File: stb_voxel_render.h

package info (click to toggle)
libstb 0.0~git20190617.5.c72a95d-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 6,216 kB
  • sloc: ansic: 68,175; cpp: 1,421; makefile: 96; sh: 3
file content (3806 lines) | stat: -rw-r--r-- 161,270 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
// stb_voxel_render.h - v0.88 - Sean Barrett, 2015 - public domain
//
// This library helps render large-scale "voxel" worlds for games,
// in this case, one with blocks that can have textures and that
// can also be a few shapes other than cubes.
//
//    Video introduction:
//       http://www.youtube.com/watch?v=2vnTtiLrV1w
//
//    Minecraft-viewer sample app (not very simple though):
//       http://github.com/nothings/stb/tree/master/tests/caveview
//
// It works by creating triangle meshes. The library includes
//
//    - converter from dense 3D arrays of block info to vertex mesh
//    - vertex & fragment shaders for the vertex mesh
//    - assistance in setting up shader state
//
// For portability, none of the library code actually accesses
// the 3D graphics API. (At the moment, it's not actually portable
// since the shaders are GLSL only, but patches are welcome.)
//
// You have to do all the caching and tracking of vertex buffers
// yourself. However, you could also try making a game with
// a small enough world that it's fully loaded rather than
// streaming. Currently the preferred vertex format is 20 bytes
// per quad. There are designs to allow much more compact formats
// with a slight reduction in shader features, but no roadmap
// for actually implementing them.
//
//
// USAGE
//
//   #define the symbol STB_VOXEL_RENDER_IMPLEMENTATION in *one*
//   C/C++ file before the #include of this file; the implementation
//   will be generated in that file.
//
//   If you define the symbols STB_VOXEL_RENDER_STATIC, then the
//   implementation will be private to that file.
//
//
// FEATURES
//
//   - you can choose textured blocks with the features below,
//     or colored voxels with 2^24 colors and no textures.
//
//   - voxels are mostly just cubes, but there's support for
//     half-height cubes and diagonal slopes, half-height
//     diagonals, and even odder shapes especially for doing
//     more-continuous "ground".
//
//   - texture coordinates are projections along one of the major
//     axes, with the per-texture scaling.
//
//   - a number of aspects of the shader and the vertex format
//     are configurable; the library generally takes care of
//     coordinating the vertex format with the mesh for you.
//
//
// FEATURES (SHADER PERSPECTIVE)
//
//   - vertices aligned on integer lattice, z on multiples of 0.5
//   - per-vertex "lighting" or "ambient occlusion" value (6 bits)
//   - per-vertex texture crossfade (3 bits)
//
//   - per-face texture #1 id (8-bit index into array texture)
//   - per-face texture #2 id (8-bit index into second array texture)
//   - per-face color (6-bit palette index, 2 bits of per-texture boolean enable)
//   - per-face 5-bit normal for lighting calculations & texture coord computation
//   - per-face 2-bit texture matrix rotation to rotate faces
//
//   - indexed-by-texture-id scale factor (separate for texture #1 and texture #2)
//   - indexed-by-texture-#2-id blend mode (alpha composite or modulate/multiply);
//     the first is good for decals, the second for detail textures, "light maps",
//     etc; both modes are controlled by texture #2's alpha, scaled by the
//     per-vertex texture crossfade and the per-face color (if enabled on texture #2);
//     modulate/multiply multiplies by an extra factor of 2.0 so that if you
//     make detail maps whose average brightness is 0.5 everything works nicely.
//
//   - ambient lighting: half-lambert directional plus constant, all scaled by vertex ao
//   - face can be fullbright (emissive), controlled by per-face color
//   - installable lighting, with default single-point-light
//   - installable fog, with default hacked smoothstep
//
//  Note that all the variations of lighting selection and texture
//  blending are run-time conditions in the shader, so they can be
//  intermixed in a single mesh.
//
//
// INTEGRATION ARC
//
//   The way to get this library to work from scratch is to do the following:
//
//      Step 1. define STBVOX_CONFIG_MODE to 0
//
//        This mode uses only vertex attributes and uniforms, and is easiest
//        to get working. It requires 32 bytes per quad and limits the
//        size of some tables to avoid hitting uniform limits.
//
//      Step 2. define STBVOX_CONFIG_MODE to 1
//
//        This requires using a texture buffer to store the quad data,
//        reducing the size to 20 bytes per quad.
//
//      Step 3: define STBVOX_CONFIG_PREFER_TEXBUFFER
//
//        This causes some uniforms to be stored as texture buffers
//        instead. This increases the size of some of those tables,
//        and avoids a potential slow path (gathering non-uniform
//        data from uniforms) on some hardware.
//
//   In the future I might add additional modes that have significantly
//   smaller meshes but reduce features, down as small as 6 bytes per quad.
//   See elsewhere in this file for a table of candidate modes. Switching
//   to a mode will require changing some of your mesh creation code, but
//   everything else should be seamless. (And I'd like to change the API
//   so that mesh creation is data-driven the way the uniforms are, and
//   then you wouldn't even have to change anything but the mode number.)
//
//
// IMPROVEMENTS FOR SHIP-WORTHY PROGRAMS USING THIS LIBRARY
//
//   I currently tolerate a certain level of "bugginess" in this library.
//
//   I'm referring to things which look a little wrong (as long as they
//   don't cause holes or cracks in the output meshes), or things which
//   do not produce as optimal a mesh as possible. Notable examples:
//
//        -  incorrect lighting on slopes
//        -  inefficient meshes for vheight blocks
//
//   I am willing to do the work to improve these things if someone is
//   going to ship a substantial program that would be improved by them.
//   (It need not be commercial, nor need it be a game.) I just didn't
//   want to do the work up front if it might never be leveraged. So just
//   submit a bug report as usual (github is preferred), but add a note
//   that this is for a thing that is really going to ship. (That means
//   you need to be far enough into the project that it's clear you're
//   committed to it; not during early exploratory development.)
//
//
// VOXEL MESH API
//
//   Context
//
//     To understand the API, make sure you first understand the feature set
//     listed above.
//
//     Because the vertices are compact, they have very limited spatial
//     precision. Thus a single mesh can only contain the data for a limited
//     area. To make very large voxel maps, you'll need to build multiple
//     vertex buffers. (But you want this anyway for frustum culling.)
//
//     Each generated mesh has three components:
//             - vertex data (vertex buffer)
//             - face data (optional, stored in texture buffer)
//             - mesh transform (uniforms)
//
//     Once you've generated the mesh with this library, it's up to you
//     to upload it to the GPU, to keep track of the state, and to render
//     it.
//
//   Concept
//
//     The basic design is that you pass in one or more 3D arrays; each array
//     is (typically) one-byte-per-voxel and contains information about one
//     or more properties of some particular voxel property.
//
//     Because there is so much per-vertex and per-face data possible
//     in the output, and each voxel can have 6 faces and 8 vertices, it
//     would require an very large data structure to describe all
//     of the possibilities, and this would cause the mesh-creation
//     process to be slow. Instead, the API provides multiple ways
//     to express each property, some more compact, others less so;
//     each such way has some limitations on what it can express.
//
//     Note that there are so many paths and combinations, not all of them
//     have been tested. Just report bugs and I'll fix 'em.
//
//   Details
//
//     See the API documentation in the header-file section.
//
//
// CONTRIBUTORS
//
//   Features             Porting            Bugfixes & Warnings
//  Sean Barrett                          github:r-leyh   Jesus Fernandez
//                                        Miguel Lechon   github:Arbeiterunfallversicherungsgesetz
//                                        Thomas Frase    James Hofmann
//                                        Stephen Olsen   github:guitarfreak
//
// VERSION HISTORY
//
//   0.88   (2019-03-04)  fix warnings
//   0.87   (2019-02-25)  fix warning
//   0.86   (2019-02-07)  fix typos in comments
//   0.85   (2017-03-03)  add block_selector (by guitarfreak)
//   0.84   (2016-04-02)  fix GLSL syntax error on glModelView path
//   0.83   (2015-09-13)  remove non-constant struct initializers to support more compilers
//   0.82   (2015-08-01)  added input.packed_compact to store rot, vheight & texlerp efficiently
//                        fix broken tex_overlay2
//   0.81   (2015-05-28)  fix broken STBVOX_CONFIG_OPTIMIZED_VHEIGHT
//   0.80   (2015-04-11)  fix broken STBVOX_CONFIG_ROTATION_IN_LIGHTING refactoring
//                        change STBVOX_MAKE_LIGHTING to STBVOX_MAKE_LIGHTING_EXT so
//                                    that header defs don't need to see config vars
//                        add STBVOX_CONFIG_VHEIGHT_IN_LIGHTING and other vheight fixes
//                        added documentation for vheight ("weird slopes")
//   0.79   (2015-04-01)  fix the missing types from 0.78; fix string constants being const
//   0.78   (2015-04-02)  bad "#else", compile as C++
//   0.77   (2015-04-01)  documentation tweaks, rename config var to STB_VOXEL_RENDER_STATIC
//   0.76   (2015-04-01)  typos, signed/unsigned shader issue, more documentation
//   0.75   (2015-04-01)  initial release
//
//
// HISTORICAL FOUNDATION
//
//   stb_voxel_render   20-byte quads   2015/01
//   zmc engine         32-byte quads   2013/12
//   zmc engine         96-byte quads   2011/10
//
//
// LICENSE
//
//   See end of file for license information.

#ifndef INCLUDE_STB_VOXEL_RENDER_H
#define INCLUDE_STB_VOXEL_RENDER_H

#include <stdlib.h>

typedef struct stbvox_mesh_maker stbvox_mesh_maker;
typedef struct stbvox_input_description stbvox_input_description;

#ifdef STB_VOXEL_RENDER_STATIC
#define STBVXDEC static
#else
#define STBVXDEC extern
#endif

#ifdef __cplusplus
extern "C" {
#endif

//////////////////////////////////////////////////////////////////////////////
//
// CONFIGURATION MACROS
//
//  #define STBVOX_CONFIG_MODE <integer>           // REQUIRED
//     Configures the overall behavior of stb_voxel_render. This
//     can affect the shaders, the uniform info, and other things.
//     (If you need more than one mode in the same app, you can
//     use STB_VOXEL_RENDER_STATIC to create multiple versions
//     in separate files, and then wrap them.)
//
//         Mode value       Meaning
//             0               Textured blocks, 32-byte quads
//             1               Textured blocks, 20-byte quads
//            20               Untextured blocks, 32-byte quads
//            21               Untextured blocks, 20-byte quads
//
//
//  #define STBVOX_CONFIG_PRECISION_Z  <integer>   // OPTIONAL
//     Defines the number of bits of fractional position for Z.
//     Only 0 or 1 are valid. 1 is the default. If 0, then a
//     single mesh has twice the legal Z range; e.g. in
//     modes 0,1,20,21, Z in the mesh can extend to 511 instead
//     of 255. However, half-height blocks cannot be used.
//
// All of the following are just #ifdef tested so need no values, and are optional.
//
//    STBVOX_CONFIG_BLOCKTYPE_SHORT
//        use unsigned 16-bit values for 'blocktype' in the input instead of 8-bit values
//
//    STBVOX_CONFIG_OPENGL_MODELVIEW
//        use the gl_ModelView matrix rather than the explicit uniform
//
//    STBVOX_CONFIG_HLSL
//        NOT IMPLEMENTED! Define HLSL shaders instead of GLSL shaders
//
//    STBVOX_CONFIG_PREFER_TEXBUFFER
//        Stores many of the uniform arrays in texture buffers instead,
//        so they can be larger and may be more efficient on some hardware.
//
//    STBVOX_CONFIG_LIGHTING_SIMPLE
//        Creates a simple lighting engine with a single point light source
//        in addition to the default half-lambert ambient light.
//
//    STBVOX_CONFIG_LIGHTING
//        Declares a lighting function hook; you must append a lighting function
//        to the shader before compiling it:
//            vec3 compute_lighting(vec3 pos, vec3 norm, vec3 albedo, vec3 ambient);
//        'ambient' is the half-lambert ambient light with vertex ambient-occlusion applied
//
//    STBVOX_CONFIG_FOG_SMOOTHSTEP
//        Defines a simple unrealistic fog system designed to maximize
//        unobscured view distance while not looking too weird when things
//        emerge from the fog. Configured using an extra array element
//        in the STBVOX_UNIFORM_ambient uniform.
//
//    STBVOX_CONFIG_FOG
//        Defines a fog function hook; you must append a fog function to
//        the shader before compiling it:
//            vec3 compute_fog(vec3 color, vec3 relative_pos, float fragment_alpha);
//        "color" is the incoming pre-fogged color, fragment_alpha is the alpha value,
//        and relative_pos is the vector from the point to the camera in worldspace
//
//    STBVOX_CONFIG_DISABLE_TEX2
//        This disables all processing of texture 2 in the shader in case
//        you don't use it. Eventually this could be replaced with a mode
//        that omits the unused data entirely.
//
//    STBVOX_CONFIG_TEX1_EDGE_CLAMP
//    STBVOX_CONFIG_TEX2_EDGE_CLAMP
//        If you want to edge clamp the textures, instead of letting them wrap,
//        set this flag. By default stb_voxel_render relies on texture wrapping
//        to simplify texture coordinate generation. This flag forces it to do
//        it correctly, although there can still be minor artifacts.
//
//    STBVOX_CONFIG_ROTATION_IN_LIGHTING
//        Changes the meaning of the 'lighting' mesher input variable to also
//        store the rotation; see later discussion.
//
//    STBVOX_CONFIG_VHEIGHT_IN_LIGHTING
//        Changes the meaning of the 'lighting' mesher input variable to also
//        store the vheight; see later discussion. Cannot use both this and
//        the previous variable.
//
//    STBVOX_CONFIG_PREMULTIPLIED_ALPHA
//        Adjusts the shader calculations on the assumption that tex1.rgba,
//        tex2.rgba, and color.rgba all use premultiplied values, and that
//        the output of the fragment shader should be premultiplied.
//
//    STBVOX_CONFIG_UNPREMULTIPLY
//        Only meaningful if STBVOX_CONFIG_PREMULTIPLIED_ALPHA is defined.
//        Changes the behavior described above so that the inputs are
//        still premultiplied alpha, but the output of the fragment
//        shader is not premultiplied alpha. This is needed when allowing
//        non-unit alpha values but not doing alpha-blending (for example
//        when alpha testing).
//

//////////////////////////////////////////////////////////////////////////////
//
// MESHING
//
// A mesh represents a (typically) small chunk of a larger world.
// Meshes encode coordinates using small integers, so those
// coordinates must be relative to some base location.
// All of the coordinates in the functions below use
// these relative coordinates unless explicitly stated
// otherwise.
//
// Input to the meshing step is documented further down

STBVXDEC void stbvox_init_mesh_maker(stbvox_mesh_maker *mm);
// Call this function to initialize a mesh-maker context structure
// used to build meshes. You should have one context per thread
// that's building meshes.

STBVXDEC void stbvox_set_buffer(stbvox_mesh_maker *mm, int mesh, int slot, void *buffer, size_t len);
// Call this to set the buffer into which stbvox will write the mesh
// it creates. It can build more than one mesh in parallel (distinguished
// by the 'mesh' parameter), and each mesh can be made up of more than
// one buffer (distinguished by the 'slot' parameter).
//
// Multiple meshes are under your control; use the 'selector' input
// variable to choose which mesh each voxel's vertices are written to.
// For example, you can use this to generate separate meshes for opaque
// and transparent data.
//
// You can query the number of slots by calling stbvox_get_buffer_count
// described below. The meaning of the buffer for each slot depends
// on STBVOX_CONFIG_MODE.
//
//   In mode 0 & mode 20, there is only one slot. The mesh data for that
//   slot is two interleaved vertex attributes: attr_vertex, a single
//   32-bit uint, and attr_face, a single 32-bit uint.
//
//   In mode 1 & mode 21, there are two slots. The first buffer should
//   be four times as large as the second buffer. The first buffer
//   contains a single vertex attribute: 'attr_vertex', a single 32-bit uint.
//   The second buffer contains texture buffer data (an array of 32-bit uints)
//   that will be accessed through the sampler identified by STBVOX_UNIFORM_face_data.

STBVXDEC int stbvox_get_buffer_count(stbvox_mesh_maker *mm);
// Returns the number of buffers needed per mesh as described above.

STBVXDEC int stbvox_get_buffer_size_per_quad(stbvox_mesh_maker *mm, int slot);
// Returns how much of a given buffer will get used per quad. This
// allows you to choose correct relative sizes for each buffer, although
// the values are fixed based on the configuration you've selected at
// compile time, and the details are described in stbvox_set_buffer.

STBVXDEC void stbvox_set_default_mesh(stbvox_mesh_maker *mm, int mesh);
// Selects which mesh the mesher will output to (see previous function)
// if the input doesn't specify a per-voxel selector. (I doubt this is
// useful, but it's here just in case.)

STBVXDEC stbvox_input_description *stbvox_get_input_description(stbvox_mesh_maker *mm);
// This function call returns a pointer to the stbvox_input_description part
// of stbvox_mesh_maker (which you should otherwise treat as opaque). You
// zero this structure, then fill out the relevant pointers to the data
// describing your voxel object/world.
//
// See further documentation at the description of stbvox_input_description below.

STBVXDEC void stbvox_set_input_stride(stbvox_mesh_maker *mm, int x_stride_in_elements, int y_stride_in_elements);
// This sets the stride between successive elements of the 3D arrays
// in the stbvox_input_description. Z values are always stored consecutively.
// (The preferred coordinate system for stbvox is X right, Y forwards, Z up.)

STBVXDEC void stbvox_set_input_range(stbvox_mesh_maker *mm, int x0, int y0, int z0, int x1, int y1, int z1);
// This sets the range of values in the 3D array for the voxels that
// the mesh generator will convert. The lower values are inclusive,
// the higher values are exclusive, so (0,0,0) to (16,16,16) generates
// mesh data associated with voxels up to (15,15,15) but no higher.
//
// The mesh generate generates faces at the boundary between open space
// and solid space but associates them with the solid space, so if (15,0,0)
// is open and (16,0,0) is solid, then the mesh will contain the boundary
// between them if x0 <= 16 and x1 > 16.
//
// Note that the mesh generator will access array elements 1 beyond the
// limits set in these parameters. For example, if you set the limits
// to be (0,0,0) and (16,16,16), then the generator will access all of
// the voxels between (-1,-1,-1) and (16,16,16), including (16,16,16).
// You may have to do pointer arithmetic to make it work.
//
// For example, caveview processes mesh chunks that are 32x32x16, but it
// does this using input buffers that are 34x34x18.
//
// The lower limits are x0 >= 0, y0 >= 0, and z0 >= 0.
//
// The upper limits are mode dependent, but all the current methods are
// limited to x1 < 127, y1 < 127, z1 < 255. Note that these are not
// powers of two; if you want to use power-of-two chunks (to make
// it efficient to decide which chunk a coordinate falls in), you're
// limited to at most x1=64, y1=64, z1=128. For classic Minecraft-style
// worlds with limited vertical extent, I recommend using a single
// chunk for the entire height, which limits the height to 255 blocks
// (one less than Minecraft), and only chunk the map in X & Y.

STBVXDEC int stbvox_make_mesh(stbvox_mesh_maker *mm);
// Call this function to create mesh data for the currently configured
// set of input data. This appends to the currently configured mesh output
// buffer. Returns 1 on success. If there is not enough room in the buffer,
// it outputs as much as it can, and returns 0; you need to switch output
// buffers (either by calling stbvox_set_buffer to set new buffers, or
// by copying the data out and calling stbvox_reset_buffers), and then
// call this function again without changing any of the input parameters.
//
// Note that this function appends; you can call it multiple times to
// build a single mesh. For example, caveview uses chunks that are
// 32x32x255, but builds the mesh for it by processing 32x32x16 at atime
// (this is faster as it is reuses the same 34x34x18 input buffers rather
// than needing 34x34x257 input buffers).

// Once you're done creating a mesh into a given buffer,
// consider the following functions:

STBVXDEC int stbvox_get_quad_count(stbvox_mesh_maker *mm, int mesh);
// Returns the number of quads in the mesh currently generated by mm.
// This is the sum of all consecutive stbvox_make_mesh runs appending
// to the same buffer. 'mesh' distinguishes between the multiple user
// meshes available via 'selector' or stbvox_set_default_mesh.
//
// Typically you use this function when you're done building the mesh
// and want to record how to draw it.
//
// Note that there are no index buffers; the data stored in the buffers
// should be drawn as quads (e.g. with GL_QUAD); if your API does not
// support quads, you can create a single index buffer large enough to
// draw your largest vertex buffer, and reuse it for every rendering.
// (Note that if you use 32-bit indices, you'll use 24 bytes of bandwidth
// per quad, more than the 20 bytes for the vertex/face mesh data.)

STBVXDEC void stbvox_set_mesh_coordinates(stbvox_mesh_maker *mm, int x, int y, int z);
// Sets the global coordinates for this chunk, such that (0,0,0) relative
// coordinates will be at (x,y,z) in global coordinates.

STBVXDEC void stbvox_get_bounds(stbvox_mesh_maker *mm, float bounds[2][3]);
// Returns the bounds for the mesh in global coordinates. Use this
// for e.g. frustum culling the mesh. @BUG: this just uses the
// values from stbvox_set_input_range(), so if you build by
// appending multiple values, this will be wrong, and you need to
// set stbvox_set_input_range() to the full size. Someday this
// will switch to tracking the actual bounds of the *mesh*, though.

STBVXDEC void stbvox_get_transform(stbvox_mesh_maker *mm, float transform[3][3]);
// Returns the 'transform' data for the shader uniforms. It is your
// job to set this to the shader before drawing the mesh. It is the
// only uniform that needs to change per-mesh. Note that it is not
// a 3x3 matrix, but rather a scale to decode fixed point numbers as
// floats, a translate from relative to global space, and a special
// translation for texture coordinate generation that avoids
// floating-point precision issues. @TODO: currently we add the
// global translation to the vertex, than multiply by modelview,
// but this means if camera location and vertex are far from the
// origin, we lose precision. Need to make a special modelview with
// the translation (or some of it) factored out to avoid this.

STBVXDEC void stbvox_reset_buffers(stbvox_mesh_maker *mm);
// Call this function if you're done with the current output buffer
// but want to reuse it (e.g. you're done appending with
// stbvox_make_mesh and you've copied the data out to your graphics API
// so can reuse the buffer).

//////////////////////////////////////////////////////////////////////////////
//
// RENDERING
//

STBVXDEC char *stbvox_get_vertex_shader(void);
// Returns the (currently GLSL-only) vertex shader.

