File: FAQ.html

package info (click to toggle)
libsvm 3.21%2Bds-1.1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 864 kB
  • ctags: 1,108
  • sloc: cpp: 3,987; java: 3,666; ansic: 2,259; python: 1,051; makefile: 154; sh: 24
file content (2166 lines) | stat: -rw-r--r-- 83,089 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166


<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Tue, 20 Oct 2015 13:43:40 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(84)</li>
<ul><b>
<li><a
href="#/Q01:_Some_sample_uses_of_libsvm">Q01:_Some_sample_uses_of_libsvm</a>(2)</li>
<li><a
href="#/Q02:_Installation_and_running_the_program">Q02:_Installation_and_running_the_program</a>(13)</li>
<li><a
href="#/Q03:_Data_preparation">Q03:_Data_preparation</a>(7)</li>
<li><a
href="#/Q04:_Training_and_prediction">Q04:_Training_and_prediction</a>(29)</li>
<li><a
href="#/Q05:_Cross_validation_and_parameter_selection">Q05:_Cross_validation_and_parameter_selection</a>(9)</li>
<li><a
href="#/Q06:_Probability_outputs">Q06:_Probability_outputs</a>(3)</li>
<li><a
href="#/Q07:_Graphic_interface">Q07:_Graphic_interface</a>(3)</li>
<li><a
href="#/Q08:_Java_version_of_libsvm">Q08:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q09:_Python_interface">Q09:_Python_interface</a>(1)</li>
<li><a
href="#/Q10:_MATLAB_OCTAVE_interface">Q10:_MATLAB_OCTAVE_interface</a>(13)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq101">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#faq102">Some applications/tools which have used libsvm </a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents/videos of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">Where are change log and earlier versions?</a></li>
<li class="headlines_item"><a href="#f203">How to cite LIBSVM?</a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f209">What is the difference between "." and "*" outputed during training? </a></li>
<li class="headlines_item"><a href="#f210">Why occasionally the program (including MATLAB or other interfaces) crashes and gives a segmentation fault?</a></li>
<li class="headlines_item"><a href="#f211">How to build a dynamic library (.dll file) on MS windows?</a></li>
<li class="headlines_item"><a href="#f212">On some systems (e.g., Ubuntu), compiling LIBSVM gives many warning messages. Is this a problem and how to disable the warning message?</a></li>
<li class="headlines_item"><a href="#f213">In LIBSVM, why you don't use certain C/C++ library functions to make the code shorter?</a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f304">Why sometimes the last line of my data is not read by svm-train?</a></li>
<li class="headlines_item"><a href="#f305">Is there a program to check if my data are in the correct format?</a></li>
<li class="headlines_item"><a href="#f306">May I put comments in data files?</a></li>
<li class="headlines_item"><a href="#f307">How to convert other data formats to LIBSVM format?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f4071">On windows sometimes svm-scale.exe generates some non-ASCII data not good for training/prediction?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f4141">Does shrinking always help?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel. Any example? In svm.cpp, there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f425">In one-class SVM, parameter nu should be an upper bound of the training error rate. Why sometimes I get a training error rate bigger than nu?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f430">Why the sign of predicted labels and decision values are sometimes reversed?</a></li>
<li class="headlines_item"><a href="#f431">I don't know class labels of test data. What should I put in the first column of the test file?</a></li>
<li class="headlines_item"><a href="#f432">How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</a></li>
<li class="headlines_item"><a href="#f433">How could I know which training instances are support vectors?</a></li>
<li class="headlines_item"><a href="#f434">Why sv_indices (indices of support vectors) are not stored in the saved model file?</a></li>
<li class="headlines_item"><a href="#f501">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f502">Why my cross-validation results are different from those in the Practical Guide?</a></li>
<li class="headlines_item"><a href="#f503">On some systems CV accuracy is the same in several runs. How could I use different data partitions? In other words, how do I set random seed in LIBSVM?</a></li>
<li class="headlines_item"><a href="#f504">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f505">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f506">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f507">How does LIBSVM perform parameter selection for multi-class problems? </a></li>
<li class="headlines_item"><a href="#f508">How do I choose parameters for one-class SVM as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f509">Instead of grid.py, what if I would like to conduct parameter selection using other programmin languages?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes a longer time?</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
<li class="headlines_item"><a href="#f8011">On 64bit Windows I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
<li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
<li class="headlines_item"><a href="#f803">How could I use MATLAB interface for parameter selection?</a></li>
<li class="headlines_item"><a href="#f8031">I use MATLAB parallel programming toolbox on a multi-core environment for parameter selection. Why the program is even slower?</a></li>
<li class="headlines_item"><a href="#f8032">How to use LIBSVM with OpenMP under MATLAB/Octave?</a></li>
<li class="headlines_item"><a href="#f804">How could I generate the primal variable w of linear SVM?</a></li>
<li class="headlines_item"><a href="#f805">Is there an OCTAVE interface for libsvm?</a></li>
<li class="headlines_item"><a href="#f806">How to handle the name conflict between svmtrain in the libsvm matlab interface and that in MATLAB bioinformatics toolbox?</a></li>
<li class="headlines_item"><a href="#f807">On Windows I got an error message "Invalid MEX-file: Specific module not found" when running the pre-built MATLAB interface in the windows sub-directory. What should I do?</a></li>
<li class="headlines_item"><a href="#f808">LIBSVM supports 1-vs-1 multi-class classification. If instead I would like to use 1-vs-rest, how to implement it using MATLAB interface?</a></li>
<li class="headlines_item"><a href="#f809">I tried to install matlab interface on mac, but failed. What should I do?</a></li>
<li class="headlines_item"><a href="#f810">I tried to install octave interface on windows, but failed. What should I do?</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q01:_Some_sample_uses_of_libsvm"></a>
<a name="faq101"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q01:_Some_sample_uses_of_libsvm"></a>
<a name="faq102"><b>Q: Some applications/tools which have used libsvm </b></a>
<br/>                                                                                
(and maybe liblinear).
<ul>
<li>
<a href=http://people.csail.mit.edu/jjl/libpmk/>LIBPMK: A Pyramid Match Toolkit</a>
</li>
<li><a href=http://maltparser.org/>Maltparser</a>:
a system for data-driven dependency parsing
</li>
<li>
<a href=http://www.pymvpa.org/>PyMVPA: python tool for classifying neuroimages</a>
</li>
<li>
<a href=http://solpro.proteomics.ics.uci.edu/>
SOLpro: protein solubility predictor
</a>
</li>
<li>
<a href=http://bdval.campagnelab.org>
BDVal</a>: biomarker discovery in high-throughput datasets.
</li>
<li><a href=http://johel.m.free.fr/demo_045.htm>
Realtime object recognition</a>
</li>
<li><a href=http://scikit-learn.sourceforge.net/>
scikits.learn: machine learning in Python</a>
</li>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents/videos of libsvm ?</b></a>
<br/>                                                                                
<p>

<ul>
<li>
Official implementation document:
<br>
C.-C. Chang and
C.-J. Lin.
LIBSVM
: a library for support vector machines.
ACM Transactions on Intelligent
Systems and Technology, 2:27:1--27:27, 2011.
<a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">pdf</a>, <a href=http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz>ps.gz</a>,
<a href=http://portal.acm.org/citation.cfm?id=1961199&CFID=29950432&CFTOKEN=30974232>ACM digital lib</a>.


