1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "svm.h"
#include "mex.h"
#include "svm_model_matlab.h"
#ifdef MX_API_VER
#if MX_API_VER < 0x07030000
typedef int mwIndex;
#endif
#endif
#define CMD_LEN 2048
int print_null(const char *s,...) {}
int (*info)(const char *fmt,...) = &mexPrintf;
void read_sparse_instance(const mxArray *prhs, int index, struct svm_node *x)
{
int i, j, low, high;
mwIndex *ir, *jc;
double *samples;
ir = mxGetIr(prhs);
jc = mxGetJc(prhs);
samples = mxGetPr(prhs);
// each column is one instance
j = 0;
low = (int)jc[index], high = (int)jc[index+1];
for(i=low;i<high;i++)
{
x[j].index = (int)ir[i] + 1;
x[j].value = samples[i];
j++;
}
x[j].index = -1;
}
static void fake_answer(int nlhs, mxArray *plhs[])
{
int i;
for(i=0;i<nlhs;i++)
plhs[i] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
void predict(int nlhs, mxArray *plhs[], const mxArray *prhs[], struct svm_model *model, const int predict_probability)
{
int label_vector_row_num, label_vector_col_num;
int feature_number, testing_instance_number;
int instance_index;
double *ptr_instance, *ptr_label, *ptr_predict_label;
double *ptr_prob_estimates, *ptr_dec_values, *ptr;
struct svm_node *x;
mxArray *pplhs[1]; // transposed instance sparse matrix
mxArray *tplhs[3]; // temporary storage for plhs[]
int correct = 0;
int total = 0;
double error = 0;
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
int svm_type=svm_get_svm_type(model);
int nr_class=svm_get_nr_class(model);
double *prob_estimates=NULL;
// prhs[1] = testing instance matrix
feature_number = (int)mxGetN(prhs[1]);
testing_instance_number = (int)mxGetM(prhs[1]);
label_vector_row_num = (int)mxGetM(prhs[0]);
label_vector_col_num = (int)mxGetN(prhs[0]);
if(label_vector_row_num!=testing_instance_number)
{
mexPrintf("Length of label vector does not match # of instances.\n");
fake_answer(nlhs, plhs);
return;
}
if(label_vector_col_num!=1)
{
mexPrintf("label (1st argument) should be a vector (# of column is 1).\n");
fake_answer(nlhs, plhs);
return;
}
ptr_instance = mxGetPr(prhs[1]);
ptr_label = mxGetPr(prhs[0]);
// transpose instance matrix
if(mxIsSparse(prhs[1]))
{
if(model->param.kernel_type == PRECOMPUTED)
{
// precomputed kernel requires dense matrix, so we make one
mxArray *rhs[1], *lhs[1];
rhs[0] = mxDuplicateArray(prhs[1]);
if(mexCallMATLAB(1, lhs, 1, rhs, "full"))
{
mexPrintf("Error: cannot full testing instance matrix\n");
fake_answer(nlhs, plhs);
return;
}
ptr_instance = mxGetPr(lhs[0]);
mxDestroyArray(rhs[0]);
}
else
{
mxArray *pprhs[1];
pprhs[0] = mxDuplicateArray(prhs[1]);
if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose"))
{
mexPrintf("Error: cannot transpose testing instance matrix\n");
fake_answer(nlhs, plhs);
return;
}
}
}
if(predict_probability)
{
if(svm_type==NU_SVR || svm_type==EPSILON_SVR)
info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
else
prob_estimates = (double *) malloc(nr_class*sizeof(double));
}
tplhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL);
if(predict_probability)
{
// prob estimates are in plhs[2]
if(svm_type==C_SVC || svm_type==NU_SVC)
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL);
else
tplhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
else
{
// decision values are in plhs[2]
if(svm_type == ONE_CLASS ||
svm_type == EPSILON_SVR ||
svm_type == NU_SVR ||
nr_class == 1) // if only one class in training data, decision values are still returned.