STBVXDEC char *stbvox_get_fragment_shader(void);
// Returns the (currently GLSL-only) fragment shader.
// You can override the lighting and fogging calculations
// by appending data to the end of these; see the #define
// documentation for more information.

STBVXDEC char *stbvox_get_fragment_shader_alpha_only(void);
// Returns a slightly cheaper fragment shader that computes
// alpha but not color. This is useful for e.g. a depth-only
// pass when using alpha test.

typedef struct stbvox_uniform_info stbvox_uniform_info;

STBVXDEC int stbvox_get_uniform_info(stbvox_uniform_info *info, int uniform);
// Gets the information about a uniform necessary for you to
// set up each uniform with a minimal amount of explicit code.
// See the sample code after the structure definition for stbvox_uniform_info,
// further down in this header section.
//
// "uniform" is from the list immediately following. For many
// of these, default values are provided which you can set.
// Most values are shared for most draw calls; e.g. for stateful
// APIs you can set most of the state only once. Only
// STBVOX_UNIFORM_transform needs to change per draw call.
//
// STBVOX_UNIFORM_texscale
//    64- or 128-long vec4 array. (128 only if STBVOX_CONFIG_PREFER_TEXBUFFER)
//    x: scale factor to apply to texture #1. must be a power of two. 1.0 means 'face-sized'
//    y: scale factor to apply to texture #2. must be a power of two. 1.0 means 'face-sized'
//    z: blend mode indexed by texture #2. 0.0 is alpha compositing; 1.0 is multiplication.
//    w: unused currently. @TODO use to support texture animation?
//
//    Texscale is indexed by the bottom 6 or 7 bits of the texture id; thus for
//    example the texture at index 0 in the array and the texture in index 128 of
//    the array must be scaled the same. This means that if you only have 64 or 128
//    unique textures, they all get distinct values anyway; otherwise you have
//    to group them in pairs or sets of four.
//
// STBVOX_UNIFORM_ambient
//    4-long vec4 array:
//      ambient[0].xyz   - negative of direction of a directional light for half-lambert
//      ambient[1].rgb   - color of light scaled by NdotL (can be negative)
//      ambient[2].rgb   - constant light added to above calculation;
//                         effectively light ranges from ambient[2]-ambient[1] to ambient[2]+ambient[1]
//      ambient[3].rgb   - fog color for STBVOX_CONFIG_FOG_SMOOTHSTEP
//      ambient[3].a     - reciprocal of squared distance of farthest fog point (viewing distance)


                               //  +----- has a default value
                               //  |  +-- you should always use the default value
enum                           //  V  V
{                              //  ------------------------------------------------
   STBVOX_UNIFORM_face_data,   //  n      the sampler with the face texture buffer
   STBVOX_UNIFORM_transform,   //  n      the transform data from stbvox_get_transform
   STBVOX_UNIFORM_tex_array,   //  n      an array of two texture samplers containing the two texture arrays
   STBVOX_UNIFORM_texscale,    //  Y      a table of texture properties, see above
   STBVOX_UNIFORM_color_table, //  Y      64 vec4 RGBA values; a default palette is provided; if A > 1.0, fullbright
   STBVOX_UNIFORM_normals,     //  Y  Y   table of normals, internal-only
   STBVOX_UNIFORM_texgen,      //  Y  Y   table of texgen vectors, internal-only
   STBVOX_UNIFORM_ambient,     //  n      lighting & fog info, see above
   STBVOX_UNIFORM_camera_pos,  //  Y      camera position in global voxel space (for lighting & fog)

   STBVOX_UNIFORM_count,
};

enum
{
   STBVOX_UNIFORM_TYPE_none,
   STBVOX_UNIFORM_TYPE_sampler,
   STBVOX_UNIFORM_TYPE_vec2,
   STBVOX_UNIFORM_TYPE_vec3,
   STBVOX_UNIFORM_TYPE_vec4,
};

struct stbvox_uniform_info
{
   int type;                    // which type of uniform
   int bytes_per_element;       // the size of each uniform array element (e.g. vec3 = 12 bytes)
   int array_length;            // length of the uniform array
   char *name;                  // name in the shader @TODO use numeric binding
   float *default_value;        // if not NULL, you can use this as the uniform pointer
   int use_tex_buffer;          // if true, then the uniform is a sampler but the data can come from default_value
};

//////////////////////////////////////////////////////////////////////////////
//
// Uniform sample code
//

#if 0
// Run this once per frame before drawing all the meshes.
// You still need to separately set the 'transform' uniform for every mesh.
void setup_uniforms(GLuint shader, float camera_pos[4], GLuint tex1, GLuint tex2)
{
   int i;
   glUseProgram(shader); // so uniform binding works
   for (i=0; i < STBVOX_UNIFORM_count; ++i) {
      stbvox_uniform_info sui;
      if (stbvox_get_uniform_info(&sui, i)) {
         GLint loc = glGetUniformLocation(shader, sui.name);
         if (loc != 0) {
            switch (i) {
               case STBVOX_UNIFORM_camera_pos: // only needed for fog
                  glUniform4fv(loc, sui.array_length, camera_pos);
                  break;

               case STBVOX_UNIFORM_tex_array: {
                  GLuint tex_unit[2] = { 0, 1 }; // your choice of samplers
                  glUniform1iv(loc, 2, tex_unit);

                  glActiveTexture(GL_TEXTURE0 + tex_unit[0]); glBindTexture(GL_TEXTURE_2D_ARRAY, tex1);
                  glActiveTexture(GL_TEXTURE0 + tex_unit[1]); glBindTexture(GL_TEXTURE_2D_ARRAY, tex2);
                  glActiveTexture(GL_TEXTURE0); // reset to default
                  break;
               }

               case STBVOX_UNIFORM_face_data:
                  glUniform1i(loc, SAMPLER_YOU_WILL_BIND_PER_MESH_FACE_DATA_TO);
                  break;

               case STBVOX_UNIFORM_ambient:     // you definitely want to override this
               case STBVOX_UNIFORM_color_table: // you might want to override this
               case STBVOX_UNIFORM_texscale:    // you may want to override this
                  glUniform4fv(loc, sui.array_length, sui.default_value);
                  break;

               case STBVOX_UNIFORM_normals:     // you never want to override this
               case STBVOX_UNIFORM_texgen:      // you never want to override this
                  glUniform3fv(loc, sui.array_length, sui.default_value);
                  break;
            }
         }
      }
   }
}
#endif

#ifdef __cplusplus
}
#endif

//////////////////////////////////////////////////////////////////////////////
//
// INPUT TO MESHING
//

// Shapes of blocks that aren't always cubes
enum
{
   STBVOX_GEOM_empty,
   STBVOX_GEOM_knockout,  // creates a hole in the mesh
   STBVOX_GEOM_solid,
   STBVOX_GEOM_transp,    // solid geometry, but transparent contents so neighbors generate normally, unless same blocktype

   // following 4 can be represented by vheight as well
   STBVOX_GEOM_slab_upper,
   STBVOX_GEOM_slab_lower,
   STBVOX_GEOM_floor_slope_north_is_top,
   STBVOX_GEOM_ceil_slope_north_is_bottom,

   STBVOX_GEOM_floor_slope_north_is_top_as_wall_UNIMPLEMENTED,   // same as floor_slope above, but uses wall's texture & texture projection
   STBVOX_GEOM_ceil_slope_north_is_bottom_as_wall_UNIMPLEMENTED,
   STBVOX_GEOM_crossed_pair,    // corner-to-corner pairs, with normal vector bumped upwards
   STBVOX_GEOM_force,           // like GEOM_transp, but faces visible even if neighbor is same type, e.g. minecraft fancy leaves

   // these access vheight input
   STBVOX_GEOM_floor_vheight_03 = 12,  // diagonal is SW-NE
   STBVOX_GEOM_floor_vheight_12,       // diagonal is SE-NW
   STBVOX_GEOM_ceil_vheight_03,
   STBVOX_GEOM_ceil_vheight_12,

   STBVOX_GEOM_count, // number of geom cases
};

enum
{
   STBVOX_FACE_east,
   STBVOX_FACE_north,
   STBVOX_FACE_west,
   STBVOX_FACE_south,
   STBVOX_FACE_up,
   STBVOX_FACE_down,

   STBVOX_FACE_count,
};

#ifdef STBVOX_CONFIG_BLOCKTYPE_SHORT
typedef unsigned short stbvox_block_type;
#else
typedef unsigned char stbvox_block_type;
#endif

// 24-bit color
typedef struct
{
   unsigned char r,g,b;
} stbvox_rgb;

#define STBVOX_COLOR_TEX1_ENABLE   64
#define STBVOX_COLOR_TEX2_ENABLE  128

// This is the data structure you fill out. Most of the arrays can be
// NULL, except when one is required to get the value to index another.
//
// The compass system used in the following descriptions is:
//     east means increasing x
//     north means increasing y
//     up means increasing z
struct stbvox_input_description
{
   unsigned char lighting_at_vertices;
   // The default is lighting values (i.e. ambient occlusion) are at block
   // center, and the vertex light is gathered from those adjacent block
   // centers that the vertex is facing. This makes smooth lighting
   // consistent across adjacent faces with the same orientation.
   //
   // Setting this flag to non-zero gives you explicit control
   // of light at each vertex, but now the lighting/ao will be
   // shared by all vertices at the same point, even if they
   // have different normals.

   // these are mostly 3D maps you use to define your voxel world, using x_stride and y_stride
   // note that for cache efficiency, you want to use the block_foo palettes as much as possible instead

   stbvox_rgb *rgb;
   // Indexed by 3D coordinate.
   // 24-bit voxel color for STBVOX_CONFIG_MODE = 20 or 21 only

   unsigned char *lighting;
   // Indexed by 3D coordinate. The lighting value / ambient occlusion
   // value that is used to define the vertex lighting values.
   // The raw lighting values are defined at the center of blocks
   // (or at vertex if 'lighting_at_vertices' is true).
   //
   // If the macro STBVOX_CONFIG_ROTATION_IN_LIGHTING is defined,
   // then an additional 2-bit block rotation value is stored
   // in this field as well.
   //
   // Encode with STBVOX_MAKE_LIGHTING_EXT(lighting,rot)--here
   // 'lighting' should still be 8 bits, as the macro will
   // discard the bottom bits automatically. Similarly, if
   // using STBVOX_CONFIG_VHEIGHT_IN_LIGHTING, encode with
   // STBVOX_MAKE_LIGHTING_EXT(lighting,vheight).
   //
   // (Rationale: rotation needs to be independent of blocktype,
   // but is only 2 bits so doesn't want to be its own array.
   // Lighting is the one thing that was likely to already be
   // in use and that I could easily steal 2 bits from.)

   stbvox_block_type *blocktype;
   // Indexed by 3D coordinate. This is a core "block type" value, which is used
   // to index into other arrays; essentially a "palette". This is much more
   // memory-efficient and performance-friendly than storing the values explicitly,
   // but only makes sense if the values are always synchronized.
   //
   // If a voxel's blocktype is 0, it is assumed to be empty (STBVOX_GEOM_empty),
   // and no other blocktypes should be STBVOX_GEOM_empty. (Only if you do not
   // have blocktypes should STBVOX_GEOM_empty ever used.)
   //
   // Normally it is an unsigned byte, but you can override it to be
   // a short if you have too many blocktypes.

   unsigned char *geometry;
   // Indexed by 3D coordinate. Contains the geometry type for the block.
   // Also contains a 2-bit rotation for how the whole block is rotated.
   // Also includes a 2-bit vheight value when using shared vheight values.
   // See the separate vheight documentation.
   // Encode with STBVOX_MAKE_GEOMETRY(geom, rot, vheight)

   unsigned char *block_geometry;
   // Array indexed by blocktype containing the geometry for this block, plus
   // a 2-bit "simple rotation". Note rotation has limited use since it's not
   // independent of blocktype.
   //
   // Encode with STBVOX_MAKE_GEOMETRY(geom,simple_rot,0)

   unsigned char *block_tex1;
   // Array indexed by blocktype containing the texture id for texture #1.

   unsigned char (*block_tex1_face)[6];
   // Array indexed by blocktype and face containing the texture id for texture #1.
   // The N/E/S/W face choices can be rotated by one of the rotation selectors;
   // The top & bottom face textures will rotate to match.
   // Note that it only makes sense to use one of block_tex1 or block_tex1_face;
   // this pattern repeats throughout and this notice is not repeated.

   unsigned char *tex2;
   // Indexed by 3D coordinate. Contains the texture id for texture #2
   // to use on all faces of the block.

   unsigned char *block_tex2;
   // Array indexed by blocktype containing the texture id for texture #2.

   unsigned char (*block_tex2_face)[6];
   // Array indexed by blocktype and face containing the texture id for texture #2.
   // The N/E/S/W face choices can be rotated by one of the rotation selectors;
   // The top & bottom face textures will rotate to match.

   unsigned char *color;
   // Indexed by 3D coordinate. Contains the color for all faces of the block.
   // The core color value is 0..63.
   // Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable)
   
   unsigned char *block_color;
   // Array indexed by blocktype containing the color value to apply to the faces.
   // The core color value is 0..63.
   // Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable)

   unsigned char (*block_color_face)[6];
   // Array indexed by blocktype and face containing the color value to apply to that face.
   // The core color value is 0..63.
   // Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable)

   unsigned char *block_texlerp;
   // Array indexed by blocktype containing 3-bit scalar for texture #2 alpha
   // (known throughout as 'texlerp'). This is constant over every face even
   // though the property is potentially per-vertex.

   unsigned char (*block_texlerp_face)[6];
   // Array indexed by blocktype and face containing 3-bit scalar for texture #2 alpha.
   // This is constant over the face even though the property is potentially per-vertex.

   unsigned char *block_vheight;
   // Array indexed by blocktype containing the vheight values for the
   // top or bottom face of this block. These will rotate properly if the
   // block is rotated. See discussion of vheight.
   // Encode with STBVOX_MAKE_VHEIGHT(sw_height, se_height, nw_height, ne_height)

   unsigned char *selector;
   // Array indexed by 3D coordinates indicating which output mesh to select.

   unsigned char *block_selector;
   // Array indexed by blocktype indicating which output mesh to select.

   unsigned char *side_texrot;
   // Array indexed by 3D coordinates encoding 2-bit texture rotations for the
   // faces on the E/N/W/S sides of the block.
   // Encode with STBVOX_MAKE_SIDE_TEXROT(rot_e, rot_n, rot_w, rot_s)

   unsigned char *block_side_texrot;
   // Array indexed by blocktype encoding 2-bit texture rotations for the faces
   // on the E/N/W/S sides of the block.
   // Encode with STBVOX_MAKE_SIDE_TEXROT(rot_e, rot_n, rot_w, rot_s)

   unsigned char *overlay;                 // index into palettes listed below
   // Indexed by 3D coordinate. If 0, there is no overlay. If non-zero,
   // it indexes into to the below arrays and overrides the values
   // defined by the blocktype.

   unsigned char (*overlay_tex1)[6];
   // Array indexed by overlay value and face, containing an override value
   // for the texture id for texture #1. If 0, the value defined by blocktype
   // is used.

   unsigned char (*overlay_tex2)[6];
   // Array indexed by overlay value and face, containing an override value
   // for the texture id for texture #2. If 0, the value defined by blocktype
   // is used.

   unsigned char (*overlay_color)[6];
   // Array indexed by overlay value and face, containing an override value
   // for the face color. If 0, the value defined by blocktype is used.

   unsigned char *overlay_side_texrot;
   // Array indexed by overlay value, encoding 2-bit texture rotations for the faces
   // on the E/N/W/S sides of the block.
   // Encode with STBVOX_MAKE_SIDE_TEXROT(rot_e, rot_n, rot_w, rot_s)

   unsigned char *rotate;
   // Indexed by 3D coordinate. Allows independent rotation of several
   // parts of the voxel, where by rotation I mean swapping textures
   // and colors between E/N/S/W faces.
   //    Block: rotates anything indexed by blocktype
   //    Overlay: rotates anything indexed by overlay
   //    EColor: rotates faces defined in ecolor_facemask
   // Encode with STBVOX_MAKE_MATROT(block,overlay,ecolor)

   unsigned char *tex2_for_tex1;
   // Array indexed by tex1 containing the texture id for texture #2.
   // You can use this if the two are always/almost-always strictly
   // correlated (e.g. if tex2 is a detail texture for tex1), as it
   // will be more efficient (touching fewer cache lines) than using
   // e.g. block_tex2_face.

   unsigned char *tex2_replace;
   // Indexed by 3D coordinate. Specifies the texture id for texture #2
   // to use on a single face of the voxel, which must be E/N/W/S (not U/D).
   // The texture id is limited to 6 bits unless tex2_facemask is also
   // defined (see below).
   // Encode with STBVOX_MAKE_TEX2_REPLACE(tex2, face)

   unsigned char *tex2_facemask;
   // Indexed by 3D coordinate. Specifies which of the six faces should
   // have their tex2 replaced by the value of tex2_replace. In this
   // case, all 8 bits of tex2_replace are used as the texture id.
   // Encode with STBVOX_MAKE_FACE_MASK(east,north,west,south,up,down)

   unsigned char *extended_color;
   // Indexed by 3D coordinate. Specifies a value that indexes into
   // the ecolor arrays below (both of which must be defined).

   unsigned char *ecolor_color;
   // Indexed by extended_color value, specifies an optional override
   // for the color value on some faces.
   // Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable)

   unsigned char *ecolor_facemask;
   // Indexed by extended_color value, this specifies which faces the
   // color in ecolor_color should be applied to. The faces can be
   // independently rotated by the ecolor value of 'rotate', if it exists.
   // Encode with STBVOX_MAKE_FACE_MASK(e,n,w,s,u,d)

   unsigned char *color2;
   // Indexed by 3D coordinates, specifies an alternative color to apply
   // to some of the faces of the block.
   // Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable)

   unsigned char *color2_facemask;
   // Indexed by 3D coordinates, specifies which faces should use the
   // color defined in color2. No rotation value is applied.
   // Encode with STBVOX_MAKE_FACE_MASK(e,n,w,s,u,d)
   
   unsigned char *color3;
   // Indexed by 3D coordinates, specifies an alternative color to apply
   // to some of the faces of the block.
   // Encode with STBVOX_MAKE_COLOR(color_number, tex1_enable, tex2_enable)

   unsigned char *color3_facemask;
   // Indexed by 3D coordinates, specifies which faces should use the
   // color defined in color3. No rotation value is applied. 
   // Encode with STBVOX_MAKE_FACE_MASK(e,n,w,s,u,d)
   
   unsigned char *texlerp_simple;
   // Indexed by 3D coordinates, this is the smallest texlerp encoding
   // that can do useful work. It consits of three values: baselerp,
   // vertlerp, and face_vertlerp. Baselerp defines the value
   // to use on all of the faces but one, from the STBVOX_TEXLERP_BASE
   // values. face_vertlerp is one of the 6 face values (or STBVOX_FACE_NONE)
   // which specifies the face should use the vertlerp values.
   // Vertlerp defines a lerp value at every vertex of the mesh.
   // Thus, one face can have per-vertex texlerp values, and those
   // values are encoded in the space so that they will be shared
   // by adjacent faces that also use vertlerp, allowing continuity
   // (this is used for the "texture crossfade" bit of the release video).
   // Encode with STBVOX_MAKE_TEXLERP_SIMPLE(baselerp, vertlerp, face_vertlerp)

   // The following texlerp encodings are experimental and maybe not
   // that useful. 

   unsigned char *texlerp;
   // Indexed by 3D coordinates, this defines four values:
   //   vertlerp is a lerp value at every vertex of the mesh (using STBVOX_TEXLERP_BASE values).
   //   ud is the value to use on up and down faces, from STBVOX_TEXLERP_FACE values
   //   ew is the value to use on east and west faces, from STBVOX_TEXLERP_FACE values
   //   ns is the value to use on north and south faces, from STBVOX_TEXLERP_FACE values
   // If any of ud, ew, or ns is STBVOX_TEXLERP_FACE_use_vert, then the
   // vertlerp values for the vertices are gathered and used for those faces.
   // Encode with STBVOX_MAKE_TEXLERP(vertlerp,ud,ew,sw)

   unsigned short *texlerp_vert3;
   // Indexed by 3D coordinates, this works with texlerp and
   // provides a unique texlerp value for every direction at
   // every vertex. The same rules of whether faces share values
   // applies. The STBVOX_TEXLERP_FACE vertlerp value defined in
   // texlerp is only used for the down direction. The values at
   // each vertex in other directions are defined in this array,
   // and each uses the STBVOX_TEXLERP3 values (i.e. full precision
   // 3-bit texlerp values).
   // Encode with STBVOX_MAKE_VERT3(vertlerp_e,vertlerp_n,vertlerp_w,vertlerp_s,vertlerp_u)

   unsigned short *texlerp_face3;          // e:3,n:3,w:3,s:3,u:2,d:2
   // Indexed by 3D coordinates, this provides a compact way to
   // fully specify the texlerp value indepenendly for every face,
   // but doesn't allow per-vertex variation. E/N/W/S values are
   // encoded using STBVOX_TEXLERP3 values, whereas up and down
   // use STBVOX_TEXLERP_SIMPLE values.
   // Encode with STBVOX_MAKE_FACE3(face_e,face_n,face_w,face_s,face_u,face_d)

   unsigned char *vheight;                 // STBVOX_MAKE_VHEIGHT   -- sw:2, se:2, nw:2, ne:2, doesn't rotate
   // Indexed by 3D coordinates, this defines the four
   // vheight values to use if the geometry is STBVOX_GEOM_vheight*.
   // See the vheight discussion.

   unsigned char *packed_compact;
   // Stores block rotation, vheight, and texlerp values:
   //    block rotation: 2 bits
   //    vertex vheight: 2 bits
   //    use_texlerp   : 1 bit
   //    vertex texlerp: 3 bits
   // If STBVOX_CONFIG_UP_TEXLERP_PACKED is defined, then 'vertex texlerp' is
   // used for up faces if use_texlerp is 1. If STBVOX_CONFIG_DOWN_TEXLERP_PACKED
   // is defined, then 'vertex texlerp' is used for down faces if use_texlerp is 1.
   // Note if those symbols are defined but packed_compact is NULL, the normal
   // texlerp default will be used.
   // Encode with STBVOX_MAKE_PACKED_COMPACT(rot, vheight, texlerp, use_texlerp)
};
// @OPTIMIZE allow specializing; build a single struct with all of the
// 3D-indexed arrays combined so it's AoS instead of SoA for better
// cache efficiency