<li> Instructions for using LIBSVM are in the README files in the main directory and some sub-directories.
<br>
README in the main directory: details all options, data format, and library calls.
<br>
tools/README: parameter selection and other tools
<li>
A guide for beginners:
<br>
C.-W. Hsu, C.-C. Chang, and
C.-J. Lin.
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> 
<li> An <a href=http://www.youtube.com/watch?v=gePWtNAQcK8>introductory video</a>
for windows users.

</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: Where are change log and earlier versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: How to cite LIBSVM?</b></a>
<br/>                                                                                
<p>
Please cite the following paper:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is 
<pre>
@article{CC01a,
 author = {Chang, Chih-Chung and Lin, Chih-Jen},
 title = {{LIBSVM}: A library for support vector machines},
 journal = {ACM Transactions on Intelligent Systems and Technology},
 volume = {2},
 issue = {3},
 year = {2011},
 pages = {27:1--27:27},
 note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
We have "the modified BSD license,"
so it is very easy to
use libsvm in your software.
Please check the COPYRIGHT file in detail. Basically
you need to 
<ol>
<li>
Clearly indicate that LIBSVM is used.
</li>
<li>
Retain the LIBSVM COPYRIGHT file in your software.
</li>
</ol>
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f209"><b>Q: What is the difference between "." and "*" outputed during training? </b></a>
<br/>                                                                                

<p>
"." means every 1,000 iterations (or every #data 
iterations is your #data is less than 1,000).
"*" means that after iterations of using
a smaller shrunk problem, 
we reset to use the whole set. See the 
<a href=../papers/libsvm.pdf>implementation document</a> for details.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f210"><b>Q: Why occasionally the program (including MATLAB or other interfaces) crashes and gives a segmentation fault?</b></a>
<br/>                                                                                

<p>
Very likely the program consumes too much memory than what the 
operating system can provide. Try a smaller data and see if the 
program still crashes.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f211"><b>Q: How to build a dynamic library (.dll file) on MS windows?</b></a>
<br/>                                                                                
<p>

The easiest way is to use Makefile.win.
See details in README.

Alternatively, you can use Visual C++. Here is 
the example using Visual Studio 2013:
<ol>
<li>Create a Win32 empty DLL project and set (in Project->$Project_Name
Properties...->Configuration) to "Release."
   About how to create a new dynamic link library, please refer to
<a href=http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx>http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx</a>

<li> Add svm.cpp, svm.h to your project.
<li> Add __WIN32__ and _CRT_SECURE_NO_DEPRECATE to Preprocessor definitions (in
Project->$Project_Name Properties...->C/C++->Preprocessor)
<li> Set Create/Use Precompiled Header to Not Using Precompiled Headers
(in Project->$Project_Name Properties...->C/C++->Precompiled Headers)
<li> Set the path for the Modulation Definition File svm.def (in 
Project->$Project_Name Properties...->Linker->input
<li> Build the DLL.
<li> Rename the dll file to libsvm.dll and move it to the correct path.
</ol>


<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f212"><b>Q: On some systems (e.g., Ubuntu), compiling LIBSVM gives many warning messages. Is this a problem and how to disable the warning message?</b></a>
<br/>                                                                                

<p>
If you are using a version before 3.18, probably you see
a warning message like
<pre>
svm.cpp:2730: warning: ignoring return value of int fscanf(FILE*, const char*, ...), declared with attribute warn_unused_result
</pre>
This is not a problem; see <a href=https://wiki.ubuntu.com/CompilerFlags#-D_FORTIFY_SOURCE=2>this page</a> for more 
details of ubuntu systems.
To disable the warning message you can replace
<pre>
CFLAGS = -Wall -Wconversion -O3 -fPIC
</pre>
with
<pre>
CFLAGS = -Wall -Wconversion -O3 -fPIC -U_FORTIFY_SOURCE
</pre>
in Makefile.
<p> After version 3.18, we have a better setting so that such warning messages do not appear.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q02:_Installation_and_running_the_program"></a>
<a name="f213"><b>Q: In LIBSVM, why you don't use certain C/C++ library functions to make the code shorter?</b></a>
<br/>                                                                                

<p>
For portability, we use only features defined in ISO C89. Note that features in ISO C99 may not be available everywhere. 
Even the newest gcc lacks some features in C99 (see <a href=http://gcc.gnu.org/c99status.html>http://gcc.gnu.org/c99status.html</a> for details).
If the situation changes in the future, 
we might consider using these newer features.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q03:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q03:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q03:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q03:_Data_preparation"></a>
<a name="f304"><b>Q: Why sometimes the last line of my data is not read by svm-train?</b></a>
<br/>                                                                                

<p>
We assume that you have '\n' in the end of
each line. So please press enter in the end
of your last line.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q03:_Data_preparation"></a>
<a name="f305"><b>Q: Is there a program to check if my data are in the correct format?</b></a>
<br/>                                                                                

<p>
The svm-train program in libsvm conducts only a simple check of the input data. To do a
detailed check, after libsvm 2.85, you can use the python script tools/checkdata.py. See tools/README for details.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q03:_Data_preparation"></a>
<a name="f306"><b>Q: May I put comments in data files?</b></a>
<br/>                                                                                

<p>
We don't officially support this. But, currently LIBSVM
is able to process data in the following
format:
<pre>
1 1:2 2:1 # your comments
</pre>
Note that the character ":" should not appear in your
comments.
<!--
No, for simplicity we don't support that.
However, you can easily preprocess your data before
using libsvm. For example,
if you have the following data
<pre>
test.txt
1 1:2 2:1 # proten A
</pre>
then on unix machines you can do
<pre>
cut -d '#' -f 1 < test.txt > test.features
cut -d '#' -f 2 < test.txt > test.comments
svm-predict test.feature train.model test.predicts
paste -d '#' test.predicts test.comments | sed 's/#/ #/' > test.results
</pre>
-->
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q03:_Data_preparation"></a>
<a name="f307"><b>Q: How to convert other data formats to LIBSVM format?</b></a>
<br/>                                                                                

<p>
It depends on your data format. A simple way is to use
libsvmwrite in the libsvm matlab/octave interface.

Take a CSV (comma-separated values) file
in UCI machine learning repository as an example.
We download <a href=http://archive.ics.uci.edu/ml/machine-learning-databases/spect/SPECTF.train>SPECTF.train</a>. 
Labels are in the first column. The following steps produce
a file in the libsvm format.
<pre>
matlab> SPECTF = csvread('SPECTF.train'); % read a csv file
matlab> labels = SPECTF(:, 1); % labels from the 1st column
matlab> features = SPECTF(:, 2:end); 
matlab> features_sparse = sparse(features); % features must be in a sparse matrix
matlab> libsvmwrite('SPECTFlibsvm.train', labels, features_sparse);
</pre>
The tranformed data are stored in SPECTFlibsvm.train.

<p>
Alternatively, you can use <a href="./faqfiles/convert.c">convert.c</a> 
to convert CSV format to libsvm format.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132
<p>
obj is the optimal objective value of the dual SVM problem.
rho is the bias term in the decision function
sgn(w^Tx - rho).
nSV and nBSV are number of support vectors and bounded support
vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent
form of C-SVM where C is replaced by nu. nu simply shows the
corresponding parameter. More details are in
<a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">
libsvm document</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f402"><b>Q: Can you explain more about the model file?</b></a>
<br/>                                                                                

<p>
In the model file, after parameters and other informations such as labels , each line represents a support vector.
Support vectors are listed in the order of "labels" shown earlier.
(i.e., those from the first class in the "labels" list are
grouped first, and so on.) 
If k is the total number of classes,
in front of a support vector in class j, there are
k-1 coefficients 
y*alpha where alpha are dual solution of the
following two class problems:
<br>
1 vs j, 2 vs j, ..., j-1 vs j, j vs j+1, j vs j+2, ..., j vs k
<br>
and y=1 in first j-1 coefficients, y=-1 in the remaining
k-j coefficients.

