1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
|
/***************************************************************************
* examples/applications/skew3.cpp
*
* Implementation of the external memory suffix sorting algorithm DC3 aka
* skew3 as described in Roman Dementiev, Juha Kaerkkaeinen, Jens Mehnert and
* Peter Sanders. "Better External Memory Suffix Array Construction". Journal
* of Experimental Algorithmics (JEA), volume 12, 2008.
*
* Part of the STXXL. See http://stxxl.sourceforge.net
*
* Copyright (C) 2004 Jens Mehnert <jmehnert@mpi-sb.mpg.de>
* Copyright (C) 2012-2013 Timo Bingmann <tb@panthema.net>
* Copyright (C) 2012-2013 Daniel Feist <daniel.feist@student.kit.edu>
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
**************************************************************************/
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdlib>
#include <iostream>
#include <limits>
#include <string>
#include <vector>
#include <stxxl/algorithm>
#include <stxxl/cmdline>
#include <stxxl/io>
#include <stxxl/random>
#include <stxxl/sorter>
#include <stxxl/stats>
#include <stxxl/stream>
#include <stxxl/vector>
#include <stxxl/bits/common/uint_types.h>
using stxxl::uint64;
using stxxl::internal_size_type;
using stxxl::external_size_type;
namespace stream = stxxl::stream;
// 1 GiB ram used by external data structures / 1 MiB block size
internal_size_type ram_use = 1024 * 1024 * 1024;
// alphabet data type
typedef unsigned char alphabet_type;
// calculation data type
typedef external_size_type size_type;
/// Suffix Array checker for correctness verification
/**
* Algorithm to check whether the suffix array is correct. Loosely based on the
* ideas of Kaerkkaeinen und Burghardt, originally implemented in STXXL by Jens
* Mehnert (2004), reimplemented using triples by Timo Bingmann (2012).
*
* @param InputT is the original text, from which the suffix array was build
* @param InputSA is the suffix array from InputT
*
* Note: ISA := The inverse of SA
*/
template <typename InputT, typename InputSA>
bool sacheck(InputT& inputT, InputSA& inputSA)
{
typedef typename InputSA::value_type offset_type;
typedef stxxl::tuple<offset_type, offset_type> pair_type;
typedef stxxl::tuple<offset_type, offset_type, offset_type> triple_type;
// *** Pipeline Declaration ***
// Build tuples with index: (SA[i]) -> (i, SA[i])
typedef stxxl::stream::counter<offset_type> index_counter_type;
index_counter_type index_counter;
typedef stream::make_tuple<index_counter_type, InputSA> tuple_index_sa_type;
tuple_index_sa_type tuple_index_sa(index_counter, inputSA);
// take (i, SA[i]) and sort to (ISA[i], i)
typedef stxxl::tuple_less2nd<pair_type> pair_less_type;
typedef typename stream::sort<tuple_index_sa_type, pair_less_type> build_isa_type;
build_isa_type build_isa(tuple_index_sa, pair_less_type(), ram_use / 3);
// build (ISA[i], T[i], ISA[i+1]) and sort to (i, T[SA[i]], ISA[SA[i]+1])
typedef stxxl::tuple_less1st<triple_type> triple_less_type; // comparison relation
typedef typename stream::use_push<triple_type> triple_push_type; // indicator use push()
typedef typename stream::runs_creator<triple_push_type, triple_less_type> triple_rc_type;
typedef typename stream::runs_merger<typename triple_rc_type::sorted_runs_type, triple_less_type> triple_rm_type;
triple_rc_type triple_rc(triple_less_type(), ram_use / 3);
// ************************* Process ******************************
// loop 1: read ISA and check for a permutation. Simultaneously create runs
// of triples by iterating ISA and T.
size_type totalSize;
{
offset_type prev_isa = (*build_isa).first;
offset_type counter = 0;
while (!build_isa.empty())
{
if ((*build_isa).second != counter) {
std::cout << "Error: suffix array is not a permutation of 0..n-1." << std::endl;
return false;
}
++counter;
++build_isa; // ISA is one in front of T
if (!build_isa.empty()) {
triple_rc.push(triple_type(prev_isa, *inputT, (*build_isa).first));
prev_isa = (*build_isa).first;
}
++inputT;
}
totalSize = counter;
}
if (totalSize == 1) return true;
// ************************************************************************
// loop 2: read triples (i,T[SA[i]],ISA[SA[i]+1]) and check for correct
// ordering.