//////////////////////////////////////////////////////////////////////////////
//
//  VHEIGHT DOCUMENTATION
//
//  "vheight" is the internal name for the special block types
//  with sloped tops or bottoms. "vheight" stands for "vertex height".
//
//  Note that these blocks are very flexible (there are 256 of them,
//  although at least 17 of them should never be used), but they
//  also have a disadvantage that they generate extra invisible
//  faces; the generator does not currently detect whether adjacent
//  vheight blocks hide each others sides, so those side faces are
//  always generated. For a continuous ground terrain, this means
//  that you may generate 5x as many quads as needed. See notes
//  on "improvements for shipping products" in the introduction.

enum
{
   STBVOX_VERTEX_HEIGHT_0,
   STBVOX_VERTEX_HEIGHT_half,
   STBVOX_VERTEX_HEIGHT_1,
   STBVOX_VERTEX_HEIGHT_one_and_a_half,
};
// These are the "vheight" values. Vheight stands for "vertex height".
// The idea is that for a "floor vheight" block, you take a cube and
// reposition the top-most vertices at various heights as specified by
// the vheight values. Similarly, a "ceiling vheight" block takes a
// cube and repositions the bottom-most vertices.
//
// A floor block only adjusts the top four vertices; the bottom four vertices
// remain at the bottom of the block. The height values are 2 bits,
// measured in halves of a block; so you can specify heights of 0/2,
// 1/2, 2/2, or 3/2. 0 is the bottom of the block, 1 is halfway
// up the block, 2 is the top of the block, and 3 is halfway up the
// next block (and actually outside of the block). The value 3 is
// actually legal for floor vheight (but not ceiling), and allows you to:
//
//     (A) have smoother terrain by having slopes that cross blocks,
//         e.g. (1,1,3,3) is a regular-seeming slope halfway between blocks
//     (B) make slopes steeper than 45-degrees, e.g. (0,0,3,3)
//
// (Because only z coordinates have half-block precision, and x&y are
// limited to block corner precision, it's not possible to make these
// things "properly" out of blocks, e.g. a half-slope block on its side
// or a sloped block halfway between blocks that's made out of two blocks.)
//
// If you define STBVOX_CONFIG_OPTIMIZED_VHEIGHT, then the top face
// (or bottom face for a ceiling vheight block) will be drawn as a
// single quad even if the four vertex heights aren't planar, and a
// single normal will be used over the entire quad. If you
// don't define it, then if the top face is non-planar, it will be
// split into two triangles, each with their own normal/lighting.
// (Note that since all output from stb_voxel_render is quad meshes,
// triangles are actually rendered as degenerate quads.) In this case,
// the distinction between STBVOX_GEOM_floor_vheight_03 and
// STBVOX_GEOM_floor_vheight_12 comes into play; the former introduces
// an edge from the SW to NE corner (i.e. from <0,0,?> to <1,1,?>),
// while the latter introduces an edge from the NW to SE corner
// (i.e. from <0,1,?> to <1,0,?>.) For a "lazy mesh" look, use
// exclusively _03 or _12. For a "classic mesh" look, alternate
// _03 and _12 in a checkerboard pattern. For a "smoothest surface"
// look, choose the edge based on actual vertex heights.
//
// The four vertex heights can come from several places. The simplest
// encoding is to just use the 'vheight' parameter which stores four
// explicit vertex heights for every block. This allows total independence,
// but at the cost of the largest memory usage, 1 byte per 3D block.
// Encode this with STBVOX_MAKE_VHEIGHT(vh_sw, vh_se, vh_nw, vh_ne).
// These coordinates are absolute, not affected by block rotations.
//
// An alternative if you just want to encode some very specific block
// types, not all the possibilities--say you just want half-height slopes,
// so you want (0,0,1,1) and (1,1,2,2)--then you can use block_vheight
// to specify them. The geometry rotation will cause block_vheight values
// to be rotated (because it's as if you're just defining a type of
// block). This value is also encoded with STBVOX_MAKE_VHEIGHT.
//
// If you want to save memory and you're creating a "continuous ground"
// sort of effect, you can make each vertex of the lattice share the
// vheight value; that is, two adjacent blocks that share a vertex will
// always get the same vheight value for that vertex. Then you need to
// store two bits of vheight for every block, which you do by storing it
// as part another data structure. Store the south-west vertex's vheight
// with the block. You can either use the "geometry" mesh variable (it's
// a parameter to STBVOX_MAKE_GEOMETRY) or you can store it in the
// "lighting" mesh variable if you defined STBVOX_CONFIG_VHEIGHT_IN_LIGHTING,
// using STBVOX_MAKE_LIGHTING_EXT(lighting,vheight).
//
// Note that if you start with a 2D height map and generate vheight data from
// it, you don't necessarily store only one value per (x,y) coordinate,
// as the same value may need to be set up at multiple z heights. For
// example, if height(8,8) = 13.5, then you want the block at (8,8,13)
// to store STBVOX_VERTEX_HEIGHT_half, and this will be used by blocks
// at (7,7,13), (8,7,13), (7,8,13), and (8,8,13). However, if you're
// allowing steep slopes, it might be the case that you have a block
// at (7,7,12) which is supposed to stick up to 13.5; that means
// you also need to store STBVOX_VERTEX_HEIGHT_one_and_a_half at (8,8,12).

enum
{
   STBVOX_TEXLERP_FACE_0,
   STBVOX_TEXLERP_FACE_half,
   STBVOX_TEXLERP_FACE_1,
   STBVOX_TEXLERP_FACE_use_vert,
};

enum
{
   STBVOX_TEXLERP_BASE_0,    // 0.0
   STBVOX_TEXLERP_BASE_2_7,  // 2/7
   STBVOX_TEXLERP_BASE_5_7,  // 4/7
   STBVOX_TEXLERP_BASE_1     // 1.0
};

enum
{
   STBVOX_TEXLERP3_0_8,
   STBVOX_TEXLERP3_1_8,
   STBVOX_TEXLERP3_2_8,
   STBVOX_TEXLERP3_3_8,
   STBVOX_TEXLERP3_4_8,
   STBVOX_TEXLERP3_5_8,
   STBVOX_TEXLERP3_6_8,
   STBVOX_TEXLERP3_7_8,
};

#define STBVOX_FACE_NONE  7

#define STBVOX_BLOCKTYPE_EMPTY    0

#ifdef STBVOX_BLOCKTYPE_SHORT
#define STBVOX_BLOCKTYPE_HOLE  65535
#else
#define STBVOX_BLOCKTYPE_HOLE    255
#endif

#define STBVOX_MAKE_GEOMETRY(geom, rotate, vheight) ((geom) + (rotate)*16 + (vheight)*64)
#define STBVOX_MAKE_VHEIGHT(v_sw, v_se, v_nw, v_ne) ((v_sw) + (v_se)*4 + (v_nw)*16 + (v_ne)*64)
#define STBVOX_MAKE_MATROT(block, overlay, color)  ((block) + (overlay)*4 + (color)*64)
#define STBVOX_MAKE_TEX2_REPLACE(tex2, tex2_replace_face) ((tex2) + ((tex2_replace_face) & 3)*64)
#define STBVOX_MAKE_TEXLERP(ns2, ew2, ud2, vert)  ((ew2) + (ns2)*4 + (ud2)*16 + (vert)*64)
#define STBVOX_MAKE_TEXLERP_SIMPLE(baselerp,vert,face)   ((vert)*32 + (face)*4 + (baselerp))
#define STBVOX_MAKE_TEXLERP1(vert,e2,n2,w2,s2,u4,d2) STBVOX_MAKE_TEXLERP(s2, w2, d2, vert)
#define STBVOX_MAKE_TEXLERP2(vert,e2,n2,w2,s2,u4,d2) ((u2)*16 + (n2)*4 + (s2))
#define STBVOX_MAKE_FACE_MASK(e,n,w,s,u,d)  ((e)+(n)*2+(w)*4+(s)*8+(u)*16+(d)*32)
#define STBVOX_MAKE_SIDE_TEXROT(e,n,w,s) ((e)+(n)*4+(w)*16+(s)*64)
#define STBVOX_MAKE_COLOR(color,t1,t2) ((color)+(t1)*64+(t2)*128)
#define STBVOX_MAKE_TEXLERP_VERT3(e,n,w,s,u)   ((e)+(n)*8+(w)*64+(s)*512+(u)*4096)
#define STBVOX_MAKE_TEXLERP_FACE3(e,n,w,s,u,d) ((e)+(n)*8+(w)*64+(s)*512+(u)*4096+(d)*16384)
#define STBVOX_MAKE_PACKED_COMPACT(rot, vheight, texlerp, def) ((rot)+4*(vheight)+16*(use)+32*(texlerp))

#define STBVOX_MAKE_LIGHTING_EXT(lighting, rot)  (((lighting)&~3)+(rot))
#define STBVOX_MAKE_LIGHTING(lighting)       (lighting)

#ifndef STBVOX_MAX_MESHES
#define STBVOX_MAX_MESHES      2           // opaque & transparent
#endif

#define STBVOX_MAX_MESH_SLOTS  3           // one vertex & two faces, or two vertex and one face


// don't mess with this directly, it's just here so you can
// declare stbvox_mesh_maker on the stack or as a global
struct stbvox_mesh_maker
{
   stbvox_input_description input;
   int cur_x, cur_y, cur_z;       // last unprocessed voxel if it splits into multiple buffers
   int x0,y0,z0,x1,y1,z1;
   int x_stride_in_bytes;
   int y_stride_in_bytes;
   int config_dirty;
   int default_mesh;
   unsigned int tags;

   int cube_vertex_offset[6][4]; // this allows access per-vertex data stored block-centered (like texlerp, ambient)
   int vertex_gather_offset[6][4];

   int pos_x,pos_y,pos_z;
   int full;

   // computed from user input
   char *output_cur   [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS];
   char *output_end   [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS];
   char *output_buffer[STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS];
   int   output_len   [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS];

   // computed from config
   int   output_size  [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS]; // per quad
   int   output_step  [STBVOX_MAX_MESHES][STBVOX_MAX_MESH_SLOTS]; // per vertex or per face, depending
   int   num_mesh_slots;

   float default_tex_scale[128][2];
};

#endif //  INCLUDE_STB_VOXEL_RENDER_H


#ifdef STB_VOXEL_RENDER_IMPLEMENTATION

#include <stdlib.h>
#include <assert.h>
#include <string.h> // memset

// have to use our own names to avoid the _MSC_VER path having conflicting type names
#ifndef _MSC_VER
   #include <stdint.h>
   typedef uint16_t stbvox_uint16;
   typedef uint32_t stbvox_uint32;
#else
   typedef unsigned short stbvox_uint16;
   typedef unsigned int   stbvox_uint32;
#endif

#ifdef _MSC_VER
   #define STBVOX_NOTUSED(v)  (void)(v)
#else
   #define STBVOX_NOTUSED(v)  (void)sizeof(v)
#endif



#ifndef STBVOX_CONFIG_MODE
#error "Must defined STBVOX_CONFIG_MODE to select the mode"
#endif

#if defined(STBVOX_CONFIG_ROTATION_IN_LIGHTING) && defined(STBVOX_CONFIG_VHEIGHT_IN_LIGHTING)
#error "Can't store both rotation and vheight in lighting"
#endif


// The following are candidate voxel modes. Only modes 0, 1, and 20, and 21 are
// currently implemented. Reducing the storage-per-quad further
// shouldn't improve performance, although obviously it allow you
// to create larger worlds without streaming.
//
//        
//                      -----------  Two textures -----------       -- One texture --     ---- Color only ----
//            Mode:     0     1     2     3     4     5     6        10    11    12      20    21    22    23    24
// ============================================================================================================
//  uses Tex Buffer     n     Y     Y     Y     Y     Y     Y         Y     Y     Y       n     Y     Y     Y     Y
//   bytes per quad    32    20    14    12    10     6     6         8     8     4      32    20    10     6     4
//       non-blocks   all   all   some  some  some slabs stairs     some  some  none    all   all  slabs slabs  none
//             tex1   256   256   256   256   256   256   256       256   256   256       n     n     n     n     n
//             tex2   256   256   256   256   256   256   128         n     n     n       n     n     n     n     n
//           colors    64    64    64    64    64    64    64         8     n     n     2^24  2^24  2^24  2^24  256
//        vertex ao     Y     Y     Y     Y     Y     n     n         Y     Y     n       Y     Y     Y     n     n
//   vertex texlerp     Y     Y     Y     n     n     n     n         -     -     -       -     -     -     -     -
//      x&y extents   127   127   128    64    64   128    64        64   128   128     127   127   128   128   128
//        z extents   255   255   128    64?   64?   64    64        32    64   128     255   255   128    64   128

// not sure why I only wrote down the above "result data" and didn't preserve
// the vertex formats, but here I've tried to reconstruct the designs...
//     mode # 3 is wrong, one byte too large, but they may have been an error originally

//            Mode:     0     1     2     3     4     5     6        10    11    12      20    21    22    23    24
// =============================================================================================================
//   bytes per quad    32    20    14    12    10     6     6         8     8     4            20    10     6     4
//                                                                 
//    vertex x bits     7     7     0     6     0     0     0         0     0     0             7     0     0     0
//    vertex y bits     7     7     0     0     0     0     0         0     0     0             7     0     0     0
//    vertex z bits     9     9     7     4     2     0     0         2     2     0             9     2     0     0
//   vertex ao bits     6     6     6     6     6     0     0         6     6     0             6     6     0     0
//  vertex txl bits     3     3     3     0     0     0     0         0     0     0            (3)    0     0     0
//
//   face tex1 bits    (8)    8     8     8     8     8     8         8     8     8                    
//   face tex2 bits    (8)    8     8     8     8     8     7         -     -     -         
//  face color bits    (8)    8     8     8     8     8     8         3     0     0            24    24    24     8
// face normal bits    (8)    8     8     8     6     4     7         4     4     3             8     3     4     3
//      face x bits                 7     0     6     7     6         6     7     7             0     7     7     7
//      face y bits                 7     6     6     7     6         6     7     7             0     7     7     7
//      face z bits                 2     2     6     6     6         5     6     7             0     7     6     7


#if STBVOX_CONFIG_MODE==0 || STBVOX_CONFIG_MODE==1

   #define STBVOX_ICONFIG_VERTEX_32
   #define STBVOX_ICONFIG_FACE1_1

#elif STBVOX_CONFIG_MODE==20 || STBVOX_CONFIG_MODE==21

   #define STBVOX_ICONFIG_VERTEX_32
   #define STBVOX_ICONFIG_FACE1_1
   #define STBVOX_ICONFIG_UNTEXTURED

#else
#error "Selected value of STBVOX_CONFIG_MODE is not supported"
#endif

#if STBVOX_CONFIG_MODE==0 || STBVOX_CONFIG_MODE==20
#define STBVOX_ICONFIG_FACE_ATTRIBUTE
#endif

#ifndef STBVOX_CONFIG_HLSL
// the fallback if all others are exhausted is GLSL
#define STBVOX_ICONFIG_GLSL
#endif

#ifdef STBVOX_CONFIG_OPENGL_MODELVIEW
#define STBVOX_ICONFIG_OPENGL_3_1_COMPATIBILITY
#endif

#if defined(STBVOX_ICONFIG_VERTEX_32)
   typedef stbvox_uint32 stbvox_mesh_vertex;
   #define stbvox_vertex_encode(x,y,z,ao,texlerp) \
      ((stbvox_uint32) ((x)+((y)<<7)+((z)<<14)+((ao)<<23)+((texlerp)<<29)))
#elif defined(STBVOX_ICONFIG_VERTEX_16_1)  // mode=2
   typedef stbvox_uint16 stbvox_mesh_vertex;
   #define stbvox_vertex_encode(x,y,z,ao,texlerp) \
      ((stbvox_uint16) ((z)+((ao)<<7)+((texlerp)<<13)
#elif defined(STBVOX_ICONFIG_VERTEX_16_2)  // mode=3
   typedef stbvox_uint16 stbvox_mesh_vertex;
   #define stbvox_vertex_encode(x,y,z,ao,texlerp) \
      ((stbvox_uint16) ((x)+((z)<<6))+((ao)<<10))
#elif defined(STBVOX_ICONFIG_VERTEX_8)
   typedef stbvox_uint8 stbvox_mesh_vertex;
   #define stbvox_vertex_encode(x,y,z,ao,texlerp) \
      ((stbvox_uint8) ((z)+((ao)<<6))
#else
   #error "internal error, no vertex type"
#endif

#ifdef STBVOX_ICONFIG_FACE1_1
   typedef struct
   {
      unsigned char tex1,tex2,color,face_info;
   } stbvox_mesh_face;
#else
   #error "internal error, no face type"
#endif


// 20-byte quad format:
//
// per vertex:
//
//     x:7
//     y:7
//     z:9
//     ao:6
//     tex_lerp:3
//
// per face:
//
//     tex1:8
//     tex2:8
//     face:8
//     color:8


// Faces:
//
// Faces use the bottom 3 bits to choose the texgen
// mode, and all the bits to choose the normal.
// Thus the bottom 3 bits have to be:
//      e, n, w, s, u, d, u, d
//
// These use compact names so tables are readable

enum
{
   STBVF_e,
   STBVF_n,
   STBVF_w,
   STBVF_s,
   STBVF_u,
   STBVF_d,
   STBVF_eu,
   STBVF_ed,

   STBVF_eu_wall,
   STBVF_nu_wall,
   STBVF_wu_wall,
   STBVF_su_wall,
   STBVF_ne_u,
   STBVF_ne_d,
   STBVF_nu,
   STBVF_nd,

   STBVF_ed_wall,
   STBVF_nd_wall,
   STBVF_wd_wall,
   STBVF_sd_wall,
   STBVF_nw_u,
   STBVF_nw_d,
   STBVF_wu,
   STBVF_wd,

   STBVF_ne_u_cross,
   STBVF_nw_u_cross,
   STBVF_sw_u_cross,
   STBVF_se_u_cross,
   STBVF_sw_u,
   STBVF_sw_d,
   STBVF_su,
   STBVF_sd,

   // @TODO we need more than 5 bits to encode the normal to fit the following
   // so for now we use the right projection but the wrong normal
   STBVF_se_u = STBVF_su,
   STBVF_se_d = STBVF_sd,

   STBVF_count,
};

/////////////////////////////////////////////////////////////////////////////
//
//    tables -- i'd prefer if these were at the end of the file, but: C++
//

static float stbvox_default_texgen[2][32][3] =
{
   { {  0, 1,0 }, { 0, 0, 1 }, {  0,-1,0 }, { 0, 0,-1 },
     { -1, 0,0 }, { 0, 0, 1 }, {  1, 0,0 }, { 0, 0,-1 },
     {  0,-1,0 }, { 0, 0, 1 }, {  0, 1,0 }, { 0, 0,-1 },
     {  1, 0,0 }, { 0, 0, 1 }, { -1, 0,0 }, { 0, 0,-1 },

     {  1, 0,0 }, { 0, 1, 0 }, { -1, 0,0 }, { 0,-1, 0 },
     { -1, 0,0 }, { 0,-1, 0 }, {  1, 0,0 }, { 0, 1, 0 },
     {  1, 0,0 }, { 0, 1, 0 }, { -1, 0,0 }, { 0,-1, 0 },
     { -1, 0,0 }, { 0,-1, 0 }, {  1, 0,0 }, { 0, 1, 0 },
   },
   { { 0, 0,-1 }, {  0, 1,0 }, { 0, 0, 1 }, {  0,-1,0 },
     { 0, 0,-1 }, { -1, 0,0 }, { 0, 0, 1 }, {  1, 0,0 },
     { 0, 0,-1 }, {  0,-1,0 }, { 0, 0, 1 }, {  0, 1,0 },
     { 0, 0,-1 }, {  1, 0,0 }, { 0, 0, 1 }, { -1, 0,0 },

     { 0,-1, 0 }, {  1, 0,0 }, { 0, 1, 0 }, { -1, 0,0 },
     { 0, 1, 0 }, { -1, 0,0 }, { 0,-1, 0 }, {  1, 0,0 },
     { 0,-1, 0 }, {  1, 0,0 }, { 0, 1, 0 }, { -1, 0,0 },
     { 0, 1, 0 }, { -1, 0,0 }, { 0,-1, 0 }, {  1, 0,0 },
   },
};

#define STBVOX_RSQRT2   0.7071067811865f
#define STBVOX_RSQRT3   0.5773502691896f

static float stbvox_default_normals[32][3] =
{
   { 1,0,0 },  // east
   { 0,1,0 },  // north
   { -1,0,0 }, // west
   { 0,-1,0 }, // south
   { 0,0,1 },  // up
   { 0,0,-1 }, // down
   {  STBVOX_RSQRT2,0, STBVOX_RSQRT2 }, // east & up
   {  STBVOX_RSQRT2,0, -STBVOX_RSQRT2 }, // east & down

   {  STBVOX_RSQRT2,0, STBVOX_RSQRT2 }, // east & up
   { 0, STBVOX_RSQRT2, STBVOX_RSQRT2 }, // north & up
   { -STBVOX_RSQRT2,0, STBVOX_RSQRT2 }, // west & up
   { 0,-STBVOX_RSQRT2, STBVOX_RSQRT2 }, // south & up
   {  STBVOX_RSQRT3, STBVOX_RSQRT3, STBVOX_RSQRT3 }, // ne & up
   {  STBVOX_RSQRT3, STBVOX_RSQRT3,-STBVOX_RSQRT3 }, // ne & down
   { 0, STBVOX_RSQRT2, STBVOX_RSQRT2 }, // north & up
   { 0, STBVOX_RSQRT2, -STBVOX_RSQRT2 }, // north & down

   {  STBVOX_RSQRT2,0, -STBVOX_RSQRT2 }, // east & down
   { 0, STBVOX_RSQRT2, -STBVOX_RSQRT2 }, // north & down
   { -STBVOX_RSQRT2,0, -STBVOX_RSQRT2 }, // west & down
   { 0,-STBVOX_RSQRT2, -STBVOX_RSQRT2 }, // south & down
   { -STBVOX_RSQRT3, STBVOX_RSQRT3, STBVOX_RSQRT3 }, // NW & up
   { -STBVOX_RSQRT3, STBVOX_RSQRT3,-STBVOX_RSQRT3 }, // NW & down
   { -STBVOX_RSQRT2,0, STBVOX_RSQRT2 }, // west & up
   { -STBVOX_RSQRT2,0, -STBVOX_RSQRT2 }, // west & down

