct. The results are stored for later usage,
### although this is somewhat unnecessary because the
### computation is so simple anyway.
################################################################
sub rsq {
my $this= shift;
return $this->{rsq}= 1.0- $this->{sse} / $this->sst();
}
sub adjrsq {
my $this= shift;
return $this->{adjrsq}= 1.0- (1.0- $this->rsq())*($this->{n}-1)/($this->{n} - $this->{k});
}
sub sigmasq {
my $this= shift;
return $this->{sigmasq}= ($this->{n}<=$this->{k}) ? "Inf" : ($this->{sse}/($this->{n} - $this->{k}));
}
sub ybar {
my $this= shift;
return $this->{ybar}= $this->{sy}/$this->{wghtn};
}
sub sst {
my $this= shift;
return $this->{sst}= ($this->{syy} - $this->{wghtn}*($this->ybar())**2);
}
sub k {
my $this= shift;
return $this->{k};
}
sub n {
my $this= shift;
return $this->{n};
}
################################################################
### $reg->print() [no arguments!]
###
### prints the estimated coefficients, and R^2 and N. For an
### example see the Synopsis.
################################################################
sub print {
my $this= shift;
print "****************************************************************\n";
print "Regression '$this->{regname}'\n";
print "****************************************************************\n";
my $theta= $this->theta();
my @standarderrors= $this->standarderrors();
printf "%-15s\t%12s\t%12s\t%7s\n", "Name", "Theta", "StdErr", "T-stat";
for (my $i=0; $i< $this->k(); ++$i) {
my $name= "[$i".(defined($this->{xnames}->[$i]) ? "='$this->{xnames}->[$i]'":"")."]";
printf "%-15s\t", $name;
printf "%12.4f\t", $theta->[$i];
printf "%12.4f\t", $standarderrors[$i];
printf "%7.2f", ($theta->[$i]/$standarderrors[$i]);
printf "\n";
}
print "\nR^2= ".sprintf("%.3f", $this->rsq()).", N= ".$this->n().", K= ".$this->k()."\n";
print "****************************************************************\n";
}
################################################################
### $theta = $reg->theta or @theta = $reg->theta
###
### This is the work horse. It estimates and returns the vector
### of coefficients. In scalar context returns an array
### reference; in list context it returns the list of
### coefficients.
################################################################
sub theta {
my $this= shift;
if (defined($this->{theta})) {
return wantarray ? @{$this->{theta}} : $this->{theta};
}
if ($this->{n} < $this->{k}) { return; }
for (my $i=($this->{k}); $i>=1; --$i) {
$this->{theta}->[$i]= $this->{thetabar}->[$i];
my $nextr= int (($i-1)*((2.0*$this->{k}-$i))/2.0+1);
if (!($nextr<=$this->{rbarsize})) { confess "$MNAME:theta: Internal Error 3"; }
for (my $kc=$i+1;$kc<=$this->{k};++$kc) {
$this->{theta}->[$i]-=($this->{rbar}->[$nextr]*$this->{theta}->[$kc]);
++$nextr;
}
}
my $ref = $this->{theta}; shift(@$ref); # we are counting from 0
# if in a scalar context, otherwise please return the array directly
wantarray ? @{$this->{theta}} : $this->{theta};