triple_rm_type triple_rm(triple_rc.result(), triple_less_type(), ram_use / 3);
{
triple_type prev_triple = *triple_rm;
size_type counter = 0;
++triple_rm;
while (!triple_rm.empty())
{
const triple_type& this_triple = *triple_rm;
if (prev_triple.second > this_triple.second)
{
// simple check of first character of suffix
std::cout << "Error: suffix array position " << counter << " ordered incorrectly." << std::endl;
return false;
}
else if (prev_triple.second == this_triple.second)
{
if (this_triple.third == (offset_type)totalSize) {
// last suffix of string must be first among those with same
// first character
std::cout << "Error: suffix array position " << counter << " ordered incorrectly." << std::endl;
return false;
}
if (prev_triple.third != (offset_type)totalSize && prev_triple.third > this_triple.third) {
// positions SA[i] and SA[i-1] has same first character but
// their suffixes are ordered incorrectly: the suffix
// position of SA[i] is given by ISA[SA[i]]
std::cout << "Error: suffix array position " << counter << " ordered incorrectly." << std::endl;
return false;
}
}
prev_triple = this_triple;
++triple_rm;
++counter;
}
}
return true;
}
template <typename InputT, typename InputSA>
bool sacheck_vectors(InputT& inputT, InputSA& inputSA)
{
typename stream::streamify_traits<typename InputT::iterator>::stream_type streamT
= stream::streamify(inputT.begin(), inputT.end());
typename stream::streamify_traits<typename InputSA::iterator>::stream_type streamSA
= stream::streamify(inputSA.begin(), inputSA.end());
return sacheck(streamT, streamSA);
}
/// DC3 aka skew algorithm
/*
* DC3 aka skew algorithm a short description. T := input string
* The recursion works as follows:
* Step 1: a) pick all mod1/mod2 triples (i.e. triples T[i,i+2] at position i mod 3 != 0) (-> extract_mod12 class)
* b) sort mod1/mod2 triples lexicographically (-> build_sa class)
* c) give mod1/mod2 triples lexicographical ascending names n (-> naming class)
* d) check lexicographical names for uniqueness (-> naming class)
* If yes: proceed to next Step, If no: set T := lexicographical names and run Step 1 again
* Step 2: a) by sorting the lexicographical names n we receive ranks r
* b) construct mod0-quints, mod1-quads and mod2-quints (-> build_sa class)
* c) prepare for merging by:
* sort mod0-quints by 2 components, sort mod1-quads / mod2-quints by one component (-> build_sa class)
* c) merge mod0-quints, mod1-quads and mod2-quints (-> merge_sa class)
* Step 3: a) return Suffix Array of T
*
* @param offset_type later suffix array data type
*/
template <typename offset_type>
class skew
{
public:
// 2-tuple, 3-tuple, 4-tuple (=quads), 5-tuple(=quints) definition
typedef stxxl::tuple<offset_type, offset_type> skew_pair_type;
typedef stxxl::tuple<offset_type, offset_type, offset_type> skew_triple_type;
typedef stxxl::tuple<offset_type, offset_type, offset_type, offset_type> skew_quad_type;
typedef stxxl::tuple<offset_type, offset_type, offset_type, offset_type, offset_type> skew_quint_type;
typedef typename stxxl::VECTOR_GENERATOR<offset_type, 1, 2>::result offset_array_type;
typedef stream::vector_iterator2stream<typename offset_array_type::iterator> offset_array_it_rg;
/** Comparison function for the mod0 tuples. */
struct less_mod0
{
typedef skew_quint_type value_type;
bool operator () (const value_type& a, const value_type& b) const
{
if (a.second == b.second)
return a.fourth < b.fourth;
else
return a.second < b.second;
}
static value_type min_value() { return value_type::min_value(); }
static value_type max_value() { return value_type::max_value(); }
};
typedef stxxl::tuple_less2nd<skew_quad_type> less_mod1;
typedef stxxl::tuple_less2nd<skew_quint_type> less_mod2;
/** Put the (0 mod 2) [which are the 1,2 mod 3 tuples] tuples at the begin. */
struct less_skew
{
typedef skew_pair_type value_type;
bool operator () (const value_type& a, const value_type& b) const
{
if ((a.first & 1) == (b.first & 1))
return a.first < b.first;
else
return (a.first & 1) < (b.first & 1);