   {  STBVOX_RSQRT3, STBVOX_RSQRT3,STBVOX_RSQRT3 }, // NE & up crossed
   { -STBVOX_RSQRT3, STBVOX_RSQRT3,STBVOX_RSQRT3 }, // NW & up crossed
   { -STBVOX_RSQRT3,-STBVOX_RSQRT3,STBVOX_RSQRT3 }, // SW & up crossed
   {  STBVOX_RSQRT3,-STBVOX_RSQRT3,STBVOX_RSQRT3 }, // SE & up crossed
   { -STBVOX_RSQRT3,-STBVOX_RSQRT3, STBVOX_RSQRT3 }, // SW & up
   { -STBVOX_RSQRT3,-STBVOX_RSQRT3,-STBVOX_RSQRT3 }, // SW & up
   { 0,-STBVOX_RSQRT2, STBVOX_RSQRT2 }, // south & up
   { 0,-STBVOX_RSQRT2, -STBVOX_RSQRT2 }, // south & down
};

static float stbvox_default_texscale[128][4] =
{
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
   {1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},{1,1,0,0},
};

static unsigned char stbvox_default_palette_compact[64][3] =
{
   { 255,255,255 }, { 238,238,238 }, { 221,221,221 }, { 204,204,204 },
   { 187,187,187 }, { 170,170,170 }, { 153,153,153 }, { 136,136,136 },
   { 119,119,119 }, { 102,102,102 }, {  85, 85, 85 }, {  68, 68, 68 },
   {  51, 51, 51 }, {  34, 34, 34 }, {  17, 17, 17 }, {   0,  0,  0 },
   { 255,240,240 }, { 255,220,220 }, { 255,160,160 }, { 255, 32, 32 },
   { 200,120,160 }, { 200, 60,150 }, { 220,100,130 }, { 255,  0,128 },
   { 240,240,255 }, { 220,220,255 }, { 160,160,255 }, {  32, 32,255 },
   { 120,160,200 }, {  60,150,200 }, { 100,130,220 }, {   0,128,255 },
   { 240,255,240 }, { 220,255,220 }, { 160,255,160 }, {  32,255, 32 },
   { 160,200,120 }, { 150,200, 60 }, { 130,220,100 }, { 128,255,  0 },
   { 255,255,240 }, { 255,255,220 }, { 220,220,180 }, { 255,255, 32 },
   { 200,160,120 }, { 200,150, 60 }, { 220,130,100 }, { 255,128,  0 },
   { 255,240,255 }, { 255,220,255 }, { 220,180,220 }, { 255, 32,255 },
   { 160,120,200 }, { 150, 60,200 }, { 130,100,220 }, { 128,  0,255 },
   { 240,255,255 }, { 220,255,255 }, { 180,220,220 }, {  32,255,255 },
   { 120,200,160 }, {  60,200,150 }, { 100,220,130 }, {   0,255,128 },
};

static float stbvox_default_ambient[4][4] =
{
   { 0,0,1      ,0 }, // reversed lighting direction
   { 0.5,0.5,0.5,0 }, // directional color
   { 0.5,0.5,0.5,0 }, // constant color
   { 0.5,0.5,0.5,1.0f/1000.0f/1000.0f }, // fog data for simple_fog
};

static float stbvox_default_palette[64][4];

static void stbvox_build_default_palette(void)
{
   int i;
   for (i=0; i < 64; ++i) {
      stbvox_default_palette[i][0] = stbvox_default_palette_compact[i][0] / 255.0f;
      stbvox_default_palette[i][1] = stbvox_default_palette_compact[i][1] / 255.0f;
      stbvox_default_palette[i][2] = stbvox_default_palette_compact[i][2] / 255.0f;
      stbvox_default_palette[i][3] = 1.0f;
   }
}

//////////////////////////////////////////////////////////////////////////////
//
// Shaders
//

#if defined(STBVOX_ICONFIG_OPENGL_3_1_COMPATIBILITY)
   #define STBVOX_SHADER_VERSION "#version 150 compatibility\n"
#elif defined(STBVOX_ICONFIG_OPENGL_3_0)
   #define STBVOX_SHADER_VERSION "#version 130\n"
#elif defined(STBVOX_ICONFIG_GLSL)
   #define STBVOX_SHADER_VERSION "#version 150\n"
#else
   #define STBVOX_SHADER_VERSION ""
#endif

static const char *stbvox_vertex_program =
{
      STBVOX_SHADER_VERSION

   #ifdef STBVOX_ICONFIG_FACE_ATTRIBUTE  // NOT TAG_face_sampled
      "in uvec4 attr_face;\n"
   #else
      "uniform usamplerBuffer facearray;\n"
   #endif

   #ifdef STBVOX_ICONFIG_FACE_ARRAY_2
      "uniform usamplerBuffer facearray2;\n"
   #endif

      // vertex input data
      "in uint attr_vertex;\n"

      // per-buffer data
      "uniform vec3 transform[3];\n"

      // per-frame data
      "uniform vec4 camera_pos;\n"  // 4th value is used for arbitrary hacking

      // to simplify things, we avoid using more than 256 uniform vectors
      // in fragment shader to avoid possible 1024 component limit, so
      // we access this table in the fragment shader.
      "uniform vec3 normal_table[32];\n"

      #ifndef STBVOX_CONFIG_OPENGL_MODELVIEW
         "uniform mat4x4 model_view;\n"
      #endif

      // fragment output data
      "flat out uvec4  facedata;\n"
      "     out  vec3  voxelspace_pos;\n"
      "     out  vec3  vnormal;\n"
      "     out float  texlerp;\n"
      "     out float  amb_occ;\n"

      // @TODO handle the HLSL way to do this
      "void main()\n"
      "{\n"
      #ifdef STBVOX_ICONFIG_FACE_ATTRIBUTE
         "   facedata = attr_face;\n"
      #else
         "   int faceID = gl_VertexID >> 2;\n"
         "   facedata   = texelFetch(facearray, faceID);\n"
      #endif

      // extract data for vertex
      "   vec3 offset;\n"
      "   offset.x = float( (attr_vertex       ) & 127u );\n"             // a[0..6]
      "   offset.y = float( (attr_vertex >>  7u) & 127u );\n"             // a[7..13]
      "   offset.z = float( (attr_vertex >> 14u) & 511u );\n"             // a[14..22]
      "   amb_occ  = float( (attr_vertex >> 23u) &  63u ) / 63.0;\n"      // a[23..28]
      "   texlerp  = float( (attr_vertex >> 29u)        ) /  7.0;\n"      // a[29..31]

      "   vnormal = normal_table[(facedata.w>>2u) & 31u];\n"
      "   voxelspace_pos = offset * transform[0];\n"  // mesh-to-object scale
      "   vec3 position  = voxelspace_pos + transform[1];\n"  // mesh-to-object translate

      #ifdef STBVOX_DEBUG_TEST_NORMALS
         "   if ((facedata.w & 28u) == 16u || (facedata.w & 28u) == 24u)\n"
         "      position += vnormal.xyz * camera_pos.w;\n"
      #endif

      #ifndef STBVOX_CONFIG_OPENGL_MODELVIEW
         "   gl_Position = model_view * vec4(position,1.0);\n"
      #else
         "   gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0);\n"
      #endif

      "}\n"
};


static const char *stbvox_fragment_program =
{
      STBVOX_SHADER_VERSION

      // rlerp is lerp but with t on the left, like god intended
      #if defined(STBVOX_ICONFIG_GLSL)
         "#define rlerp(t,x,y) mix(x,y,t)\n"
      #elif defined(STBVOX_CONFIG_HLSL)
         "#define rlerp(t,x,y) lerp(x,y,t)\n"
      #else
         #error "need definition of rlerp()"
      #endif


      // vertex-shader output data
      "flat in uvec4  facedata;\n"
      "     in  vec3  voxelspace_pos;\n"
      "     in  vec3  vnormal;\n"
      "     in float  texlerp;\n"
      "     in float  amb_occ;\n"

      // per-buffer data
      "uniform vec3 transform[3];\n"

      // per-frame data
      "uniform vec4 camera_pos;\n"  // 4th value is used for arbitrary hacking

      // probably constant data
      "uniform vec4 ambient[4];\n"

      #ifndef STBVOX_ICONFIG_UNTEXTURED
         // generally constant data
         "uniform sampler2DArray tex_array[2];\n"

         #ifdef STBVOX_CONFIG_PREFER_TEXBUFFER
            "uniform samplerBuffer color_table;\n"
            "uniform samplerBuffer texscale;\n"
            "uniform samplerBuffer texgen;\n"
         #else
            "uniform vec4 color_table[64];\n"
            "uniform vec4 texscale[64];\n" // instead of 128, to avoid running out of uniforms
            "uniform vec3 texgen[64];\n"
         #endif
      #endif

      "out vec4  outcolor;\n"

      #if defined(STBVOX_CONFIG_LIGHTING) || defined(STBVOX_CONFIG_LIGHTING_SIMPLE)
      "vec3 compute_lighting(vec3 pos, vec3 norm, vec3 albedo, vec3 ambient);\n"
      #endif
      #if defined(STBVOX_CONFIG_FOG) || defined(STBVOX_CONFIG_FOG_SMOOTHSTEP)
      "vec3 compute_fog(vec3 color, vec3 relative_pos, float fragment_alpha);\n"
      #endif

      "void main()\n"
      "{\n"
      "   vec3 albedo;\n"
      "   float fragment_alpha;\n"

      #ifndef STBVOX_ICONFIG_UNTEXTURED
         // unpack the values
         "   uint tex1_id = facedata.x;\n"
         "   uint tex2_id = facedata.y;\n"
         "   uint texprojid = facedata.w & 31u;\n"
         "   uint color_id  = facedata.z;\n"

         #ifndef STBVOX_CONFIG_PREFER_TEXBUFFER
            // load from uniforms / texture buffers 
            "   vec3 texgen_s = texgen[texprojid];\n"
            "   vec3 texgen_t = texgen[texprojid+32u];\n"
            "   float tex1_scale = texscale[tex1_id & 63u].x;\n"
            "   vec4 color = color_table[color_id & 63u];\n"
            #ifndef STBVOX_CONFIG_DISABLE_TEX2
            "   vec4 tex2_props = texscale[tex2_id & 63u];\n"
            #endif
         #else
            "   vec3 texgen_s = texelFetch(texgen, int(texprojid)).xyz;\n"
            "   vec3 texgen_t = texelFetch(texgen, int(texprojid+32u)).xyz;\n"
            "   float tex1_scale = texelFetch(texscale, int(tex1_id & 127u)).x;\n"
            "   vec4 color = texelFetch(color_table, int(color_id & 63u));\n"
            #ifndef STBVOX_CONFIG_DISABLE_TEX2
            "   vec4 tex2_props = texelFetch(texscale, int(tex1_id & 127u));\n"
            #endif
         #endif

         #ifndef STBVOX_CONFIG_DISABLE_TEX2
         "   float tex2_scale = tex2_props.y;\n"
         "   bool texblend_mode = tex2_props.z != 0.0;\n"
         #endif
         "   vec2 texcoord;\n"
         "   vec3 texturespace_pos = voxelspace_pos + transform[2].xyz;\n"
         "   texcoord.s = dot(texturespace_pos, texgen_s);\n"
         "   texcoord.t = dot(texturespace_pos, texgen_t);\n"

         "   vec2  texcoord_1 = tex1_scale * texcoord;\n"
         #ifndef STBVOX_CONFIG_DISABLE_TEX2
         "   vec2  texcoord_2 = tex2_scale * texcoord;\n"
         #endif

         #ifdef STBVOX_CONFIG_TEX1_EDGE_CLAMP
         "   texcoord_1 = texcoord_1 - floor(texcoord_1);\n"
         "   vec4 tex1 = textureGrad(tex_array[0], vec3(texcoord_1, float(tex1_id)), dFdx(tex1_scale*texcoord), dFdy(tex1_scale*texcoord));\n"
         #else
         "   vec4 tex1 = texture(tex_array[0], vec3(texcoord_1, float(tex1_id)));\n"
         #endif

         #ifndef STBVOX_CONFIG_DISABLE_TEX2
         #ifdef STBVOX_CONFIG_TEX2_EDGE_CLAMP
         "   texcoord_2 = texcoord_2 - floor(texcoord_2);\n"
         "   vec4 tex2 = textureGrad(tex_array[0], vec3(texcoord_2, float(tex2_id)), dFdx(tex2_scale*texcoord), dFdy(tex2_scale*texcoord));\n"
         #else
         "   vec4 tex2 = texture(tex_array[1], vec3(texcoord_2, float(tex2_id)));\n"
         #endif
         #endif

         "   bool emissive = (color.a > 1.0);\n"
         "   color.a = min(color.a, 1.0);\n"

         // recolor textures
         "   if ((color_id &  64u) != 0u) tex1.rgba *= color.rgba;\n"
         "   fragment_alpha = tex1.a;\n"
         #ifndef STBVOX_CONFIG_DISABLE_TEX2
            "   if ((color_id & 128u) != 0u) tex2.rgba *= color.rgba;\n"

            #ifdef STBVOX_CONFIG_PREMULTIPLIED_ALPHA
            "   tex2.rgba *= texlerp;\n"
            #else
            "   tex2.a *= texlerp;\n"
            #endif

            "   if (texblend_mode)\n"
            "      albedo = tex1.xyz * rlerp(tex2.a, vec3(1.0,1.0,1.0), 2.0*tex2.xyz);\n"
            "   else {\n"
            #ifdef STBVOX_CONFIG_PREMULTIPLIED_ALPHA
            "      albedo = (1.0-tex2.a)*tex1.xyz + tex2.xyz;\n"
            #else
            "      albedo = rlerp(tex2.a, tex1.xyz, tex2.xyz);\n"
            #endif
            "      fragment_alpha = tex1.a*(1-tex2.a)+tex2.a;\n"
            "   }\n"
         #else
            "      albedo = tex1.xyz;\n"
         #endif

      #else // UNTEXTURED
         "   vec4 color;"
         "   color.xyz = vec3(facedata.xyz) / 255.0;\n"
         "   bool emissive = false;\n"
         "   albedo = color.xyz;\n"
         "   fragment_alpha = 1.0;\n"
      #endif

      #ifdef STBVOX_ICONFIG_VARYING_VERTEX_NORMALS
         // currently, there are no modes that trigger this path; idea is that there
         // could be a couple of bits per vertex to perturb the normal to e.g. get curved look
         "   vec3 normal = normalize(vnormal);\n"
      #else
         "   vec3 normal = vnormal;\n"
      #endif

      "   vec3 ambient_color = dot(normal, ambient[0].xyz) * ambient[1].xyz + ambient[2].xyz;\n"

      "   ambient_color = clamp(ambient_color, 0.0, 1.0);"
      "   ambient_color *= amb_occ;\n"

      "   vec3 lit_color;\n"
      "   if (!emissive)\n"
      #if defined(STBVOX_ICONFIG_LIGHTING) || defined(STBVOX_CONFIG_LIGHTING_SIMPLE)
         "      lit_color = compute_lighting(voxelspace_pos + transform[1], normal, albedo, ambient_color);\n"
      #else
         "      lit_color = albedo * ambient_color ;\n"
      #endif
      "   else\n"
      "      lit_color = albedo;\n"

      #if defined(STBVOX_ICONFIG_FOG) || defined(STBVOX_CONFIG_FOG_SMOOTHSTEP)
         "   vec3 dist = voxelspace_pos + (transform[1] - camera_pos.xyz);\n"
         "   lit_color = compute_fog(lit_color, dist, fragment_alpha);\n"
      #endif
      
      #ifdef STBVOX_CONFIG_UNPREMULTIPLY
      "   vec4 final_color = vec4(lit_color/fragment_alpha, fragment_alpha);\n"
      #else
      "   vec4 final_color = vec4(lit_color, fragment_alpha);\n"
      #endif
      "   outcolor = final_color;\n"
      "}\n"

   #ifdef STBVOX_CONFIG_LIGHTING_SIMPLE
      "\n"
      "uniform vec3 light_source[2];\n"
      "vec3 compute_lighting(vec3 pos, vec3 norm, vec3 albedo, vec3 ambient)\n"
      "{\n"
      "   vec3 light_dir = light_source[0] - pos;\n"
      "   float lambert = dot(light_dir, norm) / dot(light_dir, light_dir);\n"
      "   vec3 diffuse = clamp(light_source[1] * clamp(lambert, 0.0, 1.0), 0.0, 1.0);\n"
      "   return (diffuse + ambient) * albedo;\n"
      "}\n"
   #endif

   #ifdef STBVOX_CONFIG_FOG_SMOOTHSTEP
      "\n"
      "vec3 compute_fog(vec3 color, vec3 relative_pos, float fragment_alpha)\n"
      "{\n"
      "   float f = dot(relative_pos,relative_pos)*ambient[3].w;\n"
      //"   f = rlerp(f, -2,1);\n"
      "   f = clamp(f, 0.0, 1.0);\n" 
      "   f = 3.0*f*f - 2.0*f*f*f;\n" // smoothstep
      //"   f = f*f;\n"  // fade in more smoothly
      #ifdef STBVOX_CONFIG_PREMULTIPLIED_ALPHA
      "   return rlerp(f, color.xyz, ambient[3].xyz*fragment_alpha);\n"
      #else
      "   return rlerp(f, color.xyz, ambient[3].xyz);\n"
      #endif
      "}\n"
   #endif
};


// still requires full alpha lookups, including tex2 if texblend is enabled
static const char *stbvox_fragment_program_alpha_only =
{
   STBVOX_SHADER_VERSION

   // vertex-shader output data
   "flat in uvec4  facedata;\n"
   "     in  vec3  voxelspace_pos;\n"
   "     in float  texlerp;\n"

   // per-buffer data
   "uniform vec3 transform[3];\n"

   #ifndef STBVOX_ICONFIG_UNTEXTURED
      // generally constant data
      "uniform sampler2DArray tex_array[2];\n"

      #ifdef STBVOX_CONFIG_PREFER_TEXBUFFER
         "uniform samplerBuffer texscale;\n"
         "uniform samplerBuffer texgen;\n"
      #else
         "uniform vec4 texscale[64];\n" // instead of 128, to avoid running out of uniforms
         "uniform vec3 texgen[64];\n"
      #endif
   #endif

   "out vec4  outcolor;\n"

   "void main()\n"
   "{\n"
   "   vec3 albedo;\n"
   "   float fragment_alpha;\n"

   #ifndef STBVOX_ICONFIG_UNTEXTURED
      // unpack the values
      "   uint tex1_id = facedata.x;\n"
      "   uint tex2_id = facedata.y;\n"
      "   uint texprojid = facedata.w & 31u;\n"
      "   uint color_id  = facedata.z;\n"

      #ifndef STBVOX_CONFIG_PREFER_TEXBUFFER
         // load from uniforms / texture buffers 
         "   vec3 texgen_s = texgen[texprojid];\n"
         "   vec3 texgen_t = texgen[texprojid+32u];\n"
         "   float tex1_scale = texscale[tex1_id & 63u].x;\n"
         "   vec4 color = color_table[color_id & 63u];\n"
         "   vec4 tex2_props = texscale[tex2_id & 63u];\n"
      #else
         "   vec3 texgen_s = texelFetch(texgen, int(texprojid)).xyz;\n"
         "   vec3 texgen_t = texelFetch(texgen, int(texprojid+32u)).xyz;\n"
         "   float tex1_scale = texelFetch(texscale, int(tex1_id & 127u)).x;\n"
         "   vec4 color = texelFetch(color_table, int(color_id & 63u));\n"
         "   vec4 tex2_props = texelFetch(texscale, int(tex2_id & 127u));\n"
      #endif

      #ifndef STBVOX_CONFIG_DISABLE_TEX2
      "   float tex2_scale = tex2_props.y;\n"
      "   bool texblend_mode = tex2_props.z &((facedata.w & 128u) != 0u);\n"
      #endif

      "   color.a = min(color.a, 1.0);\n"

      "   vec2 texcoord;\n"
      "   vec3 texturespace_pos = voxelspace_pos + transform[2].xyz;\n"
      "   texcoord.s = dot(texturespace_pos, texgen_s);\n"
      "   texcoord.t = dot(texturespace_pos, texgen_t);\n"

      "   vec2  texcoord_1 = tex1_scale * texcoord;\n"
      "   vec2  texcoord_2 = tex2_scale * texcoord;\n"

      #ifdef STBVOX_CONFIG_TEX1_EDGE_CLAMP
      "   texcoord_1 = texcoord_1 - floor(texcoord_1);\n"
      "   vec4 tex1 = textureGrad(tex_array[0], vec3(texcoord_1, float(tex1_id)), dFdx(tex1_scale*texcoord), dFdy(tex1_scale*texcoord));\n"
      #else
      "   vec4 tex1 = texture(tex_array[0], vec3(texcoord_1, float(tex1_id)));\n"
      #endif

      "   if ((color_id &  64u) != 0u) tex1.a *= color.a;\n"
      "   fragment_alpha = tex1.a;\n"

      #ifndef STBVOX_CONFIG_DISABLE_TEX2
      "   if (!texblend_mode) {\n"
         #ifdef STBVOX_CONFIG_TEX2_EDGE_CLAMP
         "      texcoord_2 = texcoord_2 - floor(texcoord_2);\n"
         "      vec4 tex2 = textureGrad(tex_array[0], vec3(texcoord_2, float(tex2_id)), dFdx(tex2_scale*texcoord), dFdy(tex2_scale*texcoord));\n"
         #else
         "      vec4 tex2 = texture(tex_array[1], vec3(texcoord_2, float(tex2_id)));\n"
         #endif

         "      tex2.a *= texlerp;\n"
         "      if ((color_id & 128u) != 0u) tex2.rgba *= color.a;\n"
         "      fragment_alpha = tex1.a*(1-tex2.a)+tex2.a;\n"
         "}\n"
      "\n"
      #endif

   #else // UNTEXTURED
      "   fragment_alpha = 1.0;\n"
   #endif

   "   outcolor = vec4(0.0, 0.0, 0.0, fragment_alpha);\n"
   "}\n"
};


STBVXDEC char *stbvox_get_vertex_shader(void)
{
   return (char *) stbvox_vertex_program;
}

STBVXDEC char *stbvox_get_fragment_shader(void)
{
   return (char *) stbvox_fragment_program;
}

STBVXDEC char *stbvox_get_fragment_shader_alpha_only(void)
{
   return (char *) stbvox_fragment_program_alpha_only;
}

static float stbvox_dummy_transform[3][3];