}
################################################################
### @se= $reg->standarderrors()
###
### This is the most difficult routine. Take it on faith.
###
### R=Rbar is an upperright triangular matrix, kept in normalized
### form with implicit 1's on the diagonal. D is a diagonal scaling
### matrix. These correspond to "standard Regression usage" as
###
### X' X = R' D R
###
### A backsubsitution routine (in thetacov) allows to invert the R
### matrix (the inverse is upper-right triangular, too!). Call this
### matrix H, that is H=R^(-1).
###
### (X' X)^(-1) = [(R' D^(1/2)') (D^(1/2) R)]^(-1)
### = [ R^-1 D^(-1/2) ] [ R^-1 D^(-1/2) ]'
###
### Let's work this for our example, where
###
### $reg->include( 2.0, [ 1.0, 3.0, -1.0 ] );
### $reg->include( 1.0, [ 1.0, 5.0, 2.0 ] );
### $reg->include( 20.0, [ 1.0, 31.0, 0.0 ] );
### $reg->include( 15.0, [ 1.0, 11.0, 2.0 ] );
###
### For debuggin, the X'X matrix for our example is
### 4, 50, 3
### 50 1116 29
### 3 29 9
###
### Its inverse is
### 0.70967 -0.027992 -0.146360
### -0.02799 0.002082 0.002622
### -0.14636 0.002622 0.151450
###
### Internally, this is kept as follows
###
### R is 1, 0, 0
### 12.5 1 0
### 0.75 -0.0173 1
###
### d is the diagonal(4,491,6.603) matrix, which as 1/sqrt becomes dhi= 0.5, 0.04513, 0.3892
###
### R * d * R' is indeed the X' X matrix.
###
### The inverse of R is
###
### 1, 0, 0
### -12.5 1 0
### -0.9664 0.01731 1
###
### in R, t(solve(R) %*% dhi) %*% t( t(solve(R) %*% dhi) ) is the correct inverse.
###
### The routine has a debug switch which makes it come out very verbose.
################################################################
my $debug=0;
sub standarderrors {
my $this= shift;
our $K= $this->{k}; # convenience
our @u;
sub ui {
if ($debug) {
($_[0]<1)||($_[0]>$K) and confess "$MNAME:standarderrors: bad index 0 $_[0]\n";
($_[1]<1)||($_[1]>$K) and confess "$MNAME:standarderrors: bad index 1 $_[0]\n";
}
return (($K*($_[0]-1))+($_[1]-1));
}
sub giveuclear {
for (my $i=0; $i<($K**2); ++$i) { $u[$i]=0.0; }
return (wantarray) ? @u : \@u;
}
sub u { return $u[ui($_[0], $_[1])]; }
sub setu { return $u[ui($_[0], $_[1])]= $_[2]; }
sub add2u { return $u[ui($_[0], $_[1])]+= $_[2]; }
sub mult2u { return $u[ui($_[0], $_[1])]*= $_[2]; }
(defined($K)) or confess "$MNAME:standarderrors: Internal Error: I forgot the number of variables.\n";
if ($debug) {
print "The Start Matrix is:\n";
for (my $i=1; $i<=$K; ++$i) {
print "[$i]:\t";
for (my $j=1; $j<=$K; ++$j) {
print $this->rbr($i, $j)."\t";
}
print "\n";
}
print "The Start d vector is:\n";
for (my $i=1; $i<=$K; ++$i) {
print "".$this->{d}[$i]."\t";
}
print "\n";
}
sub rbrindex {
return ($_[0] == $_[1]) ? -9 :
($_[0]>$_[1]) ? -8 :
((($_[0]-1.0)* (2.0*$K-$_[0])/2.0+1.0) + $_[1] - 1 - $_[0] ); }
# now a real member routine;
sub rbr {
my $this= shift;
return ($_[0] == $_[1]) ? 1 : ( ($_[0]>$_[1]) ? 0 : ($this->{rbar}[rbrindex($_[0],$_[1])]));
}
my $u= giveuclear();
for (my $j=$K; $j>=1; --$j) {
setu($j,$j, 1.0/($this->rbr($j,$j)));
for (my $k=$j-1; $k>=1; --$k) {
setu($k,$j,0);
for (my $i=$k+1; $i<=$j; ++$i) { add2u($k,$j, $this->rbr($k,$i)*u($i,$j)); }
mult2u($k,$j, (-1.0)/$this->rbr($k,$k));
}
}
if ($debug) {
print "The Inverse Matrix of R is:\n";
for (my $i=1; $i<=$K; ++$i) {
print "[$i]:\t";
for (my $j=1; $j<=$K; ++$j) {
print $u[ui($i,$j)]."\t";
}
print "\n";
}
}
for (my $i=1;$i<=$K;++$i) {
for (my $j=1;$j<=$K;++$j) {
if (abs($this->{d}[$j])<TINY) {
mult2u($i,$j, sqrt(1.0/TINY));
if (abs($this->{d}[$j])==0.0) {
if ($this->{neverabort}) {
for (my $i=0; $i<($K**2); ++$i) { $u[$i]= "NaN"; }
return undef;
}
else { confess "$MNAME:standarderrors: I cannot compute the theta-covariance matrix for variable $j ".($this->{d}[$j])."\n"; }
}
}
else { mult2u($i,$j, sqrt(1.0/$this->{d}[$j])); }
}
}
if ($debug) {