}
static value_type min_value() { return value_type::min_value(); }
static value_type max_value() { return value_type::max_value(); }
};
/** Sort skew_quad datatype. */
template <typename alphabet_type>
struct less_quad
{
typedef stxxl::tuple<offset_type, alphabet_type, alphabet_type, alphabet_type> value_type;
bool operator () (const value_type& a, const value_type& b) const
{
if (a.second == b.second) {
if (a.third == b.third)
return a.fourth < b.fourth;
else
return a.third < b.third;
}
else
return a.second < b.second;
}
static value_type min_value() { return value_type::min_value(); }
static value_type max_value() { return value_type::max_value(); }
};
/** Check, if last two components of tree quads are equal. */
template <class quad_type>
static inline bool quad_eq(const quad_type& a, const quad_type& b)
{
return (a.second == b.second) && (a.third == b.third) && (a.fourth == b.fourth);
}
/** Naming pipe for the conventional skew algorithm without discarding. */
template <class Input>
class naming
{
public:
typedef typename Input::value_type quad_type;
typedef skew_pair_type value_type;
private:
Input& A;
bool& unique;
offset_type lexname;
quad_type prev;
skew_pair_type result;
public:
naming(Input& A_, bool& unique_)
: A(A_), unique(unique_), lexname(0)
{
assert(!A.empty());
unique = true;
prev = *A;
result.first = prev.first;
result.second = lexname;
}
const value_type& operator * () const
{
return result;
}
naming& operator ++ ()
{
assert(!A.empty());
++A;
if (A.empty())
return *this;
quad_type curr = *A;
if (!quad_eq(prev, curr)) {
++lexname;
} else {
if (!A.empty() && curr.second != offset_type(0)) {
unique = false;
}
}
result.first = curr.first;
result.second = lexname;
prev = curr;
return *this;
}
bool empty() const
{
return A.empty();
}
};
/** Create tuples of 2 components until one of the input streams are empty. */
template <class InputA, class InputB, const int add_alphabet = 0>
class make_pairs
{
public:
typedef stxxl::tuple<typename InputA::value_type, offset_type> value_type;
private:
InputA& A;
InputB& B;
value_type result;
public:
make_pairs(InputA& a, InputB& b)
: A(a), B(b)
{
assert(!A.empty());
assert(!B.empty());
if (!empty()) {
result = value_type(*A, *B + add_alphabet);
}
}
const value_type& operator * () const
{ return result; }
make_pairs& operator ++ ()
{
assert(!A.empty());
assert(!B.empty());
++A;
++B;
if (!A.empty() && !B.empty()) {
result = value_type(*A, *B + add_alphabet);
}
return *this;
}
bool empty() const
{ return (A.empty() || B.empty()); }
};
/**
* Collect three characters t_i, t_{i+1}, t_{i+2} beginning at the index
* i. Since we need at least one unique endcaracter, we free the first
* characters i.e. we map (t_i) -> (i,t_i,t_{i+1},t_{i+2})
*
* @param Input holds all characters t_i from input string t
* @param alphabet_type
* @param add_alphabet
*/
template <class Input, typename alphabet_type, const int add_alphabet = 0>
class make_quads
{
public:
typedef stxxl::tuple<offset_type, alphabet_type, alphabet_type, alphabet_type> value_type;
private:
Input& A;
value_type current;
offset_type counter;
unsigned int z3z; // = counter mod 3, ("+",Z/3Z) is cheaper than %
bool finished;
offset_array_type& text;
public:
make_quads(Input& data_in_, offset_array_type& text_)
: A(data_in_),
current(0, 0, 0, 0),
counter(0),
z3z(0),
finished(false),
text(text_)
{
assert(!A.empty());
current.first = counter;
current.second = (*A).second + add_alphabet;
++A;
if (!A.empty()) {
current.third = (*A).second + add_alphabet;
++A;
}
else {
current.third = 0;
current.fourth = 0;
}
if (!A.empty()) {
current.fourth = (*A).second + add_alphabet;
}
else {
current.fourth = 0;
}
}
const value_type& operator * () const
{ return current; }
make_quads& operator ++ ()
{
assert(!A.empty() || !finished);
if (current.second != offset_type(0)) {
text.push_back(current.second);
}
// Calculate module
if (++z3z == 3) z3z = 0;
current.first = ++counter;
current.second = current.third;
current.third = current.fourth;