#ifdef STBVOX_CONFIG_PREFER_TEXBUFFER
#define STBVOX_TEXBUF 1
#else
#define STBVOX_TEXBUF 0
#endif

static stbvox_uniform_info stbvox_uniforms[] =
{
   { STBVOX_UNIFORM_TYPE_sampler  ,  4,   1, (char*) "facearray"    , 0                           },
   { STBVOX_UNIFORM_TYPE_vec3     , 12,   3, (char*) "transform"    , stbvox_dummy_transform[0]   },
   { STBVOX_UNIFORM_TYPE_sampler  ,  4,   2, (char*) "tex_array"    , 0                           },
   { STBVOX_UNIFORM_TYPE_vec4     , 16, 128, (char*) "texscale"     , stbvox_default_texscale[0] , STBVOX_TEXBUF },
   { STBVOX_UNIFORM_TYPE_vec4     , 16,  64, (char*) "color_table"  , stbvox_default_palette[0]  , STBVOX_TEXBUF },
   { STBVOX_UNIFORM_TYPE_vec3     , 12,  32, (char*) "normal_table" , stbvox_default_normals[0]   },
   { STBVOX_UNIFORM_TYPE_vec3     , 12,  64, (char*) "texgen"       , stbvox_default_texgen[0][0], STBVOX_TEXBUF },
   { STBVOX_UNIFORM_TYPE_vec4     , 16,   4, (char*) "ambient"      , stbvox_default_ambient[0]   },
   { STBVOX_UNIFORM_TYPE_vec4     , 16,   1, (char*) "camera_pos"   , stbvox_dummy_transform[0]   },
};

STBVXDEC int stbvox_get_uniform_info(stbvox_uniform_info *info, int uniform)
{
   if (uniform < 0 || uniform >= STBVOX_UNIFORM_count)
      return 0;

   *info = stbvox_uniforms[uniform];
   return 1;
}

#define STBVOX_GET_GEO(geom_data)  ((geom_data) & 15)

typedef struct
{
   unsigned char block:2;
   unsigned char overlay:2;
   unsigned char facerot:2;
   unsigned char ecolor:2;
} stbvox_rotate;

typedef struct
{
   unsigned char x,y,z;
} stbvox_pos;

static unsigned char stbvox_rotate_face[6][4] =
{
   { 0,1,2,3 },
   { 1,2,3,0 },
   { 2,3,0,1 },
   { 3,0,1,2 },
   { 4,4,4,4 },
   { 5,5,5,5 },   
};

#define STBVOX_ROTATE(x,r)   stbvox_rotate_face[x][r] // (((x)+(r))&3)

stbvox_mesh_face stbvox_compute_mesh_face_value(stbvox_mesh_maker *mm, stbvox_rotate rot, int face, int v_off, int normal)
{
   stbvox_mesh_face face_data = { 0 };
   stbvox_block_type bt = mm->input.blocktype[v_off];
   unsigned char bt_face = STBVOX_ROTATE(face, rot.block);
   int facerot = rot.facerot;

   #ifdef STBVOX_ICONFIG_UNTEXTURED
   if (mm->input.rgb) {
      face_data.tex1  = mm->input.rgb[v_off].r;
      face_data.tex2  = mm->input.rgb[v_off].g;
      face_data.color = mm->input.rgb[v_off].b;
      face_data.face_info = (normal<<2);
      return face_data;
   }
   #else
   unsigned char color_face;

   if (mm->input.color)
      face_data.color = mm->input.color[v_off];

   if (mm->input.block_tex1)
      face_data.tex1 = mm->input.block_tex1[bt];
   else if (mm->input.block_tex1_face)
      face_data.tex1 = mm->input.block_tex1_face[bt][bt_face];
   else
      face_data.tex1 = bt;

   if (mm->input.block_tex2)
      face_data.tex2 = mm->input.block_tex2[bt];
   else if (mm->input.block_tex2_face)
      face_data.tex2 = mm->input.block_tex2_face[bt][bt_face];

   if (mm->input.block_color) {
      unsigned char mcol = mm->input.block_color[bt];
      if (mcol)
         face_data.color = mcol;
   } else if (mm->input.block_color_face) {
      unsigned char mcol = mm->input.block_color_face[bt][bt_face];
      if (mcol)
         face_data.color = mcol;
   }

   if (face <= STBVOX_FACE_south) {
      if (mm->input.side_texrot)
         facerot = mm->input.side_texrot[v_off] >> (2 * face);
      else if (mm->input.block_side_texrot)
         facerot = mm->input.block_side_texrot[v_off] >> (2 * bt_face);
   }

   if (mm->input.overlay) {
      int over_face = STBVOX_ROTATE(face, rot.overlay);
      unsigned char over = mm->input.overlay[v_off];
      if (over) {
         if (mm->input.overlay_tex1) {
            unsigned char rep1 = mm->input.overlay_tex1[over][over_face];
            if (rep1)
               face_data.tex1 = rep1;
         }
         if (mm->input.overlay_tex2) {
            unsigned char rep2 = mm->input.overlay_tex2[over][over_face];
            if (rep2)
               face_data.tex2 = rep2;
         }
         if (mm->input.overlay_color) {
            unsigned char rep3 = mm->input.overlay_color[over][over_face];
            if (rep3)
               face_data.color = rep3;
         }

         if (mm->input.overlay_side_texrot && face <= STBVOX_FACE_south)
            facerot = mm->input.overlay_side_texrot[over] >> (2*over_face);
      }
   }

   if (mm->input.tex2_for_tex1)
      face_data.tex2 = mm->input.tex2_for_tex1[face_data.tex1];
   if (mm->input.tex2)
      face_data.tex2 = mm->input.tex2[v_off];
   if (mm->input.tex2_replace) {
      if (mm->input.tex2_facemask[v_off] & (1 << face))
         face_data.tex2 = mm->input.tex2_replace[v_off];
   }

   color_face = STBVOX_ROTATE(face, rot.ecolor);
   if (mm->input.extended_color) {
      unsigned char ec = mm->input.extended_color[v_off];
      if (mm->input.ecolor_facemask[ec] & (1 << color_face))
         face_data.color = mm->input.ecolor_color[ec];
   }

   if (mm->input.color2) {
      if (mm->input.color2_facemask[v_off] & (1 << color_face))
         face_data.color = mm->input.color2[v_off];
      if (mm->input.color3 && (mm->input.color3_facemask[v_off] & (1 << color_face)))
         face_data.color = mm->input.color3[v_off];
   }
   #endif

   face_data.face_info = (normal<<2) + facerot;
   return face_data;
}

// these are the types of faces each block can have
enum
{
   STBVOX_FT_none    ,
   STBVOX_FT_upper   ,
   STBVOX_FT_lower   ,
   STBVOX_FT_solid   ,
   STBVOX_FT_diag_012,
   STBVOX_FT_diag_023,
   STBVOX_FT_diag_013,
   STBVOX_FT_diag_123,
   STBVOX_FT_force   , // can't be covered up, used for internal faces, also hides nothing
   STBVOX_FT_partial , // only covered by solid, never covers anything else

   STBVOX_FT_count
};

static unsigned char stbvox_face_lerp[6] = { 0,2,0,2,4,4 };
static unsigned char stbvox_vert3_lerp[5] = { 0,3,6,9,12 };
static unsigned char stbvox_vert_lerp_for_face_lerp[4] = { 0, 4, 7, 7 };
static unsigned char stbvox_face3_lerp[6] = { 0,3,6,9,12,14 };
static unsigned char stbvox_vert_lerp_for_simple[4] = { 0,2,5,7 };
static unsigned char stbvox_face3_updown[8] = { 0,2,5,7,0,2,5,7 }; // ignore top bit

// vertex offsets for face vertices
static unsigned char stbvox_vertex_vector[6][4][3] =
{
   { { 1,0,1 }, { 1,1,1 }, { 1,1,0 }, { 1,0,0 } }, // east
   { { 1,1,1 }, { 0,1,1 }, { 0,1,0 }, { 1,1,0 } }, // north
   { { 0,1,1 }, { 0,0,1 }, { 0,0,0 }, { 0,1,0 } }, // west
   { { 0,0,1 }, { 1,0,1 }, { 1,0,0 }, { 0,0,0 } }, // south
   { { 0,1,1 }, { 1,1,1 }, { 1,0,1 }, { 0,0,1 } }, // up
   { { 0,0,0 }, { 1,0,0 }, { 1,1,0 }, { 0,1,0 } }, // down
};

// stbvox_vertex_vector, but read coordinates as binary numbers, zyx
static unsigned char stbvox_vertex_selector[6][4] =
{
   { 5,7,3,1 },
   { 7,6,2,3 },
   { 6,4,0,2 },
   { 4,5,1,0 },
   { 6,7,5,4 },
   { 0,1,3,2 },
};

static stbvox_mesh_vertex stbvox_vmesh_delta_normal[6][4] =
{
   {  stbvox_vertex_encode(1,0,1,0,0) , 
      stbvox_vertex_encode(1,1,1,0,0) ,
      stbvox_vertex_encode(1,1,0,0,0) ,
      stbvox_vertex_encode(1,0,0,0,0)  },
   {  stbvox_vertex_encode(1,1,1,0,0) ,
      stbvox_vertex_encode(0,1,1,0,0) ,
      stbvox_vertex_encode(0,1,0,0,0) ,
      stbvox_vertex_encode(1,1,0,0,0)  },
   {  stbvox_vertex_encode(0,1,1,0,0) ,
      stbvox_vertex_encode(0,0,1,0,0) ,
      stbvox_vertex_encode(0,0,0,0,0) ,
      stbvox_vertex_encode(0,1,0,0,0)  },
   {  stbvox_vertex_encode(0,0,1,0,0) ,
      stbvox_vertex_encode(1,0,1,0,0) ,
      stbvox_vertex_encode(1,0,0,0,0) ,
      stbvox_vertex_encode(0,0,0,0,0)  },
   {  stbvox_vertex_encode(0,1,1,0,0) ,
      stbvox_vertex_encode(1,1,1,0,0) ,
      stbvox_vertex_encode(1,0,1,0,0) ,
      stbvox_vertex_encode(0,0,1,0,0)  },
   {  stbvox_vertex_encode(0,0,0,0,0) ,
      stbvox_vertex_encode(1,0,0,0,0) ,
      stbvox_vertex_encode(1,1,0,0,0) ,
      stbvox_vertex_encode(0,1,0,0,0)  }
};

static stbvox_mesh_vertex stbvox_vmesh_pre_vheight[6][4] =
{
   {  stbvox_vertex_encode(1,0,0,0,0) , 
      stbvox_vertex_encode(1,1,0,0,0) ,
      stbvox_vertex_encode(1,1,0,0,0) ,
      stbvox_vertex_encode(1,0,0,0,0)  },
   {  stbvox_vertex_encode(1,1,0,0,0) ,
      stbvox_vertex_encode(0,1,0,0,0) ,
      stbvox_vertex_encode(0,1,0,0,0) ,
      stbvox_vertex_encode(1,1,0,0,0)  },
   {  stbvox_vertex_encode(0,1,0,0,0) ,
      stbvox_vertex_encode(0,0,0,0,0) ,
      stbvox_vertex_encode(0,0,0,0,0) ,
      stbvox_vertex_encode(0,1,0,0,0)  },
   {  stbvox_vertex_encode(0,0,0,0,0) ,
      stbvox_vertex_encode(1,0,0,0,0) ,
      stbvox_vertex_encode(1,0,0,0,0) ,
      stbvox_vertex_encode(0,0,0,0,0)  },
   {  stbvox_vertex_encode(0,1,0,0,0) ,
      stbvox_vertex_encode(1,1,0,0,0) ,
      stbvox_vertex_encode(1,0,0,0,0) ,
      stbvox_vertex_encode(0,0,0,0,0)  },
   {  stbvox_vertex_encode(0,0,0,0,0) ,
      stbvox_vertex_encode(1,0,0,0,0) ,
      stbvox_vertex_encode(1,1,0,0,0) ,
      stbvox_vertex_encode(0,1,0,0,0)  }
};

static stbvox_mesh_vertex stbvox_vmesh_delta_half_z[6][4] =
{
   { stbvox_vertex_encode(1,0,2,0,0) , 
     stbvox_vertex_encode(1,1,2,0,0) ,
     stbvox_vertex_encode(1,1,0,0,0) ,
     stbvox_vertex_encode(1,0,0,0,0)  },
   { stbvox_vertex_encode(1,1,2,0,0) ,
     stbvox_vertex_encode(0,1,2,0,0) ,
     stbvox_vertex_encode(0,1,0,0,0) ,
     stbvox_vertex_encode(1,1,0,0,0)  },
   { stbvox_vertex_encode(0,1,2,0,0) ,
     stbvox_vertex_encode(0,0,2,0,0) ,
     stbvox_vertex_encode(0,0,0,0,0) ,
     stbvox_vertex_encode(0,1,0,0,0)  },
   { stbvox_vertex_encode(0,0,2,0,0) ,
     stbvox_vertex_encode(1,0,2,0,0) ,
     stbvox_vertex_encode(1,0,0,0,0) ,
     stbvox_vertex_encode(0,0,0,0,0)  },
   { stbvox_vertex_encode(0,1,2,0,0) ,
     stbvox_vertex_encode(1,1,2,0,0) ,
     stbvox_vertex_encode(1,0,2,0,0) ,
     stbvox_vertex_encode(0,0,2,0,0)  },
   { stbvox_vertex_encode(0,0,0,0,0) ,
     stbvox_vertex_encode(1,0,0,0,0) ,
     stbvox_vertex_encode(1,1,0,0,0) ,
     stbvox_vertex_encode(0,1,0,0,0)  }
};

static stbvox_mesh_vertex stbvox_vmesh_crossed_pair[6][4] =
{
   { stbvox_vertex_encode(1,0,2,0,0) , 
     stbvox_vertex_encode(0,1,2,0,0) ,
     stbvox_vertex_encode(0,1,0,0,0) ,
     stbvox_vertex_encode(1,0,0,0,0)  },
   { stbvox_vertex_encode(1,1,2,0,0) ,
     stbvox_vertex_encode(0,0,2,0,0) ,
     stbvox_vertex_encode(0,0,0,0,0) ,
     stbvox_vertex_encode(1,1,0,0,0)  },
   { stbvox_vertex_encode(0,1,2,0,0) ,
     stbvox_vertex_encode(1,0,2,0,0) ,
     stbvox_vertex_encode(1,0,0,0,0) ,
     stbvox_vertex_encode(0,1,0,0,0)  },
   { stbvox_vertex_encode(0,0,2,0,0) ,
     stbvox_vertex_encode(1,1,2,0,0) ,
     stbvox_vertex_encode(1,1,0,0,0) ,
     stbvox_vertex_encode(0,0,0,0,0)  },
   // not used, so we leave it non-degenerate to make sure it doesn't get gen'd accidentally
   { stbvox_vertex_encode(0,1,2,0,0) ,
     stbvox_vertex_encode(1,1,2,0,0) ,
     stbvox_vertex_encode(1,0,2,0,0) ,
     stbvox_vertex_encode(0,0,2,0,0)  },
   { stbvox_vertex_encode(0,0,0,0,0) ,
     stbvox_vertex_encode(1,0,0,0,0) ,
     stbvox_vertex_encode(1,1,0,0,0) ,
     stbvox_vertex_encode(0,1,0,0,0)  }
};

#define STBVOX_MAX_GEOM     16
#define STBVOX_NUM_ROTATION  4

// this is used to determine if a face is ever generated at all
static unsigned char stbvox_hasface[STBVOX_MAX_GEOM][STBVOX_NUM_ROTATION] =
{
   { 0,0,0,0 }, // empty
   { 0,0,0,0 }, // knockout
   { 63,63,63,63 }, // solid
   { 63,63,63,63 }, // transp
   { 63,63,63,63 }, // slab
   { 63,63,63,63 }, // slab
   { 1|2|4|48, 8|1|2|48, 4|8|1|48, 2|4|8|48, }, // floor slopes
   { 1|2|4|48, 8|1|2|48, 4|8|1|48, 2|4|8|48, }, // ceil slopes
   { 47,47,47,47 }, // wall-projected diagonal with down face
   { 31,31,31,31 }, // wall-projected diagonal with up face
   { 63,63,63,63 }, // crossed-pair has special handling, but avoid early-out
   { 63,63,63,63 }, // force
   { 63,63,63,63 }, // vheight
   { 63,63,63,63 }, // vheight
   { 63,63,63,63 }, // vheight
   { 63,63,63,63 }, // vheight
};

// this determines which face type above is visible on each side of the geometry
static unsigned char stbvox_facetype[STBVOX_GEOM_count][6] =
{
   { 0, },  // STBVOX_GEOM_empty
   { STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid }, // knockout
   { STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid, STBVOX_FT_solid }, // solid
   { STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force }, // transp

   { STBVOX_FT_upper, STBVOX_FT_upper, STBVOX_FT_upper, STBVOX_FT_upper, STBVOX_FT_solid, STBVOX_FT_force },
   { STBVOX_FT_lower, STBVOX_FT_lower, STBVOX_FT_lower, STBVOX_FT_lower, STBVOX_FT_force, STBVOX_FT_solid },
   { STBVOX_FT_diag_123, STBVOX_FT_solid, STBVOX_FT_diag_023, STBVOX_FT_none, STBVOX_FT_force, STBVOX_FT_solid },
   { STBVOX_FT_diag_012, STBVOX_FT_solid, STBVOX_FT_diag_013, STBVOX_FT_none, STBVOX_FT_solid, STBVOX_FT_force },

   { STBVOX_FT_diag_123, STBVOX_FT_solid, STBVOX_FT_diag_023, STBVOX_FT_force, STBVOX_FT_none, STBVOX_FT_solid },
   { STBVOX_FT_diag_012, STBVOX_FT_solid, STBVOX_FT_diag_013, STBVOX_FT_force, STBVOX_FT_solid, STBVOX_FT_none },
   { STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, 0,0 }, // crossed pair
   { STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force, STBVOX_FT_force }, // GEOM_force

   { STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial, STBVOX_FT_force, STBVOX_FT_solid }, // floor vheight, all neighbors forced
   { STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial, STBVOX_FT_force, STBVOX_FT_solid }, // floor vheight, all neighbors forced
   { STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial, STBVOX_FT_solid, STBVOX_FT_force }, // ceil vheight, all neighbors forced
   { STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial,STBVOX_FT_partial, STBVOX_FT_solid, STBVOX_FT_force }, // ceil vheight, all neighbors forced
};

// This table indicates what normal to use for the "up" face of a sloped geom
// @TODO this could be done with math given the current arrangement of the enum, but let's not require it
static unsigned char stbvox_floor_slope_for_rot[4] =
{
   STBVF_su,
   STBVF_wu, // @TODO: why is this reversed from what it should be? this is a north-is-up face, so slope should be south&up
   STBVF_nu,
   STBVF_eu,
};

static unsigned char stbvox_ceil_slope_for_rot[4] =
{
   STBVF_sd,
   STBVF_ed,
   STBVF_nd,
   STBVF_wd,
};

// this table indicates whether, for each pair of types above, a face is visible.
// each value indicates whether a given type is visible for all neighbor types
static unsigned short stbvox_face_visible[STBVOX_FT_count] =
{
   // we encode the table by listing which cases cause *obscuration*, and bitwise inverting that
   // table is pre-shifted by 5 to save a shift when it's accessed
   (unsigned short) ((~0x07ffu                                          )<<5),  // none is completely obscured by everything
   (unsigned short) ((~((1u<<STBVOX_FT_solid) | (1<<STBVOX_FT_upper)   ))<<5),  // upper
   (unsigned short) ((~((1u<<STBVOX_FT_solid) | (1<<STBVOX_FT_lower)   ))<<5),  // lower
   (unsigned short) ((~((1u<<STBVOX_FT_solid)                          ))<<5),  // solid is only completely obscured only by solid
   (unsigned short) ((~((1u<<STBVOX_FT_solid) | (1<<STBVOX_FT_diag_013)))<<5),  // diag012 matches diag013
   (unsigned short) ((~((1u<<STBVOX_FT_solid) | (1<<STBVOX_FT_diag_123)))<<5),  // diag023 matches diag123
   (unsigned short) ((~((1u<<STBVOX_FT_solid) | (1<<STBVOX_FT_diag_012)))<<5),  // diag013 matches diag012
   (unsigned short) ((~((1u<<STBVOX_FT_solid) | (1<<STBVOX_FT_diag_023)))<<5),  // diag123 matches diag023
   (unsigned short) ((~0u                                               )<<5),  // force is always rendered regardless, always forces neighbor
   (unsigned short) ((~((1u<<STBVOX_FT_solid)                          ))<<5),  // partial is only completely obscured only by solid
};

// the vertex heights of the block types, in binary vertex order (zyx):
// lower: SW, SE, NW, NE; upper: SW, SE, NW, NE
static stbvox_mesh_vertex stbvox_geometry_vheight[8][8] =
{
   #define STBVOX_HEIGHTS(a,b,c,d,e,f,g,h) \
     { stbvox_vertex_encode(0,0,a,0,0),  \
       stbvox_vertex_encode(0,0,b,0,0),  \
       stbvox_vertex_encode(0,0,c,0,0),  \
       stbvox_vertex_encode(0,0,d,0,0),  \
       stbvox_vertex_encode(0,0,e,0,0),  \
       stbvox_vertex_encode(0,0,f,0,0),  \
       stbvox_vertex_encode(0,0,g,0,0),  \
       stbvox_vertex_encode(0,0,h,0,0) }

   STBVOX_HEIGHTS(0,0,0,0, 2,2,2,2),
   STBVOX_HEIGHTS(0,0,0,0, 2,2,2,2),
   STBVOX_HEIGHTS(0,0,0,0, 2,2,2,2),
   STBVOX_HEIGHTS(0,0,0,0, 2,2,2,2),
   STBVOX_HEIGHTS(1,1,1,1, 2,2,2,2),
   STBVOX_HEIGHTS(0,0,0,0, 1,1,1,1),
   STBVOX_HEIGHTS(0,0,0,0, 0,0,2,2),
   STBVOX_HEIGHTS(2,2,0,0, 2,2,2,2),
};

// rotate vertices defined as [z][y][x] coords
static unsigned char stbvox_rotate_vertex[8][4] =
{
   { 0,1,3,2 }, // zyx=000
   { 1,3,2,0 }, // zyx=001
   { 2,0,1,3 }, // zyx=010
   { 3,2,0,1 }, // zyx=011
   { 4,5,7,6 }, // zyx=100
   { 5,7,6,4 }, // zyx=101
   { 6,4,5,7 }, // zyx=110
   { 7,6,4,5 }, // zyx=111
};