For example, if there are 4 classes, the file looks like:

<pre>
+-+-+-+--------------------+
|1|1|1|                    |
|v|v|v|  SVs from class 1  |
|2|3|4|                    |
+-+-+-+--------------------+
|1|2|2|                    |
|v|v|v|  SVs from class 2  |
|2|3|4|                    |
+-+-+-+--------------------+
|1|2|3|                    |
|v|v|v|  SVs from class 3  |
|3|3|4|                    |
+-+-+-+--------------------+
|1|2|3|                    |
|v|v|v|  SVs from class 4  |
|4|4|4|                    |
+-+-+-+--------------------+
</pre>
See also
<a href="#f804"> an illustration using
MATLAB/OCTAVE.</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f403"><b>Q: Should I use float or double to store numbers in the cache ?</b></a>
<br/>                                                                                

<p>
We have float as the default as you can store more numbers
in the cache. 
In general this is good enough but for few difficult
cases (e.g. C very very large) where solutions are huge
numbers, it might be possible that the numerical precision is not
enough using only float.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f405"><b>Q: Does libsvm have special treatments for linear SVM?</b></a>
<br/>                                                                                

<p>

No, libsvm solves linear/nonlinear SVMs by the
same way.
Some tricks may save training/testing time if the
linear kernel is used,
so libsvm is <b>NOT</b> particularly efficient for linear SVM,
especially when
C is large and
the number of data is much larger
than the number of attributes.
You can either
<ul>
<li>
Use small C only. We have shown in the following paper
that after C is larger than a certain threshold,
the decision function is the same. 
<p>
<a href="http://guppy.mpe.nus.edu.sg/~mpessk/">S. S. Keerthi</a>
and
<B>C.-J. Lin</B>.
<A HREF="papers/limit.pdf">
Asymptotic behaviors of support vector machines with 
Gaussian kernel
</A>
.
<I><A HREF="http://mitpress.mit.edu/journal-home.tcl?issn=08997667">Neural Computation</A></I>, 15(2003), 1667-1689.


<li>
Check <a href=http://www.csie.ntu.edu.tw/~cjlin/liblinear>liblinear</a>,
which is designed for large-scale linear classification.
</ul>

<p> Please also see our <a href=../papers/guide/guide.pdf>SVM guide</a>
on the discussion of using RBF and linear
kernels.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f406"><b>Q: The number of free support vectors is large. What should I do?</b></a>
<br/>                                                                                
 <p>
This usually happens when the data are overfitted.
If attributes of your data are in large ranges,
try to scale them. Then the region
of appropriate parameters may be larger.
Note that there is a scale program
in libsvm. 
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f407"><b>Q: Should I scale training and testing data in a similar way?</b></a>
<br/>                                                                                
<p>
Yes, you can do the following:
<pre>
> svm-scale -s scaling_parameters train_data > scaled_train_data
> svm-scale -r scaling_parameters test_data > scaled_test_data
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f4071"><b>Q: On windows sometimes svm-scale.exe generates some non-ASCII data not good for training/prediction?</b></a>
<br/>                                                                                
<p>
In general this does not happen, but we have observed in some rare
situations, the output of svm-scale.exe directed to a file (by ">")
has wrong encoding. That is, the file is not an ASCII file, so cannot be
used for training/prediction. Please let us know if this happens as at this moment
we don't clearly see how to fix the problem.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f408"><b>Q: Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</b></a>
<br/>                                                                                

<p>
For the linear scaling method, if the RBF kernel is
used and parameter selection is conducted, there
is no difference. Assume Mi and mi are 
respectively the maximal and minimal values of the
ith attribute. Scaling to [0,1] means
<pre>
                x'=(x-mi)/(Mi-mi)
</pre>
For [-1,1],
<pre>
                x''=2(x-mi)/(Mi-mi)-1.
</pre>
In the RBF kernel,
<pre>
                x'-y'=(x-y)/(Mi-mi), x''-y''=2(x-y)/(Mi-mi).
</pre>
Hence, using (C,g) on the [0,1]-scaled data is the
same as (C,g/2) on the [-1,1]-scaled data.

<p> Though the performance is the same, the computational
time may be different. For data with many zero entries,
[0,1]-scaling keeps the sparsity of input data and hence
may save the time.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f409"><b>Q: The prediction rate is low. How could I improve it?</b></a>
<br/>                                                                                
<p>
Try to use the model selection tool grid.py in the tools
directory find
out good parameters. To see the importance of model selection,
please 
see our guide for beginners:
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector 
classification 
</A>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f410"><b>Q: My data are unbalanced. Could libsvm handle such problems?</b></a>
<br/>                                                                                
<p>
Yes, there is a -wi options. For example, if you use
<pre>
> svm-train -s 0 -c 10 -w1 1 -w-1 5 data_file
</pre>
<p>
the penalty for class "-1" is larger.
Note that this -w option is for C-SVC only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f411"><b>Q: What is the difference between nu-SVC and C-SVC?</b></a>
<br/>                                                                                
<p>
Basically they are the same thing but with different
parameters. The range of C is from zero to infinity
but nu is always between [0,1]. A nice property
of nu is that it is related to the ratio of 
support vectors and the ratio of the training
error.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f412"><b>Q: The program keeps running (without showing any output). What should I do?</b></a>
<br/>                                                                                
<p>
You may want to check your data. Each training/testing
data must be in one line. It cannot be separated.
In addition, you have to remove empty lines.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f413"><b>Q: The program keeps running (with output, i.e. many dots). What should I do?</b></a>
<br/>                                                                                
<p>
In theory libsvm guarantees to converge.
Therefore, this means you are
handling ill-conditioned situations
(e.g. too large/small parameters) so numerical
difficulties occur.
<p>
You may get better numerical stability by replacing
<pre>
typedef float Qfloat;
</pre>
in svm.cpp with
<pre>
typedef double Qfloat;
</pre>
That is, elements in the kernel cache are stored
in double instead of single. However, this means fewer elements
can be put in the kernel cache.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f414"><b>Q: The training time is too long. What should I do?</b></a>
<br/>                                                                                
<p>
For large problems, please specify enough cache size (i.e.,
-m).
Slow convergence may happen for some difficult cases (e.g. -c is large).
You can try to use a looser stopping tolerance with -e.
If that still doesn't work, you may train only a subset of the data.
You can use the program subset.py in the directory "tools" 
to obtain a random subset.

<p>
If you have extremely large data and face this difficulty, please
contact us. We will be happy to discuss possible solutions.

<p> When using large -e, you may want to check if -h 0 (no shrinking) or -h 1 (shrinking) is faster.
See a related question below.

<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f4141"><b>Q: Does shrinking always help?</b></a>
<br/>                                                                                
<p>
If the number of iterations is high, then shrinking
often helps.
However, if the number of iterations is small
(e.g., you specify a large -e), then
probably using -h 0 (no shrinking) is better.
See the 
<a href=../papers/libsvm.pdf>implementation document</a> for details.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f415"><b>Q: How do I get the decision value(s)?</b></a>
<br/>                                                                                
<p>
We print out decision values for regression. For classification,
we solve several binary SVMs for multi-class cases. You
can obtain values by easily calling the subroutine
svm_predict_values. Their corresponding labels
can be obtained from svm_get_labels. 
Details are in 
README of libsvm package. 