if (!A.empty())
++A;
if (!A.empty()) {
current.fourth = (*A).second + add_alphabet;
}
else {
current.fourth = 0;
}
// Inserts a dummy tuple for input sizes of n%3==1
if ((current.second == offset_type(0)) && (z3z != 1)) {
finished = true;
}
return *this;
}
bool empty() const
{ return (A.empty() && finished); }
};
/** Drop 1/3 of the input. More exactly the offsets at positions (0 mod
* 3). Index begins with 0. */
template <class Input>
class extract_mod12
{
public:
typedef typename Input::value_type value_type;
private:
Input& A;
offset_type counter;
offset_type output_counter;
value_type result;
public:
extract_mod12(Input& A_)
: A(A_),
counter(0),
output_counter(0)
{
assert(!A.empty());
++A, ++counter; // skip 0 = mod0 offset
if (!A.empty()) {
result = *A;
result.first = output_counter;
}
}
const value_type& operator * () const
{ return result; }
extract_mod12& operator ++ ()
{
assert(!A.empty());
++A, ++counter, ++output_counter;
if (!A.empty() && (counter % 3) == 0) {
// skip mod0 offsets
++A, ++counter;
}
if (!A.empty()) {
result = *A;
result.first = output_counter;
}
return *this;
}
bool empty() const
{ return A.empty(); }
};
/** Create the suffix array from the current sub problem by simple
* comparison-based merging. More precisely: compare characters(out of
* text t) and ranks(out of ISA12) of the following constellation:
* Input constellation:
* @param Mod0 5-tuple (quint): <i, t_i, t_{i+1}, ISA12[i+1], ISA12[i+2]>
* @param Mod1 4-tuple (quad): <i, ISA12[i], t_i, ISA12[i+1]>
* @param Mod2 5-tuple (quint): <i, ISA[i], t_i, t_{i+1}, ISA12[i+1]>
*/
template <class Mod0, class Mod1, class Mod2>
class merge_sa
{
public:
typedef offset_type value_type;
private:
Mod0& A;
Mod1& B;
Mod2& C;
skew_quint_type s0;
skew_quad_type s1;
skew_quint_type s2;
int selected;
bool done[3];
offset_type index;
offset_type merge_result;
bool cmp_mod1_less_mod2()
{
assert(!done[1] && !done[2]);
return s1.second < s2.second;
}
bool cmp_mod0_less_mod2()
{
assert(!done[0] && !done[2]);
if (s0.second == s2.third) {
if (s0.third == s2.fourth)
return s0.fifth < s2.fifth;
else
return s0.third < s2.fourth;
}
else
return s0.second < s2.third;
}
bool cmp_mod0_less_mod1()
{
assert(!done[0] && !done[1]);
if (s0.second == s1.third)
return s0.fourth < s1.fourth;
else
return s0.second < s1.third;
}
void merge()
{
assert(!done[0] || !done[1] || !done[2]);
if (done[0])
{
if (done[2] || (!done[1] && cmp_mod1_less_mod2()))
{
selected = 1;
merge_result = s1.first;
}
else
{
selected = 2;
merge_result = s2.first;
}
}
else if (done[1] || cmp_mod0_less_mod1())
{
if (done[2] || cmp_mod0_less_mod2())
{
selected = 0;
merge_result = s0.first;
}
else
{
selected = 2;
merge_result = s2.first;
}
}
else
{
if (done[2] || cmp_mod1_less_mod2())
{
selected = 1;
merge_result = s1.first;
}
else
{
selected = 2;
merge_result = s2.first;
}
}
assert(!done[selected]);
}
public:
bool empty() const
{
return (A.empty() && B.empty() && C.empty());
}
merge_sa(Mod0& x1, Mod1& x2, Mod2& x3)
: A(x1), B(x2), C(x3), selected(-1), index(0)
{
assert(!A.empty());
assert(!B.empty());
assert(!C.empty());
done[0] = false;
done[1] = false;
done[2] = false;
s0 = *A;
s1 = *B;
s2 = *C;
merge();
}
const value_type& operator * () const
{
return merge_result;
}
merge_sa& operator ++ ()
{
if (selected == 0) {
assert(!A.empty());
++A;
if (!A.empty())
s0 = *A;
else
done[0] = true;
}
else if (selected == 1) {
assert(!B.empty());
++B;
if (!B.empty())
s1 = *B;
else
done[1] = true;
}
else {
assert(!C.empty());
assert(selected == 2);
++C;
if (!C.empty())
s2 = *C;
else
done[2] = true;
}
++index;
if (!empty())
merge();
return *this;
}
};
/** Helper function for computing the size of the 2/3 subproblem. */
static inline size_type subp_size(size_type n)
{
return (n / 3) * 2 + ((n % 3) == 2);
}
/**
* Sort mod0-quints / mod1-quads / mod2-quints and run merge_sa class to
* merge them together.
* @param S input string pipe type.
* @param Mod1 mod1 tuples input pipe type.
* @param Mod2 mod2 tuples input pipe type.
