1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
|
/* Functions to make fuzzy comparisons between strings
Copyright (C) 1988, 1989, 1992, 1993, 1995 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Derived from GNU diff 2.7, analyze.c et al.
The basic algorithm is described in:
"An O(ND) Difference Algorithm and its Variations", Eugene Myers,
Algorithmica Vol. 1 No. 2, 1986, pp. 251-266;
see especially section 4.2, which describes the variation used below.
The basic algorithm was independently discovered as described in:
"Algorithms for Approximate String Matching", E. Ukkonen,
Information and Control Vol. 64, 1985, pp. 100-118.
Modified to work on strings rather than files
by Peter Miller <pmiller@agso.gov.au>, October 1995
Modified to accept a "minimum similarity limit" to stop analyzing the
string when the similarity drops below the given limit by Marc Lehmann
<schmorp@schmorp.de>.
Modified to work on unicode (actually 31 bit are allowed) by Marc Lehmann
<schmorp@schmorp.de>.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include "fstrcmp.h"
#define PARAMS(proto) proto
/*
* Data on one input string being compared.
*/
struct string_data
{
/* The string to be compared. */
const UV *data;
/* The length of the string to be compared. */
int data_length;
/* The number of characters inserted or deleted. */
int edit_count;
};
static struct string_data string[2];
static int max_edits; /* compareseq stops when edits > max_edits */
#ifdef MINUS_H_FLAG
/* This corresponds to the diff -H flag. With this heuristic, for
strings with a constant small density of changes, the algorithm is
linear in the strings size. This is unlikely in typical uses of
fstrcmp, and so is usually compiled out. Besides, there is no
interface to set it true. */
static int heuristic;
#endif
/* Vector, indexed by diagonal, containing 1 + the X coordinate of the
point furthest along the given diagonal in the forward search of the
edit matrix. */
static int *fdiag;
/* Vector, indexed by diagonal, containing the X coordinate of the point
furthest along the given diagonal in the backward search of the edit
matrix. */
static int *bdiag;
/* Edit scripts longer than this are too expensive to compute. */
static int too_expensive;
/* Snakes bigger than this are considered `big'. */
#define SNAKE_LIMIT 20
struct partition
{
/* Midpoints of this partition. */
int xmid, ymid;
/* Nonzero if low half will be analyzed minimally. */
int lo_minimal;
/* Likewise for high half. */
int hi_minimal;
};
/* NAME
diag - find diagonal path
SYNOPSIS
int diag(int xoff, int xlim, int yoff, int ylim, int minimal,
struct partition *part);
DESCRIPTION
Find the midpoint of the shortest edit script for a specified
portion of the two strings.
Scan from the beginnings of the strings, and simultaneously from
the ends, doing a breadth-first search through the space of
edit-sequence. When the two searches meet, we have found the
midpoint of the shortest edit sequence.
If MINIMAL is nonzero, find the minimal edit script regardless
of expense. Otherwise, if the search is too expensive, use
heuristics to stop the search and report a suboptimal answer.
RETURNS
Set PART->(XMID,YMID) to the midpoint (XMID,YMID). The diagonal
number XMID - YMID equals the number of inserted characters
minus the number of deleted characters (counting only characters
before the midpoint). Return the approximate edit cost; this is
the total number of characters inserted or deleted (counting
only characters before the midpoint), unless a heuristic is used
to terminate the search prematurely.
Set PART->LEFT_MINIMAL to nonzero iff the minimal edit script
for the left half of the partition is known; similarly for
PART->RIGHT_MINIMAL.
CAVEAT
This function assumes that the first characters of the specified
portions of the two strings do not match, and likewise that the
last characters do not match. The caller must trim matching
characters from the beginning and end of the portions it is
going to specify.