<p>
If you are using MATLAB/OCTAVE interface, svmpredict can directly
give you decision values. Please see matlab/README for details.

<p>
We do not recommend the following. But if you would
like to get values for 
TWO-class classification with labels +1 and -1
(note: +1 and -1 but not things like 5 and 10)
in the easiest way, simply add 
<pre>
		printf("%f\n", dec_values[0]*model->label[0]);
</pre>
after the line
<pre>
		svm_predict_values(model, x, dec_values);
</pre>
of the file svm.cpp.
Positive (negative)
decision values correspond to data predicted as +1 (-1).


<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f4151"><b>Q: How do I get the distance between a point and the hyperplane?</b></a>
<br/>                                                                                
<p>
The distance is |decision_value| / |w|. 
We have |w|^2 = w^Tw = alpha^T Q alpha = 2*(dual_obj + sum alpha_i). 
Thus in svm.cpp please find the place 
where we calculate the dual objective value
(i.e., the subroutine Solve())
and add a statement to print w^Tw.

More precisely, here is what you need to do
<ol>
<li>Search for "calculate objective value" in svm.cpp
</li>
<li> In that place, si->obj is the variable for the objective value
</li>
<li> Add a for loop to calculate the sum of alpha
</li>
<li> Calculate 2*(si->obj + sum of alpha) and print the square root of it. You now get |w|. You
need to recompile the code
</li>
<li> Check an earlier FAQ on printing decision values. You
need to recompile the code
</li>
<li>
Then print decision value divided by the |w| value obtained earlier. 
</li>
</ol>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f416"><b>Q: On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</b></a>
<br/>                                                                                
<p>

On 32-bit machines, the maximum addressable
memory is 4GB. The Linux kernel uses 3:1
split which means user space is 3G and
kernel space is 1G. Although there are
3G user space, the maximum dynamic allocation
memory is 2G. So, if you specify -m near 2G,
the memory will be exhausted. And svm-train
will fail when it asks more memory.
For more details, please read 
<a href=http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&selm=3BA164F6.BAFA4FB%40daimi.au.dk>
this article</a>.
<p>
The easiest solution is to switch to a
 64-bit machine.
Otherwise, there are two ways to solve this. If your
machine supports Intel's PAE (Physical Address
Extension), you can turn on the option HIGHMEM64G
in Linux kernel which uses 4G:4G split for
kernel and user space. If you don't, you can
try a software `tub' which can eliminate the 2G
boundary for dynamic allocated memory. The `tub'
is available at 
<a href=http://www.bitwagon.com/tub.html>http://www.bitwagon.com/tub.html</a>.


<!--

This may happen only  when the cache is large, but each cached row is
not large enough. <b>Note:</b> This problem is specific to 
gnu C library which is used in linux.
The solution is as follows:

<p>
In our program we have malloc() which uses two methods 
to allocate memory from kernel. One is
sbrk() and another is mmap(). sbrk is faster, but mmap 
has a larger address
space. So malloc uses mmap only if the wanted memory size is larger
than some threshold (default 128k).
In the case where each row is not large enough (#elements < 128k/sizeof(float)) but we need a large cache ,
the address space for sbrk can be exhausted. The solution is to
lower the threshold to force malloc to use mmap
and increase the maximum number of chunks to allocate
with mmap.

<p>
Therefore, in the main program (i.e. svm-train.c) you want
to have
<pre>
      #include &lt;malloc.h&gt;
</pre>
and then in main():
<pre>
      mallopt(M_MMAP_THRESHOLD, 32768);
      mallopt(M_MMAP_MAX,1000000);
</pre>
You can also set the environment variables instead
of writing them in the program:
<pre>
$ M_MMAP_MAX=1000000 M_MMAP_THRESHOLD=32768 ./svm-train .....
</pre>
More information can be found by 
<pre>
$ info libc "Malloc Tunable Parameters"
</pre>
-->
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f417"><b>Q: How do I disable screen output of svm-train?</b></a>
<br/>                                                                                
<p>
For commend-line users, use the -q option:
<pre>
> ./svm-train -q heart_scale
</pre>
<p>
For library users, set the global variable
<pre>
extern void (*svm_print_string) (const char *);
</pre>
to specify the output format. You can disable the output by the following steps:
<ol>
<li>
Declare a function to output nothing:
<pre>
void print_null(const char *s) {}
</pre>
</li>
<li>
Assign the output function of libsvm by
<pre>
svm_print_string = &print_null;
</pre>
</li>
</ol>
Finally, a way used in earlier libsvm
is by updating svm.cpp from
<pre>
#if 1
void info(const char *fmt,...)
</pre>
to
<pre>
#if 0
void info(const char *fmt,...)
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f418"><b>Q: I would like to use my own kernel. Any example? In svm.cpp, there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</b></a>
<br/>                                                                                
<p>
An example is "LIBSVM for string data" in LIBSVM Tools.
<p>
The reason why we have two functions is as follows.
For the RBF kernel exp(-g |xi - xj|^2), if we calculate
xi - xj first and then the norm square, there are 3n operations.
Thus we consider exp(-g (|xi|^2 - 2dot(xi,xj) +|xj|^2))
and by calculating all |xi|^2 in the beginning, 
the number of operations is reduced to 2n.
This is for the training.  For prediction we cannot
do this so a regular subroutine using that 3n operations is
needed.

The easiest way to have your own kernel is
to  put the same code in these two
subroutines by replacing any kernel.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f419"><b>Q: What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method?</b></a>
<br/>                                                                                
<p>
It is one-against-one. We chose it after doing the following
comparison:
C.-W. Hsu and C.-J. Lin.
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf">
A comparison of methods 
for multi-class support vector machines
</A>, 
<I>IEEE Transactions on Neural Networks</A></I>, 13(2002), 415-425.

<p>
"1-against-the rest" is a good method whose performance
is comparable to "1-against-1." We do the latter
simply because its training time is shorter.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f422"><b>Q: I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</b></a>
<br/>                                                                                
<p>
It is extremely easy. Taking c-svc for example, to solve
<p>
min_w w^Tw/2 + C \sum max(0, 1- (y_i w^Tx_i+b))^2,
<p>
only two 
places of svm.cpp have to be changed. 
First, modify the following line of 
solve_c_svc from 
<pre>
	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
		alpha, Cp, Cn, param->eps, si, param->shrinking);
</pre>
to
<pre>
	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
		alpha, INF, INF, param->eps, si, param->shrinking);
</pre>
Second, in  the class  of SVC_Q, declare C as 
a private variable:
<pre>
	double C;
</pre> 
In the constructor replace
<pre>
	for(int i=0;i&lt;prob.l;i++)
		QD[i]= (Qfloat)(this->*kernel_function)(i,i);
</pre>
with
<pre>
        this->C = param.C;
	for(int i=0;i&lt;prob.l;i++)
		QD[i]= (Qfloat)(this->*kernel_function)(i,i)+0.5/C;
</pre>
Then in the subroutine get_Q, after the for loop, add
<pre>
        if(i >= start && i < len) 
		data[i] += 0.5/C;
</pre>

<p>
For one-class svm, the modification is exactly the same. For SVR, you don't need an if statement like the above. Instead, you only need a simple assignment:
<pre>
	data[real_i] += 0.5/C;
</pre>


<p>
For large linear L2-loss SVM, please use
<a href=../liblinear>LIBLINEAR</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f425"><b>Q: In one-class SVM, parameter nu should be an upper bound of the training error rate. Why sometimes I get a training error rate bigger than nu?</b></a>
<br/>                                                                                

<p>
At optimum, some training instances should satisfy
w^Tx - rho = 0. However, numerically they may be slightly
smaller than zero
Then they are wrongly counted
as training errors. You can use a smaller stopping tolerance
(by the -e option) to make this problem less serious.