#ifdef STBVOX_CONFIG_OPTIMIZED_VHEIGHT
// optimized vheight generates a single normal over the entire face, even if it's not planar
static unsigned char stbvox_optimized_face_up_normal[4][4][4][4] =
{
   {
      {
         { STBVF_u   , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, },
         { STBVF_nw_u, STBVF_nu  , STBVF_nu  , STBVF_ne_u, },
         { STBVF_nw_u, STBVF_nu  , STBVF_nu  , STBVF_nu  , },
         { STBVF_nw_u, STBVF_nw_u, STBVF_nu  , STBVF_nu  , },
      },{
         { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_ne_u, },
         { STBVF_u   , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, },
         { STBVF_nw_u, STBVF_nu  , STBVF_nu  , STBVF_ne_u, },
         { STBVF_nw_u, STBVF_nu  , STBVF_nu  , STBVF_nu  , },
      },{
         { STBVF_eu  , STBVF_eu  , STBVF_eu  , STBVF_eu  , },
         { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_ne_u, },
         { STBVF_u   , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, },
         { STBVF_nw_u, STBVF_nu  , STBVF_nu  , STBVF_ne_u, },
      },{
         { STBVF_eu  , STBVF_eu  , STBVF_eu  , STBVF_eu  , },
         { STBVF_eu  , STBVF_eu  , STBVF_eu  , STBVF_eu  , },
         { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_ne_u, },
         { STBVF_u   , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, },
      },
   },{
      {
         { STBVF_sw_u, STBVF_u   , STBVF_ne_u, STBVF_ne_u, },
         { STBVF_wu  , STBVF_nw_u, STBVF_nu  , STBVF_nu  , },
         { STBVF_wu  , STBVF_nw_u, STBVF_nu  , STBVF_nu  , },
         { STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, STBVF_nu  , },
      },{
         { STBVF_su  , STBVF_su  , STBVF_eu  , STBVF_eu  , },
         { STBVF_sw_u, STBVF_u   , STBVF_ne_u, STBVF_ne_u, },
         { STBVF_wu  , STBVF_nw_u, STBVF_nu  , STBVF_nu  , },
         { STBVF_wu  , STBVF_nw_u, STBVF_nu  , STBVF_nu  , },
      },{
         { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_eu  , },
         { STBVF_su  , STBVF_su  , STBVF_eu  , STBVF_eu  , },
         { STBVF_sw_u, STBVF_u   , STBVF_ne_u, STBVF_ne_u, },
         { STBVF_wu  , STBVF_nw_u, STBVF_nu  , STBVF_nu  , },
      },{
         { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_eu  , },
         { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_eu  , },
         { STBVF_su  , STBVF_su  , STBVF_eu  , STBVF_eu  , },
         { STBVF_sw_u, STBVF_u   , STBVF_ne_u, STBVF_ne_u, },
      },
   },{
      {
         { STBVF_sw_u, STBVF_sw_u, STBVF_u   , STBVF_ne_u, },
         { STBVF_wu  , STBVF_wu  , STBVF_nw_u, STBVF_nu  , },
         { STBVF_wu  , STBVF_wu  , STBVF_nw_u, STBVF_nu  , },
         { STBVF_wu  , STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, },
      },{
         { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_eu  , },
         { STBVF_sw_u, STBVF_sw_u, STBVF_u   , STBVF_ne_u, },
         { STBVF_wu  , STBVF_wu  , STBVF_nw_u, STBVF_nu  , },
         { STBVF_wu  , STBVF_wu  , STBVF_nw_u, STBVF_nu  , },
      },{
         { STBVF_su  , STBVF_su  , STBVF_eu  , STBVF_eu  , },
         { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_eu  , },
         { STBVF_sw_u, STBVF_sw_u, STBVF_u   , STBVF_ne_u, },
         { STBVF_wu  , STBVF_wu  , STBVF_nw_u, STBVF_nu  , },
      },{
         { STBVF_su  , STBVF_su  , STBVF_eu  , STBVF_eu  , },
         { STBVF_su  , STBVF_su  , STBVF_eu  , STBVF_eu  , },
         { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_eu  , },
         { STBVF_sw_u, STBVF_sw_u, STBVF_u   , STBVF_ne_u, },
      },
   },{
      {
         { STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u   , },
         { STBVF_sw_u, STBVF_wu  , STBVF_wu  , STBVF_nw_u, },
         { STBVF_wu  , STBVF_wu  , STBVF_wu  , STBVF_nw_u, },
         { STBVF_wu  , STBVF_wu  , STBVF_nw_u, STBVF_nw_u, },
      },{
         { STBVF_sw_u, STBVF_su  , STBVF_su  , STBVF_su  , },
         { STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u   , },
         { STBVF_sw_u, STBVF_wu  , STBVF_wu  , STBVF_nw_u, },
         { STBVF_wu  , STBVF_wu  , STBVF_wu  , STBVF_nw_u, },
      },{
         { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_eu  , },
         { STBVF_sw_u, STBVF_su  , STBVF_su  , STBVF_su  , },
         { STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u   , },
         { STBVF_sw_u, STBVF_wu  , STBVF_wu  , STBVF_nw_u, },
      },{
         { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_eu  , },
         { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_eu  , },
         { STBVF_sw_u, STBVF_su  , STBVF_su  , STBVF_su  , },
         { STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u   , },
      },
   },
};
#else
// which normal to use for a given vheight that's planar
// @TODO: this table was constructed by hand and may have bugs
//                                 nw se sw
static unsigned char stbvox_planar_face_up_normal[4][4][4] =
{   
   {                                                      // sw,se,nw,ne;  ne = se+nw-sw
      { STBVF_u   , 0         , 0         , 0          }, //  0,0,0,0; 1,0,0,-1; 2,0,0,-2; 3,0,0,-3;
      { STBVF_u   , STBVF_u   , 0         , 0          }, //  0,1,0,1; 1,1,0, 0; 2,1,0,-1; 3,1,0,-2;
      { STBVF_wu  , STBVF_nw_u, STBVF_nu  , 0          }, //  0,2,0,2; 1,2,0, 1; 2,2,0, 0; 3,2,0,-1;
      { STBVF_wu  , STBVF_nw_u, STBVF_nw_u, STBVF_nu   }, //  0,3,0,3; 1,3,0, 2; 2,3,0, 1; 3,3,0, 0;
   },{
      { STBVF_u   , STBVF_u   , 0         , 0          }, //  0,0,1,1; 1,0,1, 0; 2,0,1,-1; 3,0,1,-2;
      { STBVF_sw_u, STBVF_u   , STBVF_ne_u, 0          }, //  0,1,1,2; 1,1,1, 1; 2,1,1, 0; 3,1,1,-1;
      { STBVF_sw_u, STBVF_u   , STBVF_u   , STBVF_ne_u }, //  0,2,1,3; 1,2,1, 2; 2,2,1, 1; 3,2,1, 0;
      { 0         , STBVF_wu  , STBVF_nw_u, STBVF_nu   }, //  0,3,1,4; 1,3,1, 3; 2,3,1, 2; 3,3,1, 1;
   },{
      { STBVF_su  , STBVF_se_u, STBVF_eu  , 0          }, //  0,0,2,2; 1,0,2, 1; 2,0,2, 0; 3,0,2,-1;
      { STBVF_sw_u, STBVF_u   , STBVF_u   , STBVF_ne_u }, //  0,1,2,3; 1,1,2, 2; 2,1,2, 1; 3,1,2, 0;
      { 0         , STBVF_sw_u, STBVF_u   , STBVF_ne_u }, //  0,2,2,4; 1,2,2, 3; 2,2,2, 2; 3,2,2, 1;
      { 0         , 0         , STBVF_u   , STBVF_u    }, //  0,3,2,5; 1,3,2, 4; 2,3,2, 3; 3,3,2, 2;
   },{
      { STBVF_su  , STBVF_se_u, STBVF_se_u, STBVF_eu   }, //  0,0,3,3; 1,0,3, 2; 2,0,3, 1; 3,0,3, 0;
      { 0         , STBVF_su  , STBVF_se_u, STBVF_eu   }, //  0,1,3,4; 1,1,3, 3; 2,1,3, 2; 3,1,3, 1;
      { 0         , 0         , STBVF_u   , STBVF_u    }, //  0,2,3,5; 1,2,3, 4; 2,2,3, 3; 3,2,3, 2;
      { 0         , 0         , 0         , STBVF_u    }, //  0,3,3,6; 1,3,3, 5; 2,3,3, 4; 3,3,3, 3;
   }
};

// these tables were constructed automatically using a variant of the code
// below; however, they seem wrong, so who knows
static unsigned char stbvox_face_up_normal_012[4][4][4] =
{
   {
      { STBVF_u   , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, },
      { STBVF_wu  , STBVF_nu  , STBVF_ne_u, STBVF_ne_u, },
      { STBVF_wu  , STBVF_nw_u, STBVF_nu  , STBVF_ne_u, },
      { STBVF_wu  , STBVF_nw_u, STBVF_nw_u, STBVF_nu  , },
   },{
      { STBVF_su  , STBVF_eu  , STBVF_ne_u, STBVF_ne_u, },
      { STBVF_sw_u, STBVF_u   , STBVF_ne_u, STBVF_ne_u, },
      { STBVF_sw_u, STBVF_wu  , STBVF_nu  , STBVF_ne_u, },
      { STBVF_sw_u, STBVF_wu  , STBVF_nw_u, STBVF_nu  , },
   },{
      { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_ne_u, },
      { STBVF_sw_u, STBVF_su  , STBVF_eu  , STBVF_ne_u, },
      { STBVF_sw_u, STBVF_sw_u, STBVF_u   , STBVF_ne_u, },
      { STBVF_sw_u, STBVF_sw_u, STBVF_wu  , STBVF_nu  , },
   },{
      { STBVF_su  , STBVF_su  , STBVF_eu  , STBVF_eu  , },
      { STBVF_sw_u, STBVF_su  , STBVF_eu  , STBVF_eu  , },
      { STBVF_sw_u, STBVF_sw_u, STBVF_su  , STBVF_eu  , },
      { STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_u   , },
   }
};

static unsigned char stbvox_face_up_normal_013[4][4][4] =
{
   {
      { STBVF_u   , STBVF_eu  , STBVF_eu  , STBVF_eu  , },
      { STBVF_nw_u, STBVF_nu  , STBVF_ne_u, STBVF_ne_u, },
      { STBVF_nw_u, STBVF_nw_u, STBVF_nu  , STBVF_ne_u, },
      { STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, STBVF_nu  , },
   },{
      { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_eu  , },
      { STBVF_wu  , STBVF_u   , STBVF_eu  , STBVF_eu  , },
      { STBVF_nw_u, STBVF_nw_u, STBVF_nu  , STBVF_ne_u, },
      { STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, STBVF_nu  , },
   },{
      { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_eu  , },
      { STBVF_sw_u, STBVF_su  , STBVF_eu  , STBVF_eu  , },
      { STBVF_wu  , STBVF_wu  , STBVF_u   , STBVF_eu  , },
      { STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, STBVF_nu  , },
   },{
      { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_eu  , },
      { STBVF_sw_u, STBVF_su  , STBVF_su  , STBVF_su  , },
      { STBVF_sw_u, STBVF_sw_u, STBVF_su  , STBVF_eu  , },
      { STBVF_wu  , STBVF_wu  , STBVF_wu  , STBVF_u   , },
   }
};

static unsigned char stbvox_face_up_normal_023[4][4][4] =
{
   {
      { STBVF_u   , STBVF_nu  , STBVF_nu  , STBVF_nu  , },
      { STBVF_eu  , STBVF_eu  , STBVF_ne_u, STBVF_ne_u, },
      { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_ne_u, },
      { STBVF_eu  , STBVF_eu  , STBVF_eu  , STBVF_eu  , },
   },{
      { STBVF_wu  , STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, },
      { STBVF_su  , STBVF_u   , STBVF_nu  , STBVF_nu  , },
      { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_ne_u, },
      { STBVF_su  , STBVF_su  , STBVF_eu  , STBVF_eu  , },
   },{
      { STBVF_wu  , STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, },
      { STBVF_sw_u, STBVF_wu  , STBVF_nw_u, STBVF_nw_u, },
      { STBVF_su  , STBVF_su  , STBVF_u   , STBVF_nu  , },
      { STBVF_su  , STBVF_su  , STBVF_eu  , STBVF_eu  , },
   },{
      { STBVF_wu  , STBVF_nw_u, STBVF_nw_u, STBVF_nw_u, },
      { STBVF_sw_u, STBVF_wu  , STBVF_nw_u, STBVF_nw_u, },
      { STBVF_sw_u, STBVF_sw_u, STBVF_wu  , STBVF_nw_u, },
      { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_u   , },
   }
};

static unsigned char stbvox_face_up_normal_123[4][4][4] =
{
   {
      { STBVF_u   , STBVF_nu  , STBVF_nu  , STBVF_nu  , },
      { STBVF_eu  , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, },
      { STBVF_eu  , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, },
      { STBVF_eu  , STBVF_ne_u, STBVF_ne_u, STBVF_ne_u, },
   },{
      { STBVF_sw_u, STBVF_wu  , STBVF_nw_u, STBVF_nw_u, },
      { STBVF_su  , STBVF_u   , STBVF_nu  , STBVF_nu  , },
      { STBVF_eu  , STBVF_eu  , STBVF_ne_u, STBVF_ne_u, },
      { STBVF_eu  , STBVF_eu  , STBVF_ne_u, STBVF_ne_u, },
   },{
      { STBVF_sw_u, STBVF_sw_u, STBVF_wu  , STBVF_nw_u, },
      { STBVF_sw_u, STBVF_sw_u, STBVF_wu  , STBVF_nw_u, },
      { STBVF_su  , STBVF_su  , STBVF_u   , STBVF_nu  , },
      { STBVF_su  , STBVF_eu  , STBVF_eu  , STBVF_ne_u, },
   },{
      { STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_wu  , },
      { STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_wu  , },
      { STBVF_sw_u, STBVF_sw_u, STBVF_sw_u, STBVF_wu  , },
      { STBVF_su  , STBVF_su  , STBVF_su  , STBVF_u   , },
   }
};
#endif

void stbvox_get_quad_vertex_pointer(stbvox_mesh_maker *mm, int mesh, stbvox_mesh_vertex **vertices, stbvox_mesh_face face)
{
   char *p = mm->output_cur[mesh][0];
   int step = mm->output_step[mesh][0];

   // allocate a new quad from the mesh
   vertices[0] = (stbvox_mesh_vertex *) p; p += step;
   vertices[1] = (stbvox_mesh_vertex *) p; p += step;
   vertices[2] = (stbvox_mesh_vertex *) p; p += step;
   vertices[3] = (stbvox_mesh_vertex *) p; p += step;
   mm->output_cur[mesh][0] = p;

   // output the face
   #ifdef STBVOX_ICONFIG_FACE_ATTRIBUTE
      // write face as interleaved vertex data
      *(stbvox_mesh_face *) (vertices[0]+1) = face;
      *(stbvox_mesh_face *) (vertices[1]+1) = face;
      *(stbvox_mesh_face *) (vertices[2]+1) = face;
      *(stbvox_mesh_face *) (vertices[3]+1) = face;
   #else
      *(stbvox_mesh_face *) mm->output_cur[mesh][1] = face;
      mm->output_cur[mesh][1] += 4;
   #endif
}

void stbvox_make_mesh_for_face(stbvox_mesh_maker *mm, stbvox_rotate rot, int face, int v_off, stbvox_pos pos, stbvox_mesh_vertex vertbase, stbvox_mesh_vertex *face_coord, unsigned char mesh, int normal)
{
   stbvox_mesh_face face_data = stbvox_compute_mesh_face_value(mm,rot,face,v_off, normal);

   // still need to compute ao & texlerp for each vertex

   // first compute texlerp into p1
   stbvox_mesh_vertex p1[4] = { 0 };

   #if defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED) && defined(STBVOX_CONFIG_UP_TEXLERP_PACKED)
      #define STBVOX_USE_PACKED(f) ((f) == STBVOX_FACE_up || (f) == STBVOX_FACE_down)
   #elif defined(STBVOX_CONFIG_UP_TEXLERP_PACKED)
      #define STBVOX_USE_PACKED(f) ((f) == STBVOX_FACE_up                           )
   #elif defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED)
      #define STBVOX_USE_PACKED(f) (                         (f) == STBVOX_FACE_down)
   #endif

   #if defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED) || defined(STBVOX_CONFIG_UP_TEXLERP_PACKED)
   if (STBVOX_USE_PACKED(face)) {
      if (!mm->input.packed_compact || 0==(mm->input.packed_compact[v_off]&16))
         goto set_default;
      p1[0] = (mm->input.packed_compact[v_off + mm->cube_vertex_offset[face][0]] >> 5);
      p1[1] = (mm->input.packed_compact[v_off + mm->cube_vertex_offset[face][1]] >> 5);
      p1[2] = (mm->input.packed_compact[v_off + mm->cube_vertex_offset[face][2]] >> 5);
      p1[3] = (mm->input.packed_compact[v_off + mm->cube_vertex_offset[face][3]] >> 5);
      p1[0] = stbvox_vertex_encode(0,0,0,0,p1[0]);
      p1[1] = stbvox_vertex_encode(0,0,0,0,p1[1]);
      p1[2] = stbvox_vertex_encode(0,0,0,0,p1[2]);
      p1[3] = stbvox_vertex_encode(0,0,0,0,p1[3]);
      goto skip;
   }
   #endif

   if (mm->input.block_texlerp) {
      stbvox_block_type bt = mm->input.blocktype[v_off];
      unsigned char val = mm->input.block_texlerp[bt];
      p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,val);
   } else if (mm->input.block_texlerp_face) {
      stbvox_block_type bt = mm->input.blocktype[v_off];
      unsigned char bt_face = STBVOX_ROTATE(face, rot.block);
      unsigned char val = mm->input.block_texlerp_face[bt][bt_face];
      p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,val);
   } else if (mm->input.texlerp_face3) {
      unsigned char val = (mm->input.texlerp_face3[v_off] >> stbvox_face3_lerp[face]) & 7;
      if (face >= STBVOX_FACE_up)
         val = stbvox_face3_updown[val];
      p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,val);
   } else if (mm->input.texlerp_simple) {
      unsigned char val = mm->input.texlerp_simple[v_off];
      unsigned char lerp_face = (val >> 2) & 7;
      if (lerp_face == face) {
         p1[0] = (mm->input.texlerp_simple[v_off + mm->cube_vertex_offset[face][0]] >> 5) & 7;
         p1[1] = (mm->input.texlerp_simple[v_off + mm->cube_vertex_offset[face][1]] >> 5) & 7;
         p1[2] = (mm->input.texlerp_simple[v_off + mm->cube_vertex_offset[face][2]] >> 5) & 7;
         p1[3] = (mm->input.texlerp_simple[v_off + mm->cube_vertex_offset[face][3]] >> 5) & 7;
         p1[0] = stbvox_vertex_encode(0,0,0,0,p1[0]);
         p1[1] = stbvox_vertex_encode(0,0,0,0,p1[1]);
         p1[2] = stbvox_vertex_encode(0,0,0,0,p1[2]);
         p1[3] = stbvox_vertex_encode(0,0,0,0,p1[3]);
      } else {
         unsigned char base = stbvox_vert_lerp_for_simple[val&3];
         p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,base);
      }
   } else if (mm->input.texlerp) {
      unsigned char facelerp = (mm->input.texlerp[v_off] >> stbvox_face_lerp[face]) & 3;
      if (facelerp == STBVOX_TEXLERP_FACE_use_vert) {
         if (mm->input.texlerp_vert3 && face != STBVOX_FACE_down) {
            unsigned char shift = stbvox_vert3_lerp[face];
            p1[0] = (mm->input.texlerp_vert3[mm->cube_vertex_offset[face][0]] >> shift) & 7;
            p1[1] = (mm->input.texlerp_vert3[mm->cube_vertex_offset[face][1]] >> shift) & 7;
            p1[2] = (mm->input.texlerp_vert3[mm->cube_vertex_offset[face][2]] >> shift) & 7;
            p1[3] = (mm->input.texlerp_vert3[mm->cube_vertex_offset[face][3]] >> shift) & 7;
         } else {
            p1[0] = stbvox_vert_lerp_for_simple[mm->input.texlerp[mm->cube_vertex_offset[face][0]]>>6];
            p1[1] = stbvox_vert_lerp_for_simple[mm->input.texlerp[mm->cube_vertex_offset[face][1]]>>6];
            p1[2] = stbvox_vert_lerp_for_simple[mm->input.texlerp[mm->cube_vertex_offset[face][2]]>>6];
            p1[3] = stbvox_vert_lerp_for_simple[mm->input.texlerp[mm->cube_vertex_offset[face][3]]>>6];
         }
         p1[0] = stbvox_vertex_encode(0,0,0,0,p1[0]);
         p1[1] = stbvox_vertex_encode(0,0,0,0,p1[1]);
         p1[2] = stbvox_vertex_encode(0,0,0,0,p1[2]);
         p1[3] = stbvox_vertex_encode(0,0,0,0,p1[3]);
      } else {
         p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,stbvox_vert_lerp_for_face_lerp[facelerp]);
      }
   } else {
      #if defined(STBVOX_CONFIG_UP_TEXLERP_PACKED) || defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED)
      set_default:
      #endif
      p1[0] = p1[1] = p1[2] = p1[3] = stbvox_vertex_encode(0,0,0,0,7); // @TODO make this configurable
   }

   #if defined(STBVOX_CONFIG_UP_TEXLERP_PACKED) || defined(STBVOX_CONFIG_DOWN_TEXLERP_PACKED)
   skip:
   #endif