If we return the "wrong" partitions, the worst this can do is
cause suboptimal diff output. It cannot cause incorrect diff
output. */
static int diag PARAMS ((int, int, int, int, int, struct partition *));
static int
diag (xoff, xlim, yoff, ylim, minimal, part)
int xoff;
int xlim;
int yoff;
int ylim;
int minimal;
struct partition *part;
{
int *const fd = fdiag; /* Give the compiler a chance. */
int *const bd = bdiag; /* Additional help for the compiler. */
const UV *const xv = string[0].data; /* Still more help for the compiler. */
const UV *const yv = string[1].data; /* And more and more . . . */
const int dmin = xoff - ylim; /* Minimum valid diagonal. */
const int dmax = xlim - yoff; /* Maximum valid diagonal. */
const int fmid = xoff - yoff; /* Center diagonal of top-down search. */
const int bmid = xlim - ylim; /* Center diagonal of bottom-up search. */
int fmin = fmid;
int fmax = fmid; /* Limits of top-down search. */
int bmin = bmid;
int bmax = bmid; /* Limits of bottom-up search. */
int c; /* Cost. */
int odd = (fmid - bmid) & 1;
/*
* True if southeast corner is on an odd diagonal with respect
* to the northwest.
*/
fd[fmid] = xoff;
bd[bmid] = xlim;
for (c = 1;; ++c)
{
int d; /* Active diagonal. */
int big_snake;
big_snake = 0;
/* Extend the top-down search by an edit step in each diagonal. */
if (fmin > dmin)
fd[--fmin - 1] = -1;
else
++fmin;
if (fmax < dmax)
fd[++fmax + 1] = -1;
else
--fmax;
for (d = fmax; d >= fmin; d -= 2)
{
int x;
int y;
int oldx;
int tlo;
int thi;
tlo = fd[d - 1],
thi = fd[d + 1];
if (tlo >= thi)
x = tlo + 1;
else
x = thi;
oldx = x;
y = x - d;
while (x < xlim && y < ylim && xv[x] == yv[y])
{
++x;
++y;
}
if (x - oldx > SNAKE_LIMIT)
big_snake = 1;
fd[d] = x;
if (odd && bmin <= d && d <= bmax && bd[d] <= x)
{
part->xmid = x;
part->ymid = y;
part->lo_minimal = part->hi_minimal = 1;
return 2 * c - 1;
}
}
/* Similarly extend the bottom-up search. */
if (bmin > dmin)
bd[--bmin - 1] = INT_MAX;
else
++bmin;
if (bmax < dmax)
bd[++bmax + 1] = INT_MAX;
else
--bmax;
for (d = bmax; d >= bmin; d -= 2)
{
int x;
int y;
int oldx;
int tlo;
int thi;
tlo = bd[d - 1],
thi = bd[d + 1];
if (tlo < thi)
x = tlo;
else
x = thi - 1;
oldx = x;
y = x - d;
while (x > xoff && y > yoff && xv[x - 1] == yv[y - 1])
{
--x;
--y;
}
if (oldx - x > SNAKE_LIMIT)
big_snake = 1;
bd[d] = x;
if (!odd && fmin <= d && d <= fmax && x <= fd[d])
{
part->xmid = x;
part->ymid = y;
part->lo_minimal = part->hi_minimal = 1;
return 2 * c;
}
}
if (minimal)
continue;
#ifdef MINUS_H_FLAG
/* Heuristic: check occasionally for a diagonal that has made lots
of progress compared with the edit distance. If we have any
such, find the one that has made the most progress and return
it as if it had succeeded.