*/
template <class S, class Mod1, class Mod2>
class build_sa
{
public:
typedef offset_type value_type;
static const unsigned int add_rank = 1; // free first rank to mark ranks beyond end of input
private:
// mod1 types
typedef typename stream::use_push<skew_quad_type> mod1_push_type;
typedef typename stream::runs_creator<mod1_push_type, less_mod1> mod1_runs_type;
typedef typename mod1_runs_type::sorted_runs_type sorted_mod1_runs_type;
typedef typename stream::runs_merger<sorted_mod1_runs_type, less_mod1> mod1_rm_type;
// mod2 types
typedef typename stream::use_push<skew_quint_type> mod2_push_type;
typedef typename stream::runs_creator<mod2_push_type, less_mod2> mod2_runs_type;
typedef typename mod2_runs_type::sorted_runs_type sorted_mod2_runs_type;
typedef typename stream::runs_merger<sorted_mod2_runs_type, less_mod2> mod2_rm_type;
// mod0 types
typedef typename stream::use_push<skew_quint_type> mod0_push_type;
typedef typename stream::runs_creator<mod0_push_type, less_mod0> mod0_runs_type;
typedef typename mod0_runs_type::sorted_runs_type sorted_mod0_runs_type;
typedef typename stream::runs_merger<sorted_mod0_runs_type, less_mod0> mod0_rm_type;
// Merge type
typedef merge_sa<mod0_rm_type, mod1_rm_type, mod2_rm_type> merge_sa_type;
// Functions
less_mod0 c0;
less_mod1 c1;
less_mod2 c2;
// Runs merger
mod1_rm_type* mod1_result;
mod2_rm_type* mod2_result;
mod0_rm_type* mod0_result;
// Merger
merge_sa_type* vmerge_sa;
// Input
S& source;
Mod1& mod_1;
Mod2& mod_2;
// Tmp variables
offset_type t[3];
offset_type old_t2;
offset_type old_mod2;
bool exists[3];
offset_type mod_one;
offset_type mod_two;
offset_type index;
// Empty_flag
bool ready;
// Result
value_type result;
public:
build_sa(S& source_, Mod1& mod_1_, Mod2& mod_2_, size_type a_size, size_t memsize)
: source(source_), mod_1(mod_1_), mod_2(mod_2_), index(0), ready(false)
{
assert(!source_.empty());
// Runs storage
// input: ISA_1,2 from previous level
mod0_runs_type mod0_runs(c0, memsize / 4);
mod1_runs_type mod1_runs(c1, memsize / 4);
mod2_runs_type mod2_runs(c2, memsize / 4);
while (!source.empty())
{
exists[0] = false;
exists[1] = false;
exists[2] = false;
if (!source.empty()) {
t[0] = *source;
++source;
exists[0] = true;
}
if (!source.empty()) {
assert(!mod_1.empty());
t[1] = *source;
++source;
mod_one = *mod_1 + add_rank;
++mod_1;
exists[1] = true;
}
if (!source.empty()) {
assert(!mod_2.empty());
t[2] = *source;
++source;
mod_two = *mod_2 + add_rank;
++mod_2;
exists[2] = true;
}
// Check special cases in the middle of "source"
// Cases are cx|xc cxx|cxx and cxxc|xxc
assert(t[0] != offset_type(0));
assert(t[1] != offset_type(0));
assert(t[2] != offset_type(0));
// Mod 0 : (index0,char0,char1,mod1,mod2)
// Mod 1 : (index1,mod1,char1,mod2)
// Mod 2 : (index2,mod2)
if (exists[2]) { // Nothing is missed
mod0_runs.push(skew_quint_type(index, t[0], t[1], mod_one, mod_two));
mod1_runs.push(skew_quad_type(index + 1, mod_one, t[1], mod_two));
if (index != offset_type(0)) {
mod2_runs.push(skew_quint_type((index - 1), old_mod2, old_t2, t[0], mod_one));
}
}
else if (exists[1]) { // Last element missed
mod0_runs.push(skew_quint_type(index, t[0], t[1], mod_one, 0));
mod1_runs.push(skew_quad_type(index + 1, mod_one, t[1], 0));
if (index != offset_type(0)) {
mod2_runs.push(skew_quint_type((index - 1), old_mod2, old_t2, t[0], mod_one));
}
}
else { // Only one element left
assert(exists[0]);
mod0_runs.push(skew_quint_type(index, t[0], 0, 0, 0));
if (index != offset_type(0)) {
mod2_runs.push(skew_quint_type((index - 1), old_mod2, old_t2, t[0], 0));
}
}
old_mod2 = mod_two;
old_t2 = t[2];
index += 3;
}
if ((a_size % 3) == 0) { // changed
if (index != offset_type(0)) {
mod2_runs.push(skew_quint_type((index - 1), old_mod2, old_t2, 0, 0));
}
}
mod0_runs.deallocate();
mod1_runs.deallocate();
mod2_runs.deallocate();
std::cout << "merging S0 = " << mod0_runs.size() << ", S1 = " << mod1_runs.size()
<< ", S2 = " << mod2_runs.size() << " tuples" << std::endl;
// Prepare for merging
mod0_result = new mod0_rm_type(mod0_runs.result(), less_mod0(), memsize / 5);
mod1_result = new mod1_rm_type(mod1_runs.result(), less_mod1(), memsize / 5);
mod2_result = new mod2_rm_type(mod2_runs.result(), less_mod2(), memsize / 5);
// output: ISA_1,2 for next level
vmerge_sa = new merge_sa_type(*mod0_result, *mod1_result, *mod2_result);
// read first suffix
result = *(*vmerge_sa);
}
const value_type& operator * () const
{
return result;
}
build_sa& operator ++ ()
{
assert(vmerge_sa != 0 && !vmerge_sa->empty());
++(*vmerge_sa);
if (!vmerge_sa->empty()) {
result = *(*vmerge_sa);
}
else { // cleaning up
assert(vmerge_sa->empty());
ready = true;
assert(vmerge_sa != NULL);
delete vmerge_sa, vmerge_sa = NULL;
assert(mod0_result != NULL && mod1_result != NULL && mod2_result != NULL);
delete mod0_result, mod0_result = NULL;
delete mod1_result, mod1_result = NULL;
delete mod2_result, mod2_result = NULL;
}
return *this;
}
~build_sa()
{
if (vmerge_sa) delete vmerge_sa;
if (mod0_result) delete mod0_result;
if (mod1_result) delete mod1_result;
if (mod2_result) delete mod2_result;
}
bool empty() const
{
return ready;
}
};
/** The skew algorithm.