<p> 
This issue <b>does not occur</b> for nu-SVC for 
two-class classification.
We have that
<ol>
<li>nu is an upper bound on the ratio of training points
on the wrong side of the hyperplane, and
<li>therefore, nu is also an upper bound on the training error rate.
</ol>
Numerical issues occur in calculating the first case
because some training points satisfying y(w^Tx + b) - rho = 0
become negative. 
However, we have no numerical  problems for the second case because
we compare y(w^Tx + b) and 0 for counting training errors.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f427"><b>Q: Why the code gives NaN (not a number) results?</b></a>
<br/>                                                                                
<p>
This rarely happens, but few users reported the problem.
It seems that their 
computers for training libsvm have the VPN client
running. The VPN software has some bugs and causes this
problem. Please try to close or disconnect the VPN client.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f430"><b>Q: Why the sign of predicted labels and decision values are sometimes reversed?</b></a>
<br/>                                                                                
<p>

This situation may occur <b>before version 3.17</b>.
Nothing is wrong. Very likely you have two labels +1/-1 and the first instance in your data
has -1. We give the following explanation.

<p>
Internally class labels are ordered by their first occurrence in the training set. For a k-class data, internally labels
are 0, ..., k-1, and each two-class SVM considers pair
(i, j) with i < j. Then class i is treated as positive (+1)
and j as negative (-1).
For example, if the data set has labels +5/+10 and +10 appears
first, then internally the +5 versus +10 SVM problem
has +10 as positive (+1) and +5 as negative (-1).

<p>
By this setting, if you have labels +1 and -1,
it's possible that internally they correspond to -1 and +1,
respectively. Some new users have been confused about
this, so <b>after version 3.17</b>, if the data set has only
two labels +1 and -1,
internally we ensure +1 to be before -1. Then class +1 
is always treated as positive in the SVM problem.
Note that this is for <b>two-class data only.</b>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f431"><b>Q: I don't know class labels of test data. What should I put in the first column of the test file?</b></a>
<br/>                                                                                
<p>Any value is ok. In this situation, what you will use is the output file of svm-predict, which gives predicted class labels.


<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f432"><b>Q: How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</b></a>
<br/>                                                                                

<p>It is very easy if you are using GCC 4.2
or after. 

<p> In Makefile, add -fopenmp  to CFLAGS.

<p> In class SVC_Q of svm.cpp, modify the for loop
of get_Q to:
<pre>
#pragma omp parallel for private(j) schedule(guided)
			for(j=start;j&lt;len;j++)
</pre>
<p> In the subroutine svm_predict_values of svm.cpp, add one line to the for loop:
<pre>
#pragma omp parallel for private(i) schedule(guided) 
		for(i=0;i&lt;l;i++)
			kvalue[i] = Kernel::k_function(x,model-&gt;SV[i],model-&gt;param);
</pre>
For regression, you need to modify
class SVR_Q instead. The loop in svm_predict_values
is also different because you need
a reduction clause for the variable sum:
<pre>
#pragma omp parallel for private(i) reduction(+:sum) schedule(guided)
		for(i=0;i&lt;model->l;i++)
			sum += sv_coef[i] * Kernel::k_function(x,model-&gt;SV[i],model-&gt;param);
</pre>

<p> Then rebuild the package. Kernel evaluations in training/testing will be parallelized. An example of running this modification on
an 8-core machine using the data set
<a href=../libsvmtools/datasets/binary/real-sim.bz2>real-sim</a>:

<p> 8 cores:
<pre>
%setenv OMP_NUM_THREADS 8
%time svm-train -c 8 -g 0.5 -m 1000 real-sim
175.90sec
</pre>
1 core:
<pre>
%setenv OMP_NUM_THREADS 1
%time svm-train -c 8 -g 0.5 -m 1000 real-sim
588.89sec
</pre>
For this data, kernel evaluations take 91% of training time. In the above example, we assume you use csh. For bash, use
<pre>
export OMP_NUM_THREADS=8
</pre>
instead.

<p> For Python interface, you need to add the -lgomp link option:
<pre>
$(CXX) -lgomp -shared -dynamiclib svm.o -o libsvm.so.$(SHVER)
</pre>

<p> For MS Windows, you need to add /openmp in CFLAGS of Makefile.win

<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f433"><b>Q: How could I know which training instances are support vectors?</b></a>
<br/>                                                                                

<p>
It's very simple. Since version 3.13, you can use the function
<pre>
void svm_get_sv_indices(const struct svm_model *model, int *sv_indices)
</pre>
to get indices of support vectors. For example, in svm-train.c, after
<pre>
		model = svm_train(&amp;prob, &amp;param);
</pre>
you can add
<pre>
		int nr_sv = svm_get_nr_sv(model);
		int *sv_indices = Malloc(int, nr_sv);
		svm_get_sv_indices(model, sv_indices);
		for (int i=0; i&lt;nr_sv; i++)
			printf("instance %d is a support vector\n", sv_indices[i]);
</pre>

<p> If you use matlab interface, you can directly check
<pre>
model.sv_indices
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q04:_Training_and_prediction"></a>
<a name="f434"><b>Q: Why sv_indices (indices of support vectors) are not stored in the saved model file?</b></a>
<br/>                                                                                

<p>
Although sv_indices is a member of the model structure
to 
indicate support vectors in the training set,
we do not store its contents in the model file.
The model file is mainly used in the future for
prediction, so it is basically <b>independent</b>
from training data. Thus 
storing sv_indices is not necessary.
Users should find support vectors right after
the training process. See the previous FAQ.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
<a name="f501"><b>Q: After doing cross validation, why there is no model file outputted ?</b></a>
<br/>                                                                                
<p>
Cross validation is used for selecting good parameters.
After finding them, you want to re-train the whole
data without the -v option.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
<a name="f502"><b>Q: Why my cross-validation results are different from those in the Practical Guide?</b></a>
<br/>                                                                                
<p>

Due to random partitions of
the data, on different systems CV accuracy values
may be different.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
<a name="f503"><b>Q: On some systems CV accuracy is the same in several runs. How could I use different data partitions? In other words, how do I set random seed in LIBSVM?</b></a>
<br/>                                                                                
<p>
If you use GNU C library,
the default seed 1 is considered. Thus you always
get the same result of running svm-train -v.
To have different seeds, you can add the following code
in svm-train.c:
<pre>
#include &lt;time.h&gt;
</pre>
and in the beginning of main(),
<pre>
srand(time(0));
</pre>
Alternatively, if you are not using GNU C library
and would like to use a fixed seed, you can have
<pre>
srand(1);
</pre>

<p>
For Java, the random number generator
is initialized using the time information.
So results of two CV runs are different.
To fix the seed, after version 3.1 (released
in mid 2011), you can add
<pre>
svm.rand.setSeed(0);
</pre>
in the main() function of svm_train.java.

<p>
If you use CV to select parameters, it is recommended to use identical folds
under different parameters. In this case, you can consider fixing the seed.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
<a name="f504"><b>Q: Why on windows sometimes grid.py fails?</b></a>
<br/>                                                                                
<p>

This problem shouldn't happen after version
2.85. If you are using earlier versions,
please download the latest one.