With this heuristic, for strings with a constant small density
of changes, the algorithm is linear in the strings size. */
if (c > 200 && big_snake && heuristic)
{
int best;
best = 0;
for (d = fmax; d >= fmin; d -= 2)
{
int dd;
int x;
int y;
int v;
dd = d - fmid;
x = fd[d];
y = x - d;
v = (x - xoff) * 2 - dd;
if (v > 12 * (c + (dd < 0 ? -dd : dd)))
{
if
(
v > best
&&
xoff + SNAKE_LIMIT <= x
&&
x < xlim
&&
yoff + SNAKE_LIMIT <= y
&&
y < ylim
)
{
/* We have a good enough best diagonal; now insist
that it end with a significant snake. */
int k;
for (k = 1; xv[x - k] == yv[y - k]; k++)
{
if (k == SNAKE_LIMIT)
{
best = v;
part->xmid = x;
part->ymid = y;
break;
}
}
}
}
}
if (best > 0)
{
part->lo_minimal = 1;
part->hi_minimal = 0;
return 2 * c - 1;
}
best = 0;
for (d = bmax; d >= bmin; d -= 2)
{
int dd;
int x;
int y;
int v;
dd = d - bmid;
x = bd[d];
y = x - d;
v = (xlim - x) * 2 + dd;
if (v > 12 * (c + (dd < 0 ? -dd : dd)))
{
if (v > best && xoff < x && x <= xlim - SNAKE_LIMIT &&
yoff < y && y <= ylim - SNAKE_LIMIT)
{
/* We have a good enough best diagonal; now insist
that it end with a significant snake. */
int k;
for (k = 0; xv[x + k] == yv[y + k]; k++)
{
if (k == SNAKE_LIMIT - 1)
{
best = v;
part->xmid = x;
part->ymid = y;
break;
}
}
}
}
}
if (best > 0)
{
part->lo_minimal = 0;
part->hi_minimal = 1;
return 2 * c - 1;
}
}
#endif /* MINUS_H_FLAG */
/* Heuristic: if we've gone well beyond the call of duty, give up
and report halfway between our best results so far. */
if (c >= too_expensive)
{
int fxybest;
int fxbest;
int bxybest;
int bxbest;
/* Pacify `gcc -Wall'. */
fxbest = 0;
bxbest = 0;
/* Find forward diagonal that maximizes X + Y. */
fxybest = -1;
for (d = fmax; d >= fmin; d -= 2)
{
int x;
int y;
x = fd[d] < xlim ? fd[d] : xlim;
y = x - d;
if (ylim < y)
{
x = ylim + d;
y = ylim;
}
if (fxybest < x + y)
{
fxybest = x + y;
fxbest = x;
}
}
/* Find backward diagonal that minimizes X + Y. */
bxybest = INT_MAX;
for (d = bmax; d >= bmin; d -= 2)
{
int x;
int y;
x = xoff > bd[d] ? xoff : bd[d];
y = x - d;
if (y < yoff)
{
x = yoff + d;
y = yoff;
}
if (x + y < bxybest)
{
bxybest = x + y;
bxbest = x;
}
}
/* Use the better of the two diagonals. */
if ((xlim + ylim) - bxybest < fxybest - (xoff + yoff))
{
part->xmid = fxbest;
part->ymid = fxybest - fxbest;
part->lo_minimal = 1;
part->hi_minimal = 0;
}
else
{
part->xmid = bxbest;
part->ymid = bxybest - bxbest;
part->lo_minimal = 0;
part->hi_minimal = 1;
}
return 2 * c - 1;
}
}
}
/* NAME
compareseq - find edit sequence
SYNOPSIS
void compareseq(int xoff, int xlim, int yoff, int ylim, int minimal);
DESCRIPTION
Compare in detail contiguous subsequences of the two strings
which are known, as a whole, to match each other.
The subsequence of string 0 is [XOFF, XLIM) and likewise for
string 1.
Note that XLIM, YLIM are exclusive bounds. All character
numbers are origin-0.