* @param Input type of the input pipe. */
template <class Input>
class algorithm
{
public:
typedef offset_type value_type;
typedef typename Input::value_type alphabet_type;
protected:
// finished reading final suffix array
bool finished;
// current recursion depth
unsigned int rec_depth;
protected:
// generate (i) sequence
typedef stxxl::stream::counter<offset_type> counter_stream_type;
// Sorter
typedef stxxl::tuple_less1st<skew_pair_type> mod12cmp;
typedef stxxl::sorter<skew_pair_type, mod12cmp> mod12_sorter_type;
// Additional streaming items
typedef stream::choose<mod12_sorter_type, 2> isa_second_type;
typedef build_sa<offset_array_it_rg, isa_second_type, isa_second_type> buildSA_type;
typedef make_pairs<buildSA_type, counter_stream_type> precompute_isa_type;
// Real recursive skew3 implementation
// This part is the core of the skew algorithm and runs all class objects in their respective order
template <typename RecInputType>
buildSA_type * skew3(RecInputType& p_Input)
{
// (t_i) -> (i,t_i,t_{i+1},t_{i+2})
typedef make_quads<RecInputType, offset_type, 1> make_quads_input_type;
// (t_i) -> (i,t_i,t_{i+1},t_{i+2}) with i = 1,2 mod 3
typedef extract_mod12<make_quads_input_type> mod12_quads_input_type;
// sort (i,t_i,t_{i+1},t_{i+2}) by (t_i,t_{i+1},t_{i+2})
typedef typename stream::sort<mod12_quads_input_type, less_quad<offset_type> > sort_mod12_input_type;
// name (i,t_i,t_{i+1},t_{i+2}) -> (i,n_i)
typedef naming<sort_mod12_input_type> naming_input_type;
mod12_sorter_type m1_sorter(mod12cmp(), ram_use / 5);
mod12_sorter_type m2_sorter(mod12cmp(), ram_use / 5);
// sorted mod1 runs -concatenate- sorted mod2 runs
typedef stxxl::stream::concatenate<mod12_sorter_type, mod12_sorter_type> concatenation_type;
// (t_i) -> (i,t_i,t_{i+1},t_{i+2})
offset_array_type text;
make_quads_input_type quads_input(p_Input, text);
// (t_i) -> (i,t_i,t_{i+1},t_{i+2}) with i = 1,2 mod 3
mod12_quads_input_type mod12_quads_input(quads_input);
// sort (i,t_i,t_{i+1},t_{i+2}) by (t_i,t_i+1},t_{i+2})
sort_mod12_input_type sort_mod12_input(mod12_quads_input, less_quad<offset_type>(), ram_use / 5);
// name (i,t_i,t_{i+1},t_{i+2}) -> (i,"n_i")
bool unique = false; // is the current quad array unique?