<!--
<p>
If you are using earlier 
versions, the error message is probably
<pre>
Traceback (most recent call last):
  File "grid.py", line 349, in ?
    main()
  File "grid.py", line 344, in main
    redraw(db)
  File "grid.py", line 132, in redraw
    gnuplot.write("set term windows\n")
IOError: [Errno 22] Invalid argument
</pre>

<p>Please try to close gnuplot windows and rerun.
If the problem still occurs, comment the following
two lines in grid.py by inserting "#" in the beginning:
<pre>
        redraw(db)
        redraw(db,1)
</pre>
Then you get accuracy only but not cross validation contours.
-->
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
<a name="f505"><b>Q: Why grid.py/easy.py sometimes generates the following warning message?</b></a>
<br/>                                                                                
<pre>
Warning: empty z range [62.5:62.5], adjusting to [61.875:63.125]
Notice: cannot contour non grid data!
</pre>
<p>Nothing is wrong and please disregard the 
message. It is from gnuplot when drawing
the contour.  
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
<a name="f506"><b>Q: How do I choose the kernel?</b></a>
<br/>                                                                                

<p>
In general we suggest you to try the RBF kernel first.
A recent result by Keerthi and Lin
(<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/limit.pdf>
download paper here</a>)
shows that if RBF is used with model selection,
then there is no need to consider the linear kernel.
The kernel matrix using sigmoid may not be positive definite
and in general it's accuracy is not better than RBF.
(see the paper by Lin and Lin
(<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf>
download paper here</a>).
Polynomial kernels are ok but if a high degree is used,
numerical difficulties tend to happen
(thinking about dth power of (<1) goes to 0
and (>1) goes to infinity).
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
<a name="f507"><b>Q: How does LIBSVM perform parameter selection for multi-class problems? </b></a>
<br/>                                                                                

<p>
LIBSVM implements "one-against-one" multi-class method, so there are 
k(k-1)/2 binary models, where k is the number of classes.

<p>
We can consider two ways to conduct parameter selection.

<ol>
<li>
For any two classes of data, a parameter selection procedure is conducted. Finally,
each decision function has its own optimal parameters.
</li>
<li>
The same parameters are used for all k(k-1)/2 binary classification problems.
We select parameters that achieve the highest overall performance.
</li>
</ol>

Each has its own advantages. A
single parameter set may not be uniformly good for all k(k-1)/2 decision functions.
However, as the overall accuracy is the final consideration, one parameter set 
for one decision function may lead to over-fitting. In the paper
<p>
Chen, Lin, and Sch&ouml;lkopf,
<A HREF="../papers/nusvmtutorial.pdf">
A tutorial on nu-support vector machines.
</A> 
Applied Stochastic Models in Business and Industry, 21(2005), 111-136,

<p>
they have experimentally
shown that the two methods give similar performance.
Therefore, currently the parameter selection in LIBSVM
takes the second approach by considering the same parameters for
all k(k-1)/2 models.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
<a name="f508"><b>Q: How do I choose parameters for one-class SVM as training data are in only one class?</b></a>
<br/>                                                                                
<p>
You have pre-specified true positive rate in mind and then search for
parameters which achieve similar cross-validation accuracy.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q05:_Cross_validation_and_parameter_selection"></a>
<a name="f509"><b>Q: Instead of grid.py, what if I would like to conduct parameter selection using other programmin languages?</b></a>
<br/>                                                                                
<p>
For MATLAB, please see another question in FAQ.

<p>
For using shell scripts, please check the <a href=https://github.com/ljos/svm-grid>code</a> written by Bjarte Johansen
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q06:_Probability_outputs"></a>
<a name="f425"><b>Q: Why training a probability model (i.e., -b 1) takes a longer time?</b></a>
<br/>                                                                                
<p>
To construct this probability model, we internally conduct a 
cross validation, which is more time consuming than
a regular training.
Hence, in general you do parameter selection first without
-b 1. You only use -b 1 when good parameters have been
selected. In other words, you avoid using -b 1 and -v
together.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q06:_Probability_outputs"></a>
<a name="f426"><b>Q: Why using the -b option does not give me better accuracy?</b></a>
<br/>                                                                                
<p>
There is absolutely no reason the probability outputs guarantee
you better accuracy. The main purpose of this option is
to provide you the probability estimates, but not to boost
prediction accuracy. From our experience, 
after proper parameter selections, in general with
and without -b have similar accuracy. Occasionally there
are some differences.
It is not recommended to compare the two under 
just a fixed parameter
set as more differences will be observed.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q06:_Probability_outputs"></a>
<a name="f427"><b>Q: Why using svm-predict -b 0 and -b 1 gives different accuracy values?</b></a>
<br/>                                                                                
<p>
Let's just consider two-class classification here. After probability information is obtained in training,
we do not have
<p>
prob > = 0.5 if and only if decision value >= 0.
<p>
So predictions may be different with -b 0 and 1.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q07:_Graphic_interface"></a>
<a name="f501"><b>Q: How can I save images drawn by svm-toy?</b></a>
<br/>                                                                                
<p>
For Microsoft windows, first press the "print screen" key on the keyboard.
Open "Microsoft Paint" 
(included in Windows) 
and press "ctrl-v." Then you can clip
the part of picture which you want.
For X windows, you can 
use the program "xv" or "import" to grab the picture of the svm-toy window.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q07:_Graphic_interface"></a>
<a name="f502"><b>Q: I press the "load" button to load data points but why svm-toy does not draw them ?</b></a>
<br/>                                                                                
<p>
The program svm-toy assumes both attributes (i.e. x-axis and y-axis
values) are in (0,1). Hence you want to scale your 
data to between a small positive number and 
a number less than but very close to 1.
Moreover, class labels must be 1, 2, or 3
(not 1.0, 2.0 or anything else).
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q07:_Graphic_interface"></a>
<a name="f503"><b>Q: I would like svm-toy to handle more than three classes of data, what should I do ?</b></a>
<br/>                                                                                
<p>
Taking windows/svm-toy.cpp as an example, you need to
modify it and  the difference
from the original file is as the following: (for five classes of
data)
<pre>
30,32c30
< 	RGB(200,0,200),
< 	RGB(0,160,0),
< 	RGB(160,0,0)
---
> 	RGB(200,0,200)
39c37
< HBRUSH brush1, brush2, brush3, brush4, brush5;
---
> HBRUSH brush1, brush2, brush3;
113,114d110
< 	brush4 = CreateSolidBrush(colors[7]);
< 	brush5 = CreateSolidBrush(colors[8]);
155,157c151
< 	else if(v==3) return brush3;
< 	else if(v==4) return brush4;
< 	else return brush5;
---
> 	else return brush3;
325d318
< 	  int colornum = 5;
327c320
< 		svm_node *x_space = new svm_node[colornum * prob.l];
---
> 		svm_node *x_space = new svm_node[3 * prob.l];
333,338c326,331
< 			x_space[colornum * i].index = 1;
< 			x_space[colornum * i].value = q->x;
< 			x_space[colornum * i + 1].index = 2;
< 			x_space[colornum * i + 1].value = q->y;
< 			x_space[colornum * i + 2].index = -1;
< 			prob.x[i] = &x_space[colornum * i];
---
> 			x_space[3 * i].index = 1;
> 			x_space[3 * i].value = q->x;
> 			x_space[3 * i + 1].index = 2;
> 			x_space[3 * i + 1].value = q->y;
> 			x_space[3 * i + 2].index = -1;
> 			prob.x[i] = &x_space[3 * i];
397c390
< 				if(current_value > 5) current_value = 1;
---
> 				if(current_value > 3) current_value = 1;
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q08:_Java_version_of_libsvm"></a>
<a name="f601"><b>Q: What is the difference between Java version and C++ version of libsvm?</b></a>
<br/>                                                                                
<p>
They are the same thing. We just rewrote the C++ code
in Java.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q08:_Java_version_of_libsvm"></a>
<a name="f602"><b>Q: Is the Java version significantly slower than the C++ version?</b></a>
<br/>                                                                                
<p>
This depends on the VM you used. We have seen good
VM which leads the Java version to be quite competitive with
the C++ code. (though still slower)
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q08:_Java_version_of_libsvm"></a>
<a name="f603"><b>Q: While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</b></a>
<br/>                                                                                
<p>
You should try to increase the maximum Java heap size.
For example,
<pre>
java -Xmx2048m -classpath libsvm.jar svm_train ...
</pre>
sets the maximum heap size to 2048M.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q08:_Java_version_of_libsvm"></a>
<a name="f604"><b>Q: Why you have the main source file svm.m4 and then transform it to svm.java?</b></a>
<br/>                                                                                
<p>
Unlike C, Java does not have a preprocessor built-in.
However,  we need some macros (see first 3 lines of svm.m4).