If MINIMAL is nonzero, find a minimal difference no matter how
expensive it is. */
static void compareseq PARAMS ((int, int, int, int, int));
static void
compareseq (xoff, xlim, yoff, ylim, minimal)
int xoff;
int xlim;
int yoff;
int ylim;
int minimal;
{
const UV *const xv = string[0].data; /* Help the compiler. */
const UV *const yv = string[1].data;
if (string[1].edit_count + string[0].edit_count > max_edits)
return;
/* Slide down the bottom initial diagonal. */
while (xoff < xlim && yoff < ylim && xv[xoff] == yv[yoff])
{
++xoff;
++yoff;
}
/* Slide up the top initial diagonal. */
while (xlim > xoff && ylim > yoff && xv[xlim - 1] == yv[ylim - 1])
{
--xlim;
--ylim;
}
/* Handle simple cases. */
if (xoff == xlim)
{
while (yoff < ylim)
{
++string[1].edit_count;
++yoff;
}
}
else if (yoff == ylim)
{
while (xoff < xlim)
{
++string[0].edit_count;
++xoff;
}
}
else
{
int c;
struct partition part;
/* Find a point of correspondence in the middle of the strings. */
c = diag (xoff, xlim, yoff, ylim, minimal, &part);
if (c == 1)
{
#if 0
/* This should be impossible, because it implies that one of
the two subsequences is empty, and that case was handled
above without calling `diag'. Let's verify that this is
true. */
abort ();
#else
/* The two subsequences differ by a single insert or delete;
record it and we are done. */
if (part.xmid - part.ymid < xoff - yoff)
++string[1].edit_count;
else
++string[0].edit_count;
#endif
}
else
{
/* Use the partitions to split this problem into subproblems. */
compareseq (xoff, part.xmid, yoff, part.ymid, part.lo_minimal);
compareseq (part.xmid, xlim, part.ymid, ylim, part.hi_minimal);
}
}
}
/* NAME
fstrcmp - fuzzy string compare
SYNOPSIS
double fstrcmp(const ChaR *s1, int l1, const UV *s2, int l2, double);
DESCRIPTION
The fstrcmp function may be used to compare two string for
similarity. It is very useful in reducing "cascade" or
"secondary" errors in compilers or other situations where
symbol tables occur.
RETURNS
double; 0 if the strings are entirly dissimilar, 1 if the
strings are identical, and a number in between if they are
similar. */
double
fstrcmp (const UV *string1, int length1,
const UV *string2, int length2,
double minimum)
{
int i;
size_t fdiag_len;
static int *fdiag_buf;
static size_t fdiag_max;
/* set the info for each string. */
string[0].data = string1;
string[0].data_length = length1;
string[1].data = string2;
string[1].data_length = length2;
/* short-circuit obvious comparisons */
if (string[0].data_length == 0 && string[1].data_length == 0)
return 1.0;
if (string[0].data_length == 0 || string[1].data_length == 0)
return 0.0;
/* Set TOO_EXPENSIVE to be approximate square root of input size,
bounded below by 256. */
too_expensive = 1;
for (i = string[0].data_length + string[1].data_length; i != 0; i >>= 2)
too_expensive <<= 1;
if (too_expensive < 256)
too_expensive = 256;
/* Because fstrcmp is typically called multiple times, while scanning
symbol tables, etc, attempt to minimize the number of memory
allocations performed. Thus, we use a static buffer for the
diagonal vectors, and never free them. */
fdiag_len = string[0].data_length + string[1].data_length + 3;
if (fdiag_len > fdiag_max)
{
fdiag_max = fdiag_len;
fdiag_buf = realloc (fdiag_buf, fdiag_max * (2 * sizeof (int)));
}
fdiag = fdiag_buf + string[1].data_length + 1;
bdiag = fdiag + fdiag_len;
max_edits = 1 + (string[0].data_length + string[1].data_length) * (1. - minimum);
/* Now do the main comparison algorithm */
string[0].edit_count = 0;
string[1].edit_count = 0;
compareseq (0, string[0].data_length, 0, string[1].data_length, 0);
/* The result is
((number of chars in common) / (average length of the strings)).
This is admittedly biased towards finding that the strings are
similar, however it does produce meaningful results. */
return ((double)
(string[0].data_length + string[1].data_length - string[1].edit_count - string[0].edit_count)
/ (string[0].data_length + string[1].data_length));
}
|