naming_input_type names_input(sort_mod12_input, unique);
// create (i, s^12[i])
size_type concat_length = 0; // holds length of current S_12
while (!names_input.empty()) {
const skew_pair_type& tmp = *names_input;
if (tmp.first & 1) {
m2_sorter.push(tmp); // sorter #2
}
else {
m1_sorter.push(tmp); // sorter #1
}
++names_input;
concat_length++;
}
std::cout << "recursion string length = " << concat_length << std::endl;
m1_sorter.sort();
m2_sorter.sort();
if (!unique)
{
std::cout << "not unique -> next recursion level = " << ++rec_depth << std::endl;
// compute s^12 := lexname[S[1 mod 3]] . lexname[S[2 mod 3]], (also known as reduced recursion string 'R')
concatenation_type concat_mod1mod2(m1_sorter, m2_sorter);
buildSA_type* recType = skew3(concat_mod1mod2); // recursion with recursion string T' = concat_mod1mod2 lexnames
std::cout << "exit recursion level = " << --rec_depth << std::endl;
counter_stream_type isa_loop_index;
precompute_isa_type isa_pairs(*recType, isa_loop_index); // add index as component => (SA12, i)
// store beginning of mod2-tuples of s^12 in mod2_pos
offset_type special = (concat_length != subp_size(text.size()));
offset_type mod2_pos = offset_type((subp_size(text.size()) >> 1) + (subp_size(text.size()) & 1) + special);
mod12_sorter_type isa1_pair(mod12cmp(), ram_use / 5);
mod12_sorter_type isa2_pair(mod12cmp(), ram_use / 5);
while (!isa_pairs.empty()) {
const skew_pair_type& tmp = *isa_pairs;
if (tmp.first < mod2_pos) {
if (tmp.first + special < mod2_pos) // else: special sentinel tuple is dropped
isa1_pair.push(tmp); // sorter #1
} else {
isa2_pair.push(tmp); // sorter #2
}
++isa_pairs;
}
delete recType;
isa1_pair.finish();
isa2_pair.finish();
offset_array_it_rg input(text.begin(), text.end());
// => (i, ISA)
isa1_pair.sort(ram_use / 8);
isa2_pair.sort(ram_use / 8);
// pick ISA of (i, ISA)
isa_second_type isa1(isa1_pair);
isa_second_type isa2(isa2_pair);
// prepare and run merger
return new buildSA_type(input, isa1, isa2, text.size(), ram_use);
}
else // unique
{
std::cout << "unique names!" << std::endl;
isa_second_type isa1(m1_sorter);
isa_second_type isa2(m2_sorter);
offset_array_it_rg source(text.begin(), text.end());
// prepare and run merger
return new buildSA_type(source, isa1, isa2, text.size(), ram_use);
}
} // end of skew3()
protected:
// Adapt (t_i) -> (i,t_i) for input to fit to recursive call
typedef make_pairs<counter_stream_type, Input> make_pairs_input_type;
// points to final constructed suffix array generator
buildSA_type* out_sa;
public:
algorithm(Input& data_in)
: finished(false), rec_depth(0)
{
// (t_i) -> (i,t_i)
counter_stream_type dummy;
make_pairs_input_type pairs_input(dummy, data_in);
out_sa = skew3(pairs_input);
}
const value_type& operator * () const
{
return *(*out_sa);
}
algorithm& operator ++ ()
{
assert(out_sa);
assert(!out_sa->empty());
++(*out_sa);
if (out_sa->empty()) {
finished = true;
delete out_sa;
out_sa = NULL;
}
return *this;
}
~algorithm()
{
if (out_sa) delete out_sa;
}
bool empty() const
{
return finished;
}
}; // algorithm class
}; // skew class
//! helper to print out readable characters.
template <typename alphabet_type>
static inline std::string dumpC(alphabet_type c)
{
std::ostringstream oss;
if (isalnum(c)) oss << '\'' << (char)c << '\'';
else oss << (int)c;
return oss.str();
}
//! helper stream to cut input off a specified length.
template <typename InputType>
class cut_stream
{
public:
//! same value type as input stream
typedef typename InputType::value_type value_type;
protected:
//! instance of input stream
InputType& m_input;
//! counter after which the stream ends
size_type m_count;
public:
cut_stream(InputType& input, size_type count)
: m_input(input), m_count(count)
{ }
const value_type& operator * () const
{
assert(m_count > 0);
return *m_input;
}
cut_stream& operator ++ ()
{
assert(!empty());
--m_count;
++m_input;
return *this;
}
bool empty() const
{
return (m_count == 0) || m_input.empty();
}
};
alphabet_type unary_generator()
{
return 'a';
}
template <typename offset_type>
int process(const std::string& input_filename, const std::string& output_filename,
size_type sizelimit,
bool text_output_flag, bool check_flag, bool input_verbatim)
{
static const size_t block_size = sizeof(offset_type) * 1024 * 1024 / 2;
typedef typename stxxl::VECTOR_GENERATOR<alphabet_type, 1, 2>::result alphabet_vector_type;
typedef typename stxxl::VECTOR_GENERATOR<offset_type, 1, 2, block_size>::result offset_vector_type;
// input and output files (if supplied via command line)
stxxl::syscall_file* input_file = NULL, * output_file = NULL;
// input and output vectors for suffix array construction
alphabet_vector_type input_vector;
offset_vector_type output_vector;
using stxxl::file;
if (input_verbatim)
{
// copy input verbatim into vector
input_vector.resize(input_filename.size());
std::copy(input_filename.begin(), input_filename.end(), input_vector.begin());
}
else if (input_filename == "random")
{
if (sizelimit == std::numeric_limits<size_type>::max()) {