</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q09:_Python_interface"></a>
<a name="f704"><b>Q: Except the python-C++ interface provided, could I use Jython to call libsvm ?</b></a>
<br/>                                                                                
<p> Yes, here are some examples:

<pre>
$ export CLASSPATH=$CLASSPATH:~/libsvm-2.91/java/libsvm.jar
$ ./jython
Jython 2.1a3 on java1.3.0 (JIT: jitc)
Type "copyright", "credits" or "license" for more information.
>>> from libsvm import *
>>> dir()
['__doc__', '__name__', 'svm', 'svm_model', 'svm_node', 'svm_parameter',
'svm_problem']
>>> x1 = [svm_node(index=1,value=1)]
>>> x2 = [svm_node(index=1,value=-1)]
>>> param = svm_parameter(svm_type=0,kernel_type=2,gamma=1,cache_size=40,eps=0.001,C=1,nr_weight=0,shrinking=1)
>>> prob = svm_problem(l=2,y=[1,-1],x=[x1,x2])
>>> model = svm.svm_train(prob,param)
*
optimization finished, #iter = 1
nu = 1.0
obj = -1.018315639346838, rho = 0.0
nSV = 2, nBSV = 2
Total nSV = 2
>>> svm.svm_predict(model,x1)
1.0
>>> svm.svm_predict(model,x2)
-1.0
>>> svm.svm_save_model("test.model",model)

</pre>

<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f801"><b>Q: I compile the MATLAB interface without problem, but why errors occur while running it?</b></a>
<br/>                                                                                
<p>
Your compiler version may not be supported/compatible for MATLAB.
Please check <a href=http://www.mathworks.com/support/compilers/current_release>this MATLAB page</a> first and then specify the version
number. For example, if g++ X.Y is supported, replace
<pre>
CXX = g++
</pre>
in the Makefile with
<pre>
CXX = g++-X.Y
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f8011"><b>Q: On 64bit Windows I compile the MATLAB interface without problem, but why errors occur while running it?</b></a>
<br/>                                                                                
<p>


Please make sure that you use
the -largeArrayDims option in make.m. For example,
<pre>
mex -largeArrayDims -O -c svm.cpp
</pre>

Moreover, if you use Microsoft Visual Studio, 
probabally it is not properly installed. 
See the explanation 
<a href=http://www.mathworks.com/support/compilers/current_release/win64.html#n7>here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f802"><b>Q: Does the MATLAB interface provide a function to do scaling?</b></a>
<br/>                                                                                
<p>
It is extremely easy to do scaling under MATLAB.
The following one-line code scale each feature to the range
of [0,1]:
<pre>
(data - repmat(min(data,[],1),size(data,1),1))*spdiags(1./(max(data,[],1)-min(data,[],1))',0,size(data,2),size(data,2))
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f803"><b>Q: How could I use MATLAB interface for parameter selection?</b></a>
<br/>                                                                                
<p>
One can do this by a simple loop. 
See the following example:
<pre>
bestcv = 0;
for log2c = -1:3,
  for log2g = -4:1,
    cmd = ['-v 5 -c ', num2str(2^log2c), ' -g ', num2str(2^log2g)];
    cv = svmtrain(heart_scale_label, heart_scale_inst, cmd);
    if (cv >= bestcv),
      bestcv = cv; bestc = 2^log2c; bestg = 2^log2g;
    end
    fprintf('%g %g %g (best c=%g, g=%g, rate=%g)\n', log2c, log2g, cv, bestc, bestg, bestcv);
  end
end
</pre>
You may adjust the parameter range in the above loops.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f8031"><b>Q: I use MATLAB parallel programming toolbox on a multi-core environment for parameter selection. Why the program is even slower?</b></a>
<br/>                                                                                
<p>
Fabrizio Lacalandra of University of Pisa reported this issue.
It seems the problem is caused by the screen output.
If you disable the <b>info</b> function
using <pre>#if 0,</pre> then the problem
may be solved.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f8032"><b>Q: How to use LIBSVM with OpenMP under MATLAB/Octave?</b></a>
<br/>                                                                                

<p>
First, you must modify svm.cpp. Check the following faq,

<a href="faq.html#f432">How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</a>

<p>
To build the MATLAB/Octave interface, we recommend using <b>make.m</b>.
You must append '-fopenmp' to CXXFLAGS and add '-lgomp' to mex options in <b>make.m</b>.
See details below.

<p>
For MATLAB users, the modified code is:
<pre>
mex CFLAGS="\$CFLAGS -std=c99" CXXFLAGS="\$CXXFLAGS -fopenmp" -largeArrayDims -I.. -lgomp svmtrain.c ../svm.cpp svm_model_matlab.c
mex CFLAGS="\$CFLAGS -std=c99" CXXFLAGS="\$CXXFLAGS -fopenmp" -largeArrayDims -I.. -lgomp svmpredict.c ../svm.cpp svm_model_matlab.c
</pre>

<p>
For Octave users, the modified code is:
<pre>
setenv('CXXFLAGS', '-fopenmp') 
mex -I.. -lgomp svmtrain.c ../svm.cpp svm_model_matlab.c
mex -I.. -lgomp svmpredict.c ../svm.cpp svm_model_matlab.c
</pre>

<p>
If make.m fails under matlab and you use <b>Makefile</b> to compile the codes,
you must modify <b>two</b> files:

<p>
You must append '-fopenmp' to CFLAGS in <b>../Makefile</b> for C/C++ codes:
<pre>
CFLAGS = -Wall -Wconversion -O3 -fPIC -fopenmp -I$(MATLABDIR)/extern/include -I..
</pre>
and add '-lgomp' to MEX_OPTION in <b>Makefile</b> for the matlab/octave interface:
<pre>
MEX_OPTION += -lgomp
</pre>

<p>
  To run the code, you must specify the number of threads. For
  example, <b>before</b> executing matlab/octave, you run
<pre>
> export OMP_NUM_THREADS=8
> matlab
</pre>
Here we assume Bash is used. Unfortunately, we do not know yet
how to specify the number of threads within MATLAB/Octave. Our
experiments show that
<pre>
>> setenv('OMP_NUM_THREADS', '8');
</pre>
does not work. Please contact us if you 
see how to solve this problem. On the other hand, you can
specify the number of threads in the source code (thanks
to comments from Ricardo Santiago-mozos):
<pre>
#pragma omp parallel  for private(i) num_threads(8)
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f804"><b>Q: How could I generate the primal variable w of linear SVM?</b></a>
<br/>                                                                                
<p>
Let's start from the binary class and
assume you have two labels -1 and +1.
After obtaining the model from calling svmtrain,
do the following to have w and b:
<pre>
w = model.SVs' * model.sv_coef;
b = -model.rho;

if model.Label(1) == -1
  w = -w;
  b = -b;
end
</pre>
If you do regression or one-class SVM, then the if statement is not needed.