   // now compute lighting and store to vertices
   {
      stbvox_mesh_vertex *mv[4];
      stbvox_get_quad_vertex_pointer(mm, mesh, mv, face_data);

      if (mm->input.lighting) {
         // @TODO: lighting at block centers, but not gathered, instead constant-per-face
         if (mm->input.lighting_at_vertices) {
            int i;
            for (i=0; i < 4; ++i) {
               *mv[i] = vertbase + face_coord[i]
                          + stbvox_vertex_encode(0,0,0,mm->input.lighting[v_off + mm->cube_vertex_offset[face][i]] & 63,0)
                          + p1[i];
            }
         } else {
            unsigned char *amb = &mm->input.lighting[v_off];
            int i,j;
            #if defined(STBVOX_CONFIG_ROTATION_IN_LIGHTING) || defined(STBVOX_CONFIG_VHEIGHT_IN_LIGHTING)
            #define STBVOX_GET_LIGHTING(light) ((light) & ~3)
            #define STBVOX_LIGHTING_ROUNDOFF   8
            #else
            #define STBVOX_GET_LIGHTING(light) (light)
            #define STBVOX_LIGHTING_ROUNDOFF   2
            #endif

            for (i=0; i < 4; ++i) {
               // for each vertex, gather from the four neighbor blocks it's facing
               unsigned char *vamb = &amb[mm->cube_vertex_offset[face][i]];
               int total=0;
               for (j=0; j < 4; ++j)
                  total += STBVOX_GET_LIGHTING(vamb[mm->vertex_gather_offset[face][j]]);
               *mv[i] = vertbase + face_coord[i]
                          + stbvox_vertex_encode(0,0,0,(total+STBVOX_LIGHTING_ROUNDOFF)>>4,0)
                          + p1[i];
                          // >> 4 is because:
                          //   >> 2 to divide by 4 to get average over 4 samples
                          //   >> 2 because input is 8 bits, output is 6 bits
            }

            // @TODO: note that gathering baked *lighting*
            // is different from gathering baked ao; baked ao can count
            // solid blocks as 0 ao, but baked lighting wants average
            // of non-blocked--not take average & treat blocked as 0. And
            // we can't bake the right value into the solid blocks
            // because they can have different lighting values on
            // different sides. So we need to actually gather and
            // then divide by 0..4 (which we can do with a table-driven
            // multiply, or have an 'if' for the 3 case)

         }
      } else {
         vertbase += stbvox_vertex_encode(0,0,0,63,0);
         *mv[0] = vertbase + face_coord[0] + p1[0];
         *mv[1] = vertbase + face_coord[1] + p1[1];
         *mv[2] = vertbase + face_coord[2] + p1[2];
         *mv[3] = vertbase + face_coord[3] + p1[3];
      }
   }
}

// get opposite-facing normal & texgen for opposite face, used to map up-facing vheight data to down-facing data
static unsigned char stbvox_reverse_face[STBVF_count] =
{
   STBVF_w, STBVF_s, STBVF_e, STBVF_n, STBVF_d   , STBVF_u   , STBVF_wd, STBVF_wu,
         0,       0,       0,       0, STBVF_sw_d, STBVF_sw_u, STBVF_sd, STBVF_su,
         0,       0,       0,       0, STBVF_se_d, STBVF_se_u, STBVF_ed, STBVF_eu,
         0,       0,       0,       0, STBVF_ne_d, STBVF_ne_d, STBVF_nd, STBVF_nu
};

#ifndef STBVOX_CONFIG_OPTIMIZED_VHEIGHT
// render non-planar quads by splitting into two triangles, rendering each as a degenerate quad
static void stbvox_make_12_split_mesh_for_face(stbvox_mesh_maker *mm, stbvox_rotate rot, int face, int v_off, stbvox_pos pos, stbvox_mesh_vertex vertbase, stbvox_mesh_vertex *face_coord, unsigned char mesh, unsigned char *ht)
{
   stbvox_mesh_vertex v[4];

   unsigned char normal1 = stbvox_face_up_normal_012[ht[2]][ht[1]][ht[0]];
   unsigned char normal2 = stbvox_face_up_normal_123[ht[3]][ht[2]][ht[1]];

   if (face == STBVOX_FACE_down) {
      normal1 = stbvox_reverse_face[normal1];
      normal2 = stbvox_reverse_face[normal2];
   }

   // the floor side face_coord is stored in order NW,NE,SE,SW, but ht[] is stored SW,SE,NW,NE
   v[0] = face_coord[2];
   v[1] = face_coord[3];
   v[2] = face_coord[0];
   v[3] = face_coord[2];
   stbvox_make_mesh_for_face(mm, rot, face, v_off, pos, vertbase, v, mesh, normal1);
   v[1] = face_coord[0];
   v[2] = face_coord[1];
   stbvox_make_mesh_for_face(mm, rot, face, v_off, pos, vertbase, v, mesh, normal2);
}

static void stbvox_make_03_split_mesh_for_face(stbvox_mesh_maker *mm, stbvox_rotate rot, int face, int v_off, stbvox_pos pos, stbvox_mesh_vertex vertbase, stbvox_mesh_vertex *face_coord, unsigned char mesh, unsigned char *ht)
{
   stbvox_mesh_vertex v[4];

   unsigned char normal1 = stbvox_face_up_normal_013[ht[3]][ht[1]][ht[0]];
   unsigned char normal2 = stbvox_face_up_normal_023[ht[3]][ht[2]][ht[0]];

   if (face == STBVOX_FACE_down) {
      normal1 = stbvox_reverse_face[normal1];
      normal2 = stbvox_reverse_face[normal2];
   }

   v[0] = face_coord[1];
   v[1] = face_coord[2];
   v[2] = face_coord[3];
   v[3] = face_coord[1];
   stbvox_make_mesh_for_face(mm, rot, face, v_off, pos, vertbase, v, mesh, normal1);
   v[1] = face_coord[3];
   v[2] = face_coord[0];
   stbvox_make_mesh_for_face(mm, rot, face, v_off, pos, vertbase, v, mesh, normal2);  // this one is correct!
}
#endif

#ifndef STBVOX_CONFIG_PRECISION_Z
#define STBVOX_CONFIG_PRECISION_Z 1
#endif

// simple case for mesh generation: we have only solid and empty blocks
static void stbvox_make_mesh_for_block(stbvox_mesh_maker *mm, stbvox_pos pos, int v_off, stbvox_mesh_vertex *vmesh)
{
   int ns_off = mm->y_stride_in_bytes;
   int ew_off = mm->x_stride_in_bytes;

   unsigned char *blockptr = &mm->input.blocktype[v_off];
   stbvox_mesh_vertex basevert = stbvox_vertex_encode(pos.x, pos.y, pos.z << STBVOX_CONFIG_PRECISION_Z , 0,0);

   stbvox_rotate rot = { 0,0,0,0 };
   unsigned char simple_rot = 0;

   unsigned char mesh = mm->default_mesh;

   if (mm->input.selector)
      mesh = mm->input.selector[v_off];
   else if (mm->input.block_selector)
      mesh = mm->input.block_selector[mm->input.blocktype[v_off]];
  
   // check if we're going off the end
   if (mm->output_cur[mesh][0] + mm->output_size[mesh][0]*6 > mm->output_end[mesh][0]) {
      mm->full = 1;
      return;
   }

   #ifdef STBVOX_CONFIG_ROTATION_IN_LIGHTING
   simple_rot = mm->input.lighting[v_off] & 3;
   #endif

   if (mm->input.packed_compact)
      simple_rot = mm->input.packed_compact[v_off] & 3;

   if (blockptr[ 1]==0) {
      rot.facerot = simple_rot;
      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_up  , v_off, pos, basevert, vmesh+4*STBVOX_FACE_up, mesh, STBVOX_FACE_up);
   }
   if (blockptr[-1]==0) {
      rot.facerot = (-simple_rot) & 3;
      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_down, v_off, pos, basevert, vmesh+4*STBVOX_FACE_down, mesh, STBVOX_FACE_down);
   }

   if (mm->input.rotate) {
      unsigned char val = mm->input.rotate[v_off];
      rot.block   = (val >> 0) & 3;
      rot.overlay = (val >> 2) & 3;
      //rot.tex2    = (val >> 4) & 3;
      rot.ecolor  = (val >> 6) & 3;
   } else {
      rot.block = rot.overlay = rot.ecolor = simple_rot;
   }
   rot.facerot = 0;

   if (blockptr[ ns_off]==0)
      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_north, v_off, pos, basevert, vmesh+4*STBVOX_FACE_north, mesh, STBVOX_FACE_north);
   if (blockptr[-ns_off]==0)
      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_south, v_off, pos, basevert, vmesh+4*STBVOX_FACE_south, mesh, STBVOX_FACE_south);
   if (blockptr[ ew_off]==0)
      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_east , v_off, pos, basevert, vmesh+4*STBVOX_FACE_east, mesh, STBVOX_FACE_east);
   if (blockptr[-ew_off]==0)
      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_west , v_off, pos, basevert, vmesh+4*STBVOX_FACE_west, mesh, STBVOX_FACE_west);
}

// complex case for mesh generation: we have lots of different
// block types, and we don't want to generate faces of blocks
// if they're hidden by neighbors.
//
// we use lots of tables to determine this: we have a table
// which tells us what face type is generated for each type of
// geometry, and then a table that tells us whether that type
// is hidden by a neighbor.
static void stbvox_make_mesh_for_block_with_geo(stbvox_mesh_maker *mm, stbvox_pos pos, int v_off)
{
   int ns_off = mm->y_stride_in_bytes;
   int ew_off = mm->x_stride_in_bytes;
   int visible_faces, visible_base;
   unsigned char mesh;

   // first gather the geometry info for this block and all neighbors

   unsigned char bt, nbt[6];
   unsigned char geo, ngeo[6];
   unsigned char rot, nrot[6];

   bt = mm->input.blocktype[v_off];
   nbt[0] = mm->input.blocktype[v_off + ew_off];
   nbt[1] = mm->input.blocktype[v_off + ns_off];
   nbt[2] = mm->input.blocktype[v_off - ew_off];
   nbt[3] = mm->input.blocktype[v_off - ns_off];
   nbt[4] = mm->input.blocktype[v_off +      1];
   nbt[5] = mm->input.blocktype[v_off -      1];
   if (mm->input.geometry) {
      int i;
      geo = mm->input.geometry[v_off];
      ngeo[0] = mm->input.geometry[v_off + ew_off];
      ngeo[1] = mm->input.geometry[v_off + ns_off];
      ngeo[2] = mm->input.geometry[v_off - ew_off];
      ngeo[3] = mm->input.geometry[v_off - ns_off];
      ngeo[4] = mm->input.geometry[v_off +      1];
      ngeo[5] = mm->input.geometry[v_off -      1];

      rot = (geo >> 4) & 3;
      geo &= 15;
      for (i=0; i < 6; ++i) {
         nrot[i] = (ngeo[i] >> 4) & 3;
         ngeo[i] &= 15;
      }
   } else {
      int i;
      assert(mm->input.block_geometry);
      geo = mm->input.block_geometry[bt];
      for (i=0; i < 6; ++i)
         ngeo[i] = mm->input.block_geometry[nbt[i]];
      if (mm->input.selector) {
         #ifndef STBVOX_CONFIG_ROTATION_IN_LIGHTING
         if (mm->input.packed_compact == NULL) {
            rot     = (mm->input.selector[v_off         ] >> 4) & 3;
            nrot[0] = (mm->input.selector[v_off + ew_off] >> 4) & 3;
            nrot[1] = (mm->input.selector[v_off + ns_off] >> 4) & 3;
            nrot[2] = (mm->input.selector[v_off - ew_off] >> 4) & 3;
            nrot[3] = (mm->input.selector[v_off - ns_off] >> 4) & 3;
            nrot[4] = (mm->input.selector[v_off +      1] >> 4) & 3;
            nrot[5] = (mm->input.selector[v_off -      1] >> 4) & 3;
         }
         #endif
      } else {
         #ifndef STBVOX_CONFIG_ROTATION_IN_LIGHTING
         if (mm->input.packed_compact == NULL) {
            rot = (geo>>4)&3;
            geo &= 15;
            for (i=0; i < 6; ++i) {
               nrot[i] = (ngeo[i]>>4)&3;
               ngeo[i] &= 15;
            }
         }
         #endif
      }
   }

   #ifndef STBVOX_CONFIG_ROTATION_IN_LIGHTING
   if (mm->input.packed_compact) {
      rot = mm->input.packed_compact[rot] & 3;
      nrot[0] = mm->input.packed_compact[v_off + ew_off] & 3;
      nrot[1] = mm->input.packed_compact[v_off + ns_off] & 3;
      nrot[2] = mm->input.packed_compact[v_off - ew_off] & 3;
      nrot[3] = mm->input.packed_compact[v_off - ns_off] & 3;
      nrot[4] = mm->input.packed_compact[v_off +      1] & 3;
      nrot[5] = mm->input.packed_compact[v_off -      1] & 3;
   }
   #else
   rot = mm->input.lighting[v_off] & 3;
   nrot[0] = (mm->input.lighting[v_off + ew_off]) & 3;
   nrot[1] = (mm->input.lighting[v_off + ns_off]) & 3;
   nrot[2] = (mm->input.lighting[v_off - ew_off]) & 3;
   nrot[3] = (mm->input.lighting[v_off - ns_off]) & 3;
   nrot[4] = (mm->input.lighting[v_off +      1]) & 3;
   nrot[5] = (mm->input.lighting[v_off -      1]) & 3;
   #endif

   if (geo == STBVOX_GEOM_transp) {
      // transparency has a special rule: if the blocktype is the same,
      // and the faces are compatible, then can hide them; otherwise,
      // force them on
      // Note that this means we don't support any transparentshapes other
      // than solid blocks, since detecting them is too complicated. If
      // you wanted to do something like minecraft water, you probably
      // should just do that with a separate renderer anyway. (We don't
      // support transparency sorting so you need to use alpha test
      // anyway)
      int i;
      for (i=0; i < 6; ++i)
         if (nbt[i] != bt) {
            nbt[i] = 0;
            ngeo[i] = STBVOX_GEOM_empty;
         } else
            ngeo[i] = STBVOX_GEOM_solid;
      geo = STBVOX_GEOM_solid;
   }

   // now compute the face visibility
   visible_base = stbvox_hasface[geo][rot];
   // @TODO: assert(visible_base != 0); // we should have early-outted earlier in this case
   visible_faces = 0;

   // now, for every face that might be visible, check if neighbor hides it
   if (visible_base & (1 << STBVOX_FACE_east)) {
      int  type = stbvox_facetype[ geo   ][(STBVOX_FACE_east+ rot   )&3];
      int ntype = stbvox_facetype[ngeo[0]][(STBVOX_FACE_west+nrot[0])&3];
      visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_east)) & (1 << STBVOX_FACE_east);
   }
   if (visible_base & (1 << STBVOX_FACE_north)) {
      int  type = stbvox_facetype[ geo   ][(STBVOX_FACE_north+ rot   )&3];
      int ntype = stbvox_facetype[ngeo[1]][(STBVOX_FACE_south+nrot[1])&3];
      visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_north)) & (1 << STBVOX_FACE_north);
   }
   if (visible_base & (1 << STBVOX_FACE_west)) {
      int  type = stbvox_facetype[ geo   ][(STBVOX_FACE_west+ rot   )&3];
      int ntype = stbvox_facetype[ngeo[2]][(STBVOX_FACE_east+nrot[2])&3];
      visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_west)) & (1 << STBVOX_FACE_west);
   }
   if (visible_base & (1 << STBVOX_FACE_south)) {
      int  type = stbvox_facetype[ geo   ][(STBVOX_FACE_south+ rot   )&3];
      int ntype = stbvox_facetype[ngeo[3]][(STBVOX_FACE_north+nrot[3])&3];
      visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_south)) & (1 << STBVOX_FACE_south);
   }
   if (visible_base & (1 << STBVOX_FACE_up)) {
      int  type = stbvox_facetype[ geo   ][STBVOX_FACE_up];
      int ntype = stbvox_facetype[ngeo[4]][STBVOX_FACE_down];
      visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_up)) & (1 << STBVOX_FACE_up);
   }
   if (visible_base & (1 << STBVOX_FACE_down)) {
      int  type = stbvox_facetype[ geo   ][STBVOX_FACE_down];
      int ntype = stbvox_facetype[ngeo[5]][STBVOX_FACE_up];
      visible_faces |= ((stbvox_face_visible[type]) >> (ntype + 5 - STBVOX_FACE_down)) & (1 << STBVOX_FACE_down);
   }

   if (geo == STBVOX_GEOM_force)
      geo = STBVOX_GEOM_solid;

   assert((geo == STBVOX_GEOM_crossed_pair) ? (visible_faces == 15) : 1);

   // now we finally know for sure which faces are getting generated
   if (visible_faces == 0)
      return;

   mesh = mm->default_mesh;
   if (mm->input.selector)
      mesh = mm->input.selector[v_off];
   else if (mm->input.block_selector)
      mesh = mm->input.block_selector[bt];
  
   if (geo <= STBVOX_GEOM_ceil_slope_north_is_bottom) {
      // this is the simple case, we can just use regular block gen with special vmesh calculated with vheight
      stbvox_mesh_vertex basevert;
      stbvox_mesh_vertex vmesh[6][4];
      stbvox_rotate rotate = { 0,0,0,0 };
      unsigned char simple_rot = rot;
      int i;
      // we only need to do this for the displayed faces, but it's easier
      // to just do it up front; @OPTIMIZE check if it's faster to do it
      // for visible faces only
      for (i=0; i < 6*4; ++i) {
         int vert = stbvox_vertex_selector[0][i];
         vert = stbvox_rotate_vertex[vert][rot];
         vmesh[0][i] = stbvox_vmesh_pre_vheight[0][i]
                     + stbvox_geometry_vheight[geo][vert];
      }

      basevert = stbvox_vertex_encode(pos.x, pos.y, pos.z << STBVOX_CONFIG_PRECISION_Z, 0,0);
      if (mm->input.selector) {
         mesh = mm->input.selector[v_off];
      } else if (mm->input.block_selector)
         mesh = mm->input.block_selector[bt];


      // check if we're going off the end
      if (mm->output_cur[mesh][0] + mm->output_size[mesh][0]*6 > mm->output_end[mesh][0]) {
         mm->full = 1;
         return;
      }

      if (geo >= STBVOX_GEOM_floor_slope_north_is_top) {
         if (visible_faces & (1 << STBVOX_FACE_up)) {
            int normal = geo == STBVOX_GEOM_floor_slope_north_is_top ? stbvox_floor_slope_for_rot[simple_rot] : STBVOX_FACE_up;
            rotate.facerot = simple_rot;
            stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up  , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, normal);
         }
         if (visible_faces & (1 << STBVOX_FACE_down)) {
            int normal = geo == STBVOX_GEOM_ceil_slope_north_is_bottom ? stbvox_ceil_slope_for_rot[simple_rot] : STBVOX_FACE_down;
            rotate.facerot = (-rotate.facerot) & 3;
            stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, normal);
         }
      } else {
         if (visible_faces & (1 << STBVOX_FACE_up)) {
            rotate.facerot = simple_rot;
            stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up  , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, STBVOX_FACE_up);
         }
         if (visible_faces & (1 << STBVOX_FACE_down)) {
            rotate.facerot = (-rotate.facerot) & 3;
            stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, STBVOX_FACE_down);
         }
      }

      if (mm->input.rotate) {
         unsigned char val = mm->input.rotate[v_off];
         rotate.block   = (val >> 0) & 3;
         rotate.overlay = (val >> 2) & 3;
         //rotate.tex2    = (val >> 4) & 3;
         rotate.ecolor  = (val >> 6) & 3;
      } else {
         rotate.block = rotate.overlay = rotate.ecolor = simple_rot;
      }

      rotate.facerot = 0;

      if (visible_faces & (1 << STBVOX_FACE_north))
         stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_north, v_off, pos, basevert, vmesh[STBVOX_FACE_north], mesh, STBVOX_FACE_north);
      if (visible_faces & (1 << STBVOX_FACE_south))
         stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_south, v_off, pos, basevert, vmesh[STBVOX_FACE_south], mesh, STBVOX_FACE_south);
      if (visible_faces & (1 << STBVOX_FACE_east))
         stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_east , v_off, pos, basevert, vmesh[STBVOX_FACE_east ], mesh, STBVOX_FACE_east);
      if (visible_faces & (1 << STBVOX_FACE_west))
         stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_west , v_off, pos, basevert, vmesh[STBVOX_FACE_west ], mesh, STBVOX_FACE_west);
   }
   if (geo >= STBVOX_GEOM_floor_vheight_03) {
      // this case can also be generated with regular block gen with special vmesh,
      // except:
      //     if we want to generate middle diagonal for 'weird' blocks
      //     it's more complicated to detect neighbor matchups
      stbvox_mesh_vertex vmesh[6][4];
      stbvox_mesh_vertex cube[8];
      stbvox_mesh_vertex basevert;
      stbvox_rotate rotate = { 0,0,0,0 };
      unsigned char simple_rot = rot;
      unsigned char ht[4];
      int extreme;

      // extract the heights
      #ifdef STBVOX_CONFIG_VHEIGHT_IN_LIGHTING
      ht[0] = mm->input.lighting[v_off              ] & 3;
      ht[1] = mm->input.lighting[v_off+ew_off       ] & 3;
      ht[2] = mm->input.lighting[v_off       +ns_off] & 3;
      ht[3] = mm->input.lighting[v_off+ew_off+ns_off] & 3;
      #else
      if (mm->input.vheight) {
         unsigned char v =  mm->input.vheight[v_off];
         ht[0] = (v >> 0) & 3;
         ht[1] = (v >> 2) & 3;
         ht[2] = (v >> 4) & 3;
         ht[3] = (v >> 6) & 3;
      } else if (mm->input.block_vheight) {
         unsigned char v = mm->input.block_vheight[bt];
         unsigned char raw[4];
         int i;

         raw[0] = (v >> 0) & 3;
         raw[1] = (v >> 2) & 3;
         raw[2] = (v >> 4) & 3;
         raw[3] = (v >> 6) & 3;

         for (i=0; i < 4; ++i)
            ht[i] = raw[stbvox_rotate_vertex[i][rot]];
      } else if (mm->input.packed_compact) {
         ht[0] = (mm->input.packed_compact[v_off              ] >> 2) & 3;
         ht[1] = (mm->input.packed_compact[v_off+ew_off       ] >> 2) & 3;
         ht[2] = (mm->input.packed_compact[v_off       +ns_off] >> 2) & 3;
         ht[3] = (mm->input.packed_compact[v_off+ew_off+ns_off] >> 2) & 3;
      } else if (mm->input.geometry) {
         ht[0] = mm->input.geometry[v_off              ] >> 6;
         ht[1] = mm->input.geometry[v_off+ew_off       ] >> 6;
         ht[2] = mm->input.geometry[v_off       +ns_off] >> 6;
         ht[3] = mm->input.geometry[v_off+ew_off+ns_off] >> 6;
      } else {
         assert(0);
      }
      #endif