std::cout << "You must provide -s <size> for generated inputs." << std::endl;
return 1;
}
// fill input vector with random bytes
input_vector.resize(sizelimit);
stxxl::random_number8_r rand8;
stxxl::generate(input_vector.begin(), input_vector.end(), rand8);
}
else if (input_filename == "unary")
{
if (sizelimit == std::numeric_limits<size_type>::max()) {
std::cout << "You must provide -s <size> for generated inputs." << std::endl;
return 1;
}
// fill input vector with random bytes
input_vector.resize(sizelimit);
stxxl::generate(input_vector.begin(), input_vector.end(), unary_generator);
}
else
{
// define input file object and map input_vector to input_file (no copying)
input_file = new stxxl::syscall_file(input_filename, file::RDONLY | file::DIRECT);
alphabet_vector_type file_input_vector(input_file);
input_vector.swap(file_input_vector);
}
if (output_filename.size())
{
// define output file object and map output_vector to output_file
output_file = new stxxl::syscall_file(output_filename, file::RDWR | file::CREAT | file::DIRECT);
offset_vector_type file_output_vector(output_file);
output_vector.swap(file_output_vector);
}
// I/O measurement
stxxl::stats* Stats = stxxl::stats::get_instance();
stxxl::stats_data stats_begin(*Stats);
// construct skew class with bufreader input type
typedef alphabet_vector_type::bufreader_type input_type;
typedef cut_stream<input_type> cut_input_type;
typedef typename skew<offset_type>::template algorithm<cut_input_type> skew_type;
size_type size = input_vector.size();
if (size > sizelimit) size = sizelimit;
std::cout << "input size = " << size << std::endl;
if (size + 3 >= std::numeric_limits<offset_type>::max()) {
std::cout << "error: input is too long for selected word size!" << std::endl;
return -1;
}
input_type input(input_vector);
cut_input_type cut_input(input, size);
skew_type skew(cut_input);
// make sure output vector has the right size
output_vector.resize(size);
// write suffix array stream into output vector
stream::materialize(skew, output_vector.begin(), output_vector.end());
std::cout << "output size = " << output_vector.size() << std::endl;
std::cout << (stxxl::stats_data(*Stats) - stats_begin); // print i/o statistics
if (text_output_flag)
{
std::cout << std::endl << "resulting suffix array:" << std::endl;
for (unsigned int i = 0; i < output_vector.size(); i++) {
std::cout << i << " : " << output_vector[i] << " : ";
// We need a const reference because operator[] would write data
const alphabet_vector_type& cinput = input_vector;
for (unsigned int j = 0; output_vector[i] + j < cinput.size(); j++) {
std::cout << dumpC(cinput[output_vector[i] + j]) << " ";
}
std::cout << std::endl;
}
}
int ret = 0;
if (check_flag)
{
(std::cout << "checking suffix array... ").flush();
if (!sacheck_vectors(input_vector, output_vector)) {
std::cout << "failed!" << std::endl;
ret = -1;
}
else
std::cout << "ok." << std::endl;
}
// close file, but have to deallocate vector first!
if (input_file) {
input_vector = alphabet_vector_type();
delete input_file;
}
if (output_file) {
output_vector = offset_vector_type();
delete output_file;
}
return ret;
}
int main(int argc, char* argv[])
{
stxxl::cmdline_parser cp;
cp.set_description("DC3 aka skew3 algorithm for external memory suffix array construction.");
cp.set_author("Jens Mehnert <jmehnert@mpi-sb.mpg.de>, Timo Bingmann <tb@panthema.net>, Daniel Feist <daniel.feist@student.kit.edu>");
std::string input_filename, output_filename;
size_type sizelimit = std::numeric_limits<size_type>::max();
bool text_output_flag = false;
bool check_flag = false;
bool input_verbatim = false;
unsigned wordsize = 32;
cp.add_param_string("input", "Path to input file (or verbatim text).\n The special inputs 'random' and 'unary' generate such text on-the-fly.", input_filename);
cp.add_flag('c', "check", "Check suffix array for correctness.", check_flag);
cp.add_flag('t', "text", "Print out suffix array in readable text.", text_output_flag);
cp.add_string('o', "output", "Output suffix array to given path.", output_filename);
cp.add_flag('v', "verbatim", "Consider \"input\" as verbatim text to construct suffix array on.", input_verbatim);
cp.add_bytes('s', "size", "Cut input text to given size, e.g. 2 GiB.", sizelimit);
cp.add_bytes('M', "memuse", "Amount of RAM to use, default: 1 GiB.", ram_use);
cp.add_uint('w', "wordsize", "Set word size of suffix array to 32, 40 or 64 bit, default: 32-bit.", wordsize);
// process command line
if (!cp.process(argc, argv))
return -1;
if (wordsize == 32)
return process<stxxl::uint32>(input_filename, output_filename, sizelimit,
text_output_flag, check_flag, input_verbatim);
else if (wordsize == 40)
return process<stxxl::uint40>(input_filename, output_filename, sizelimit,
text_output_flag, check_flag, input_verbatim);
else if (wordsize == 64)
return process<stxxl::uint64>(input_filename, output_filename, sizelimit,
text_output_flag, check_flag, input_verbatim);
else
std::cerr << "Invalid wordsize for suffix array: 32, 40 or 64 are allowed." << std::endl;
return -1;
}
|