<p> For multi-class SVM, we illustrate the setting
in the following example of running the iris
data, which have 3 classes
<pre>  
> [y, x] = libsvmread('../../htdocs/libsvmtools/datasets/multiclass/iris.scale');
> m = svmtrain(y, x, '-t 0')

m = 

    Parameters: [5x1 double]
      nr_class: 3
       totalSV: 42
           rho: [3x1 double]
         Label: [3x1 double]
         ProbA: []
         ProbB: []
           nSV: [3x1 double]
       sv_coef: [42x2 double]
           SVs: [42x4 double]
</pre>
sv_coef is like:
<pre>
+-+-+--------------------+
|1|1|                    |
|v|v|  SVs from class 1  |
|2|3|                    |
+-+-+--------------------+
|1|2|                    |
|v|v|  SVs from class 2  |
|2|3|                    |
+-+-+--------------------+
|1|2|                    |
|v|v|  SVs from class 3  |
|3|3|                    |
+-+-+--------------------+
</pre>
so we need to see nSV of each classes.
<pre>  
> m.nSV

ans =

     3
    21
    18
</pre>
Suppose the goal is to find the vector w of classes 
1 vs 3. Then
y_i alpha_i of training 1 vs 3 are
<pre>  
> coef = [m.sv_coef(1:3,2); m.sv_coef(25:42,1)];
</pre>
and SVs are:
<pre>  
> SVs = [m.SVs(1:3,:); m.SVs(25:42,:)];
</pre>
Hence, w is
<pre>
> w = SVs'*coef;
</pre>  
For rho,
<pre>
> m.rho

ans =

    1.1465
    0.3682
   -1.9969
> b = -m.rho(2);
</pre>
because rho is arranged by 1vs2 1vs3 2vs3.


  
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f805"><b>Q: Is there an OCTAVE interface for libsvm?</b></a>
<br/>                                                                                
<p>
Yes, after libsvm 2.86, the matlab interface
works on OCTAVE as well. Please use make.m by typing
<pre>
>> make 
</pre>
under OCTAVE.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f806"><b>Q: How to handle the name conflict between svmtrain in the libsvm matlab interface and that in MATLAB bioinformatics toolbox?</b></a>
<br/>                                                                                
<p>
The easiest way is to rename the svmtrain binary 
file (e.g., svmtrain.mexw32 on 32-bit windows) 
to a different
name (e.g., svmtrain2.mexw32).
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f807"><b>Q: On Windows I got an error message "Invalid MEX-file: Specific module not found" when running the pre-built MATLAB interface in the windows sub-directory. What should I do?</b></a>
<br/>                                                                                
<p>

The error usually happens
when there are missing runtime components
such as MSVCR100.dll on your Windows platform.
You can use tools such as 
<a href=http://www.dependencywalker.com/>Dependency 
Walker</a> to find missing library files.

<p>
For example, if the pre-built MEX files are compiled by
Visual C++ 2010,
you must have installed
Microsoft Visual C++ Redistributable Package 2010
(vcredist_x86.exe). You can easily find the freely
available file from Microsoft's web site. 

<p>
For 64bit Windows, the situation is similar. If
the pre-built files are by
Visual C++ 2008, then you must have
Microsoft Visual C++ Redistributable Package 2008
(vcredist_x64.exe).
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f808"><b>Q: LIBSVM supports 1-vs-1 multi-class classification. If instead I would like to use 1-vs-rest, how to implement it using MATLAB interface?</b></a>
<br/>                                                                                

<p>
Please use code in the following <a href=../libsvmtools/ovr_multiclass>directory</a>. The following example shows how to
train and test the problem dna (<a href=../libsvmtools/datasets/multiclass/dna.scale>training</a> and <a href=../libsvmtools/datasets/multiclass/dna.scale.t>testing</a>).

<p> Load, train and predict data:
<pre>
[trainY trainX] = libsvmread('./dna.scale');
[testY testX] = libsvmread('./dna.scale.t');
model = ovrtrain(trainY, trainX, '-c 8 -g 4');
[pred ac decv] = ovrpredict(testY, testX, model);
fprintf('Accuracy = %g%%\n', ac * 100);
</pre>
Conduct CV on a grid of parameters 
<pre>
bestcv = 0;
for log2c = -1:2:3,
  for log2g = -4:2:1,
    cmd = ['-q -c ', num2str(2^log2c), ' -g ', num2str(2^log2g)];
    cv = get_cv_ac(trainY, trainX, cmd, 3);
    if (cv >= bestcv),
      bestcv = cv; bestc = 2^log2c; bestg = 2^log2g;
    end
    fprintf('%g %g %g (best c=%g, g=%g, rate=%g)\n', log2c, log2g, cv, bestc, bestg, bestcv);
  end
end
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f809"><b>Q: I tried to install matlab interface on mac, but failed. What should I do?</b></a>
<br/>                                                                                

<p>
We assume that in a matlab command window you change directory to libsvm/matlab and type
<pre>
>> make
</pre>
We discuss the following situations.

<ol>
<li>An error message like "libsvmread.c:1:19: fatal error:
stdio.h: No such file or directory" appears.

<p>
Reason: "make" looks for a C++ compiler, but 
no compiler is found. To get one, you can
<ul>
<li> Install XCode offered by Apple Inc.
<li> Install XCode Command Line Tools.
</ul>

<p>
<li> On OS X with Xcode 4.2+, I got an error message like "llvm-gcc-4.2:
command not found." 

<p>
Reason: Since Apple Inc. only ships llsvm-gcc instead of gcc-4.2, 
llvm-gcc-4.2 cannot be found.

<p>
If you are using Xcode 4.2-4.6,
a related solution is offered at
<a href=http://www.mathworks.com/matlabcentral/answers/94092>http://www.mathworks.com/matlabcentral/answers/94092</a>.

<p>
On the other hand, for Xcode 5 (including Xcode 4.2-4.6), in a Matlab command window, enter
<ul>
<li> cd (matlabroot)
<li> cd bin
<li> Backup your mexopts.sh first
<li> edit mexopts.sh
<li> Scroll down to "maci64" section. Change
<pre>
		CC='llvm-gcc-4.2'
		CXX='llvm-g++-4.2'
</pre>
to
<pre>
		CC='llvm-gcc'
		CXX='llvm-g++'
</pre>
</ul>

Please also ensure that SDKROOT corresponds to the SDK version you are using.

<p>
<li> Other errors: you may check <a href=http://www.mathworks.com/matlabcentral/answers/94092>http://www.mathworks.com/matlabcentral/answers/94092</a>.

</ol>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q10:_MATLAB_OCTAVE_interface"></a>
<a name="f810"><b>Q: I tried to install octave interface on windows, but failed. What should I do?</b></a>
<br/>                                                                                

<p>
This may be due to
that Octave's math.h file does not
refer to the correct location of Visual Studio's math.h. 
Please see <a href=https://flyingpies.wordpress.com/2012/11/20/getting-libsvm-to-work-with-octave-on-windows/>this nice page</a> for detailed
instructions.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <p align="middle">
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">LIBSVM home page</a>
</p>
</body>
</html>