      // flag whether any sides go off the top of the block, which means
      // our visible_faces test was wrong
      extreme = (ht[0] == 3 || ht[1] == 3 || ht[2] == 3 || ht[3] == 3);

      if (geo >= STBVOX_GEOM_ceil_vheight_03) {
         cube[0] = stbvox_vertex_encode(0,0,ht[0],0,0);
         cube[1] = stbvox_vertex_encode(0,0,ht[1],0,0);
         cube[2] = stbvox_vertex_encode(0,0,ht[2],0,0);
         cube[3] = stbvox_vertex_encode(0,0,ht[3],0,0);
         cube[4] = stbvox_vertex_encode(0,0,2,0,0);
         cube[5] = stbvox_vertex_encode(0,0,2,0,0);
         cube[6] = stbvox_vertex_encode(0,0,2,0,0);
         cube[7] = stbvox_vertex_encode(0,0,2,0,0);
      } else {
         cube[0] = stbvox_vertex_encode(0,0,0,0,0);
         cube[1] = stbvox_vertex_encode(0,0,0,0,0);
         cube[2] = stbvox_vertex_encode(0,0,0,0,0);
         cube[3] = stbvox_vertex_encode(0,0,0,0,0);
         cube[4] = stbvox_vertex_encode(0,0,ht[0],0,0);
         cube[5] = stbvox_vertex_encode(0,0,ht[1],0,0);
         cube[6] = stbvox_vertex_encode(0,0,ht[2],0,0);
         cube[7] = stbvox_vertex_encode(0,0,ht[3],0,0);
      }
      if (!mm->input.vheight && mm->input.block_vheight) {
         // @TODO: support block vheight here, I've forgotten what needs to be done specially
      }

      // build vertex mesh
      {
         int i;
         for (i=0; i < 6*4; ++i) {
            int vert = stbvox_vertex_selector[0][i];
            vmesh[0][i] = stbvox_vmesh_pre_vheight[0][i]
                        + cube[vert];
         }
      }

      basevert = stbvox_vertex_encode(pos.x, pos.y, pos.z << STBVOX_CONFIG_PRECISION_Z, 0,0);
      // check if we're going off the end
      if (mm->output_cur[mesh][0] + mm->output_size[mesh][0]*6 > mm->output_end[mesh][0]) {
         mm->full = 1;
         return;
      }

      // @TODO generate split faces
      if (visible_faces & (1 << STBVOX_FACE_up)) {
         if (geo >= STBVOX_GEOM_ceil_vheight_03)
            // flat
            stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up  , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, STBVOX_FACE_up);
         else {
         #ifndef STBVOX_CONFIG_OPTIMIZED_VHEIGHT
            // check if it's non-planar
            if (cube[5] + cube[6] != cube[4] + cube[7]) {
               // not planar, split along diagonal and make degenerate quads
               if (geo == STBVOX_GEOM_floor_vheight_03)
                  stbvox_make_03_split_mesh_for_face(mm, rotate, STBVOX_FACE_up, v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, ht);
               else
                  stbvox_make_12_split_mesh_for_face(mm, rotate, STBVOX_FACE_up, v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, ht);
            } else
               stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up  , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, stbvox_planar_face_up_normal[ht[2]][ht[1]][ht[0]]);
         #else
            stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_up  , v_off, pos, basevert, vmesh[STBVOX_FACE_up], mesh, stbvox_optimized_face_up_normal[ht[3]][ht[2]][ht[1]][ht[0]]);
         #endif
         }
      }
      if (visible_faces & (1 << STBVOX_FACE_down)) {
         if (geo < STBVOX_GEOM_ceil_vheight_03)
            // flat
            stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, STBVOX_FACE_down);
         else {
         #ifndef STBVOX_CONFIG_OPTIMIZED_VHEIGHT
            // check if it's non-planar
            if (cube[1] + cube[2] != cube[0] + cube[3]) {
               // not planar, split along diagonal and make degenerate quads
               if (geo == STBVOX_GEOM_ceil_vheight_03)
                  stbvox_make_03_split_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, ht);
               else
                  stbvox_make_12_split_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, ht);
            } else
               stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, stbvox_reverse_face[stbvox_planar_face_up_normal[ht[2]][ht[1]][ht[0]]]);
         #else
            stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_down, v_off, pos, basevert, vmesh[STBVOX_FACE_down], mesh, stbvox_reverse_face[stbvox_optimized_face_up_normal[ht[3]][ht[2]][ht[1]][ht[0]]]);
         #endif
         }
      }

      if (mm->input.rotate) {
         unsigned char val = mm->input.rotate[v_off];
         rotate.block   = (val >> 0) & 3;
         rotate.overlay = (val >> 2) & 3;
         //rotate.tex2    = (val >> 4) & 3;
         rotate.ecolor  = (val >> 6) & 3;
      } else if (mm->input.selector) {
         rotate.block = rotate.overlay = rotate.ecolor = simple_rot;
      }

      if ((visible_faces & (1 << STBVOX_FACE_north)) || (extreme && (ht[2] == 3 || ht[3] == 3)))
         stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_north, v_off, pos, basevert, vmesh[STBVOX_FACE_north], mesh, STBVOX_FACE_north);
      if ((visible_faces & (1 << STBVOX_FACE_south)) || (extreme && (ht[0] == 3 || ht[1] == 3))) 
         stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_south, v_off, pos, basevert, vmesh[STBVOX_FACE_south], mesh, STBVOX_FACE_south);
      if ((visible_faces & (1 << STBVOX_FACE_east)) || (extreme && (ht[1] == 3 || ht[3] == 3)))
         stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_east , v_off, pos, basevert, vmesh[STBVOX_FACE_east ], mesh, STBVOX_FACE_east);
      if ((visible_faces & (1 << STBVOX_FACE_west)) || (extreme && (ht[0] == 3 || ht[2] == 3)))
         stbvox_make_mesh_for_face(mm, rotate, STBVOX_FACE_west , v_off, pos, basevert, vmesh[STBVOX_FACE_west ], mesh, STBVOX_FACE_west);
   }

   if (geo == STBVOX_GEOM_crossed_pair) {
      // this can be generated with a special vmesh
      stbvox_mesh_vertex basevert = stbvox_vertex_encode(pos.x, pos.y, pos.z << STBVOX_CONFIG_PRECISION_Z , 0,0);
      unsigned char simple_rot=0;
      stbvox_rotate rot = { 0,0,0,0 };
      unsigned char mesh = mm->default_mesh;
      if (mm->input.selector) {
         mesh = mm->input.selector[v_off];
         simple_rot = mesh >> 4;
         mesh &= 15;
      } 
      if (mm->input.block_selector) {
         mesh = mm->input.block_selector[bt];
      }

      // check if we're going off the end
      if (mm->output_cur[mesh][0] + mm->output_size[mesh][0]*4 > mm->output_end[mesh][0]) {
         mm->full = 1;
         return;
      }

      if (mm->input.rotate) {
         unsigned char val = mm->input.rotate[v_off];
         rot.block   = (val >> 0) & 3;
         rot.overlay = (val >> 2) & 3;
         //rot.tex2    = (val >> 4) & 3;
         rot.ecolor  = (val >> 6) & 3;
      } else if (mm->input.selector) {
         rot.block = rot.overlay = rot.ecolor = simple_rot;
      }
      rot.facerot = 0;

      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_north, v_off, pos, basevert, stbvox_vmesh_crossed_pair[STBVOX_FACE_north], mesh, STBVF_ne_u_cross);
      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_south, v_off, pos, basevert, stbvox_vmesh_crossed_pair[STBVOX_FACE_south], mesh, STBVF_sw_u_cross);
      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_east , v_off, pos, basevert, stbvox_vmesh_crossed_pair[STBVOX_FACE_east ], mesh, STBVF_se_u_cross);
      stbvox_make_mesh_for_face(mm, rot, STBVOX_FACE_west , v_off, pos, basevert, stbvox_vmesh_crossed_pair[STBVOX_FACE_west ], mesh, STBVF_nw_u_cross);
   }


   // @TODO
   // STBVOX_GEOM_floor_slope_north_is_top_as_wall,
   // STBVOX_GEOM_ceil_slope_north_is_bottom_as_wall,
}

static void stbvox_make_mesh_for_column(stbvox_mesh_maker *mm, int x, int y, int z0)
{
   stbvox_pos pos;
   int v_off = x * mm->x_stride_in_bytes + y * mm->y_stride_in_bytes;
   int ns_off = mm->y_stride_in_bytes;
   int ew_off = mm->x_stride_in_bytes;
   pos.x = x;
   pos.y = y;
   pos.z = 0;
   if (mm->input.geometry) {
      unsigned char *bt  = mm->input.blocktype + v_off;
      unsigned char *geo = mm->input.geometry + v_off;
      int z;
      for (z=z0; z < mm->z1; ++z) {
         if (bt[z] && ( !bt[z+ns_off] || !STBVOX_GET_GEO(geo[z+ns_off]) || !bt[z-ns_off] || !STBVOX_GET_GEO(geo[z-ns_off])
                      || !bt[z+ew_off] || !STBVOX_GET_GEO(geo[z+ew_off]) || !bt[z-ew_off] || !STBVOX_GET_GEO(geo[z-ew_off])
                      || !bt[z-1] || !STBVOX_GET_GEO(geo[z-1]) || !bt[z+1] || !STBVOX_GET_GEO(geo[z+1])))
         {  // TODO check up and down
            pos.z = z;
            stbvox_make_mesh_for_block_with_geo(mm, pos, v_off+z);
            if (mm->full) {
               mm->cur_z = z;
               return;
            }
         }
      }
   } else if (mm->input.block_geometry) {
      int z;
      unsigned char *bt  = mm->input.blocktype + v_off;
      unsigned char *geo = mm->input.block_geometry;
      for (z=z0; z < mm->z1; ++z) {
         if (bt[z] && (    geo[bt[z+ns_off]] != STBVOX_GEOM_solid
                        || geo[bt[z-ns_off]] != STBVOX_GEOM_solid
                        || geo[bt[z+ew_off]] != STBVOX_GEOM_solid
                        || geo[bt[z-ew_off]] != STBVOX_GEOM_solid
                        || geo[bt[z-1]] != STBVOX_GEOM_solid
                        || geo[bt[z+1]] != STBVOX_GEOM_solid))
         {
            pos.z = z;
            stbvox_make_mesh_for_block_with_geo(mm, pos, v_off+z);
            if (mm->full) {
               mm->cur_z = z;
               return;
            }
         }
      }
   } else {
      unsigned char *bt = mm->input.blocktype + v_off;
      int z;
      #if STBVOX_CONFIG_PRECISION_Z == 1
      stbvox_mesh_vertex *vmesh = stbvox_vmesh_delta_half_z[0];
      #else
      stbvox_mesh_vertex *vmesh = stbvox_vmesh_delta_normal[0];
      #endif
      for (z=z0; z < mm->z1; ++z) {
         // if it's solid and at least one neighbor isn't solid
         if (bt[z] && (!bt[z+ns_off] || !bt[z-ns_off] || !bt[z+ew_off] || !bt[z-ew_off] || !bt[z-1] || !bt[z+1])) {
            pos.z = z;
            stbvox_make_mesh_for_block(mm, pos, v_off+z, vmesh);
            if (mm->full) {
               mm->cur_z = z;
               return;
            }
         }
      }
   }
}

static void stbvox_bring_up_to_date(stbvox_mesh_maker *mm)
{
   if (mm->config_dirty) {
      int i;
      #ifdef STBVOX_ICONFIG_FACE_ATTRIBUTE
         mm->num_mesh_slots = 1;
         for (i=0; i < STBVOX_MAX_MESHES; ++i) {
            mm->output_size[i][0] = 32;
            mm->output_step[i][0] = 8;
         }
      #else
         mm->num_mesh_slots = 2;
         for (i=0; i < STBVOX_MAX_MESHES; ++i) {
            mm->output_size[i][0] = 16;
            mm->output_step[i][0] = 4;
            mm->output_size[i][1] = 4;
            mm->output_step[i][1] = 4;
         }
      #endif

      mm->config_dirty = 0;
   }
}

int stbvox_make_mesh(stbvox_mesh_maker *mm)
{
   int x,y;
   stbvox_bring_up_to_date(mm);
   mm->full = 0;
   if (mm->cur_x > mm->x0 || mm->cur_y > mm->y0 || mm->cur_z > mm->z0) {
      stbvox_make_mesh_for_column(mm, mm->cur_x, mm->cur_y, mm->cur_z);
      if (mm->full)
         return 0;
      ++mm->cur_y;
      while (mm->cur_y < mm->y1 && !mm->full) {
         stbvox_make_mesh_for_column(mm, mm->cur_x, mm->cur_y, mm->z0);
         if (mm->full)
            return 0;
         ++mm->cur_y;
      }
      ++mm->cur_x;
   }
   for (x=mm->cur_x; x < mm->x1; ++x) {
      for (y=mm->y0; y < mm->y1; ++y) {
         stbvox_make_mesh_for_column(mm, x, y, mm->z0);
         if (mm->full) {
            mm->cur_x = x;
            mm->cur_y = y;
            return 0;
         }
      }
   }
   return 1;
}

void stbvox_init_mesh_maker(stbvox_mesh_maker *mm)
{
   memset(mm, 0, sizeof(*mm));
   stbvox_build_default_palette();

   mm->config_dirty = 1;
   mm->default_mesh = 0;
}

int stbvox_get_buffer_count(stbvox_mesh_maker *mm)
{
   stbvox_bring_up_to_date(mm);
   return mm->num_mesh_slots;
}

int stbvox_get_buffer_size_per_quad(stbvox_mesh_maker *mm, int n)
{
   return mm->output_size[0][n];
}

void stbvox_reset_buffers(stbvox_mesh_maker *mm)
{
   int i;
   for (i=0; i < STBVOX_MAX_MESHES*STBVOX_MAX_MESH_SLOTS; ++i) {
      mm->output_cur[0][i] = 0;
      mm->output_buffer[0][i] = 0;
   }
}

void stbvox_set_buffer(stbvox_mesh_maker *mm, int mesh, int slot, void *buffer, size_t len)
{
   int i;
   stbvox_bring_up_to_date(mm);
   mm->output_buffer[mesh][slot] = (char *) buffer;
   mm->output_cur   [mesh][slot] = (char *) buffer;
   mm->output_len   [mesh][slot] = (int) len;
   mm->output_end   [mesh][slot] = (char *) buffer + len;
   for (i=0; i < STBVOX_MAX_MESH_SLOTS; ++i) {
      if (mm->output_buffer[mesh][i]) {
         assert(mm->output_len[mesh][i] / mm->output_size[mesh][i] == mm->output_len[mesh][slot] / mm->output_size[mesh][slot]);
      }
   }
}

void stbvox_set_default_mesh(stbvox_mesh_maker *mm, int mesh)
{
   mm->default_mesh = mesh;
}

int stbvox_get_quad_count(stbvox_mesh_maker *mm, int mesh)
{
   return (int) ((mm->output_cur[mesh][0] - mm->output_buffer[mesh][0]) / mm->output_size[mesh][0]);
}

stbvox_input_description *stbvox_get_input_description(stbvox_mesh_maker *mm)
{
   return &mm->input;
}

void stbvox_set_input_range(stbvox_mesh_maker *mm, int x0, int y0, int z0, int x1, int y1, int z1)
{
   mm->x0 = x0;
   mm->y0 = y0;
   mm->z0 = z0;

   mm->x1 = x1;
   mm->y1 = y1;
   mm->z1 = z1;

   mm->cur_x = x0;
   mm->cur_y = y0;
   mm->cur_z = z0;

   // @TODO validate that this range is representable in this mode
}

void stbvox_get_transform(stbvox_mesh_maker *mm, float transform[3][3])
{
   // scale
   transform[0][0] = 1.0;
   transform[0][1] = 1.0;
   #if STBVOX_CONFIG_PRECISION_Z==1
   transform[0][2] = 0.5f;
   #else
   transform[0][2] = 1.0f;
   #endif
   // translation
   transform[1][0] = (float) (mm->pos_x);
   transform[1][1] = (float) (mm->pos_y);
   transform[1][2] = (float) (mm->pos_z);
   // texture coordinate projection translation
   transform[2][0] = (float) (mm->pos_x & 255); // @TODO depends on max texture scale
   transform[2][1] = (float) (mm->pos_y & 255);
   transform[2][2] = (float) (mm->pos_z & 255);
}

void stbvox_get_bounds(stbvox_mesh_maker *mm, float bounds[2][3])
{
   bounds[0][0] = (float) (mm->pos_x + mm->x0);
   bounds[0][1] = (float) (mm->pos_y + mm->y0);
   bounds[0][2] = (float) (mm->pos_z + mm->z0);
   bounds[1][0] = (float) (mm->pos_x + mm->x1);
   bounds[1][1] = (float) (mm->pos_y + mm->y1);
   bounds[1][2] = (float) (mm->pos_z + mm->z1);
}

void stbvox_set_mesh_coordinates(stbvox_mesh_maker *mm, int x, int y, int z)
{
   mm->pos_x = x;
   mm->pos_y = y;
   mm->pos_z = z;
}

void stbvox_set_input_stride(stbvox_mesh_maker *mm, int x_stride_in_bytes, int y_stride_in_bytes)
{
   int f,v;
   mm->x_stride_in_bytes = x_stride_in_bytes;
   mm->y_stride_in_bytes = y_stride_in_bytes;
   for (f=0; f < 6; ++f) {
      for (v=0; v < 4; ++v) {
         mm->cube_vertex_offset[f][v]   =   stbvox_vertex_vector[f][v][0]    * mm->x_stride_in_bytes
                                         +  stbvox_vertex_vector[f][v][1]    * mm->y_stride_in_bytes
                                         +  stbvox_vertex_vector[f][v][2]                           ;
         mm->vertex_gather_offset[f][v] =  (stbvox_vertex_vector[f][v][0]-1) * mm->x_stride_in_bytes
                                         + (stbvox_vertex_vector[f][v][1]-1) * mm->y_stride_in_bytes
                                         + (stbvox_vertex_vector[f][v][2]-1)                        ; 
      }
   }
}

/////////////////////////////////////////////////////////////////////////////
//
//    offline computation of tables
//

#if 0
// compute optimized vheight table
static char *normal_names[32] =
{
   0,0,0,0,"u   ",0, "eu  ",0,
   0,0,0,0,"ne_u",0, "nu  ",0,
   0,0,0,0,"nw_u",0, "wu  ",0,
   0,0,0,0,"sw_u",0, "su  ",0,
};

static char *find_best_normal(float x, float y, float z)
{
   int best_slot = 4;
   float best_dot = 0;
   int i;
   for (i=0; i < 32; ++i) {
      if (normal_names[i]) {
         float dot = x * stbvox_default_normals[i][0] + y * stbvox_default_normals[i][1] + z * stbvox_default_normals[i][2];
         if (dot > best_dot) {
            best_dot = dot;
            best_slot = i;
         }
      }
   }
   return normal_names[best_slot];
}

int main(int argc, char **argv)
{
   int sw,se,nw,ne;
   for (ne=0; ne < 4; ++ne) {
      for (nw=0; nw < 4; ++nw) {
         for (se=0; se < 4; ++se) {
            printf("        { ");
            for (sw=0; sw < 4; ++sw) {
               float x = (float) (nw + sw - ne - se);
               float y = (float) (sw + se - nw - ne);
               float z = 2;
               printf("STBVF_%s, ", find_best_normal(x,y,z));
            }
            printf("},\n");
         }
      }
   }
   return 0;
}
#endif

// @TODO
//
//   - test API for texture rotation on side faces
//   - API for texture rotation on top & bottom
//   - better culling of vheight faces with vheight neighbors
//   - better culling of non-vheight faces with vheight neighbors
//   - gather vertex lighting from slopes correctly
//   - better support texture edge_clamp: currently if you fall
//     exactly on 1.0 you get wrapped incorrectly; this is rare, but
//     can avoid: compute texcoords in vertex shader, offset towards
//     center before modding, need 2 bits per vertex to know offset direction)
//   - other mesh modes (10,6,4-byte quads)
//
//
// With TexBuffer for the fixed vertex data, we can actually do
// minecrafty non-blocks like stairs -- we still probably only
// want 256 or so, so we can't do the equivalent of all the vheight
// combos, but that's ok. The 256 includes baked rotations, but only
// some of them need it, and lots of block types share some faces.
//
// mode 5 (6 bytes):   mode 6 (6 bytes)
//   x:7                x:6
//   y:7                y:6
//   z:6                z:6
//   tex1:8             tex1:8
//   tex2:8             tex2:7
//   color:8            color:8
//   face:4             face:7
//
//
//  side faces (all x4)        top&bottom faces (2x)    internal faces (1x)
//     1  regular                1 regular
//     2  slabs                                             2
//     8  stairs                 4 stairs                  16
//     4  diag side                                         8
//     4  upper diag side                                   8
//     4  lower diag side                                   8
//                                                          4 crossed pairs
//
//    23*4                   +   5*4                    +  46
//  == 92 + 20 + 46 = 158
//
//   Must drop 30 of them to fit in 7 bits:
//       ceiling half diagonals: 16+8 = 24
//   Need to get rid of 6 more.
//       ceiling diagonals: 8+4 = 12
//   This brings it to 122, so can add a crossed-pair variant.
//       (diagonal and non-diagonal, or randomly offset)
//   Or carpet, which would be 5 more.
//
//
// Mode 4 (10 bytes):
//  v:  z:2,light:6
//  f:  x:6,y:6,z:7, t1:8,t2:8,c:8,f:5
//
// Mode ? (10 bytes)
//  v:  xyz:5 (27 values), light:3
//  f:  x:7,y:7,z:6, t1:8,t2:8,c:8,f:4
// (v:  x:2,y:2,z:2,light:2)

#endif // STB_VOXEL_RENDER_IMPLEMENTATION

/*
------------------------------------------------------------------------------
This software is available under 2 licenses -- choose whichever you prefer.
------------------------------------------------------------------------------
ALTERNATIVE A - MIT License
Copyright (c) 2017 Sean Barrett
Permission is hereby granted, free of charge, to any person obtaining a copy of 
this software and associated documentation files (the "Software"), to deal in 
the Software without restriction, including without limitation the rights to 
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies 
of the Software, and to permit persons to whom the Software is furnished to do 
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all 
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 
SOFTWARE.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this 
software, either in source code form or as a compiled binary, for any purpose, 
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this 
software dedicate any and all copyright interest in the software to the public 
domain. We make this dedication for the benefit of the public at large and to 
the detriment of our heirs and successors. We intend this dedication to be an 
overt act of relinquishment in perpetuity of all present and future rights to 
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/