print "The Inverse Matrix of R multipled by D^(-1/2) is:\n";
for (my $i=1; $i<=$K; ++$i) {
print "[$i]:\t";
for (my $j=1; $j<=$K; ++$j) {
print $u[ui($i,$j)]."\t";
}
print "\n";
}
}
$this->{sigmasq}= ($this->{n}<=$K) ? "Inf" : ($this->{sse}/($this->{n} - $K));
my @xpxinv;
for (my $i=1;$i<=$K; ++$i) {
for (my $j=$i;$j<=$K;++$j) {
my $indexij= ui($i,$j);
$xpxinv[$indexij]= 0.0;
for (my $k=1;$k<=$K;++$k) {
$xpxinv[$indexij] += $u[ui($i,$k)]*$u[ui($j,$k)];
}
$xpxinv[ui($j,$i)]= $xpxinv[$indexij]; # this is symmetric
}
}
if ($debug) {
print "The full inverse matrix of X'X is:\n";
for (my $i=1; $i<=$K; ++$i) {
print "[$i]:\t";
for (my $j=1; $j<=$K; ++$j) {
print $xpxinv[ui($i,$j)]."\t";
}
print "\n";
}
print "The sigma^2 is ".$this->{sigmasq}."\n";
}
## 99% of the usage here will be to print the diagonal elements of sqrt ( (X' X) sigma^2 )
## so, let's make this our first returned object;
my @secoefs;
for (my $i=1; $i<=$K; ++$i) {
$secoefs[$i-1]= sqrt($xpxinv[ui($i,$i)] * $this->{sigmasq});
}
if ($debug) { for (my $i=0; $i<$K; ++$i) { print " $secoefs[$i] "; } print "\n"; }
# the following are clever return methods; if the user goes over the secoefs,
# almost surely an error will result, because he will run into xpxinv. For special
# usage, however, xpxinv may still be useful.
return ( @secoefs, \@xpxinv, $this->sigmasq );
}
################################
sub linearcombination_variance {
my $this= shift;
our $K= $this->{k}; # convenience
my @linear= @_;
($#linear+1 == $K) or confess "$MNAME:linearcombination_variance: ".
"Sorry, you must give a vector of length $K, not ".($#linear+1)."\n";
my @allback= $this->standarderrors(); # compute everything we need;
my $xpxinv= $allback[$this->{k}];
my $sigmasq= $allback[$this->{k}+1];
my $sum=0;
for (my $i=1; $i<=$K; ++$i) {
for (my $j=1; $j<=$K; ++$j) {
$sum+= $linear[$i-1]*$linear[$j-1]*$xpxinv->[ui($i,$j)];
}
}
$sum*=$sigmasq;
return $sum;
}
################################################################
### sub dump() was used internally for debugging.
################################################################
sub dump {
my $this= $_[0];
print "****************************************************************\n";
print "Regression '$this->{regname}'\n";
print "****************************************************************\n";
sub print1val {
no strict;
print "$_[1]($_[2])=\t". ((defined($_[0]->{ $_[2] }) ? $_[0]->{ $_[2] } : "intentionally undef"));
my $ref=$_[0]->{ $_[2] };
if (ref($ref) eq 'ARRAY') {
my $arrayref= $ref;
print " $#$arrayref+1 elements:\n";
if ($#$arrayref>30) {
print "\t";
for(my $i=0; $i<$#$arrayref+1; ++$i) { print "$i='$arrayref->[$i]';"; }
print "\n";
}
else {
for(my $i=0; $i<$#$arrayref+1; ++$i) { print "\t$i=\t'$arrayref->[$i]'\n"; }
}
}
elsif (ref($ref) eq 'HASH') {
my $hashref= $ref;
print " ".scalar(keys(%$hashref))." elements\n";
while (my ($key, $val) = each(%$hashref)) {
print "\t'$key'=>'$val';\n";
}
}
else {
print " [was scalar]\n"; }
}
while (my ($key, $val) = each(%$this)) {
$this->print1val($key, $key);
}
print "****************************************************************\n";
}
################################################################
### The Test Program. Invoke as "perl Regression.pm".
################################################################
if ($0 eq "Regression.pm") {
# Create regression object
my $reg = Statistics::Regression->new( "sample regression", [ "const", "someX", "someY" ] );
# Add data points
$reg->include( 2.0, [ 1.0, 3.0, -1.0 ] );
$reg->include( 1.0, [ 1.0, 5.0, 2.0 ] );
$reg->include( 20.0, [ 1.0, 31.0, 0.0 ] );
my %inhash= ( const => 1.0, someX => 11.0, someY => 2.0, ignored => "ignored" );
$reg->include( 15.0, \%inhash );
# $reg->include( 15.0, [ 1.0, 11.0, 2.0 ] );
# Print the result
$reg->print();
}
1;
|