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL);
else
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class*(nr_class-1)/2, mxREAL);
}
ptr_predict_label = mxGetPr(tplhs[0]);
ptr_prob_estimates = mxGetPr(tplhs[2]);
ptr_dec_values = mxGetPr(tplhs[2]);
x = (struct svm_node*)malloc((feature_number+1)*sizeof(struct svm_node) );
for(instance_index=0;instance_index<testing_instance_number;instance_index++)
{
int i;
double target_label, predict_label;
target_label = ptr_label[instance_index];
if(mxIsSparse(prhs[1]) && model->param.kernel_type != PRECOMPUTED) // prhs[1]^T is still sparse
read_sparse_instance(pplhs[0], instance_index, x);
else
{
for(i=0;i<feature_number;i++)
{
x[i].index = i+1;
x[i].value = ptr_instance[testing_instance_number*i+instance_index];
}
x[feature_number].index = -1;
}
if(predict_probability)
{
if(svm_type==C_SVC || svm_type==NU_SVC)
{
predict_label = svm_predict_probability(model, x, prob_estimates);
ptr_predict_label[instance_index] = predict_label;
for(i=0;i<nr_class;i++)
ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i];
} else {
predict_label = svm_predict(model,x);
ptr_predict_label[instance_index] = predict_label;
}
}
else
{
if(svm_type == ONE_CLASS ||
svm_type == EPSILON_SVR ||
svm_type == NU_SVR)
{
double res;
predict_label = svm_predict_values(model, x, &res);
ptr_dec_values[instance_index] = res;
}
else
{
double *dec_values = (double *) malloc(sizeof(double) * nr_class*(nr_class-1)/2);
predict_label = svm_predict_values(model, x, dec_values);
if(nr_class == 1)
ptr_dec_values[instance_index] = 1;
else
for(i=0;i<(nr_class*(nr_class-1))/2;i++)
ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i];
free(dec_values);
}
ptr_predict_label[instance_index] = predict_label;
}
if(predict_label == target_label)
++correct;
error += (predict_label-target_label)*(predict_label-target_label);
sump += predict_label;
sumt += target_label;
sumpp += predict_label*predict_label;
sumtt += target_label*target_label;
sumpt += predict_label*target_label;
++total;
}
if(svm_type==NU_SVR || svm_type==EPSILON_SVR)
{
info("Mean squared error = %g (regression)\n",error/total);
info("Squared correlation coefficient = %g (regression)\n",
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
);
}
else
info("Accuracy = %g%% (%d/%d) (classification)\n",
(double)correct/total*100,correct,total);
// return accuracy, mean squared error, squared correlation coefficient
tplhs[1] = mxCreateDoubleMatrix(3, 1, mxREAL);
ptr = mxGetPr(tplhs[1]);
ptr[0] = (double)correct/total*100;
ptr[1] = error/total;
ptr[2] = ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt));
free(x);
if(prob_estimates != NULL)
free(prob_estimates);
switch(nlhs)
{
case 3:
plhs[2] = tplhs[2];
plhs[1] = tplhs[1];
case 1:
case 0:
plhs[0] = tplhs[0];
}
}
void exit_with_help()
{
mexPrintf(
"Usage: [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n"
" [predicted_label] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n"
"Parameters:\n"
" model: SVM model structure from svmtrain.\n"
" libsvm_options:\n"
" -b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n"
" -q : quiet mode (no outputs)\n"
"Returns:\n"
" predicted_label: SVM prediction output vector.\n"
" accuracy: a vector with accuracy, mean squared error, squared correlation coefficient.\n"
" prob_estimates: If selected, probability estimate vector.\n"
);
}
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[] )
{
int prob_estimate_flag = 0;
struct svm_model *model;
info = &mexPrintf;
if(nlhs == 2 || nlhs > 3 || nrhs > 4 || nrhs < 3)
{
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) {
mexPrintf("Error: label vector and instance matrix must be double\n");
fake_answer(nlhs, plhs);
return;
}
if(mxIsStruct(prhs[2]))
{
const char *error_msg;
// parse options
if(nrhs==4)
{
int i, argc = 1;
char cmd[CMD_LEN], *argv[CMD_LEN/2];
// put options in argv[]
mxGetString(prhs[3], cmd, mxGetN(prhs[3]) + 1);
if((argv[argc] = strtok(cmd, " ")) != NULL)
while((argv[++argc] = strtok(NULL, " ")) != NULL)
;
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
if((++i>=argc) && argv[i-1][1] != 'q')
{
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
switch(argv[i-1][1])
{
case 'b':
prob_estimate_flag = atoi(argv[i]);
break;
case 'q':
i--;
info = &print_null;
break;
default:
mexPrintf("Unknown option: -%c\n", argv[i-1][1]);
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
}
}
model = matlab_matrix_to_model(prhs[2], &error_msg);
if (model == NULL)
{
mexPrintf("Error: can't read model: %s\n", error_msg);
fake_answer(nlhs, plhs);
return;
}
if(prob_estimate_flag)
{
if(svm_check_probability_model(model)==0)
{
mexPrintf("Model does not support probabiliy estimates\n");
fake_answer(nlhs, plhs);
svm_free_and_destroy_model(&model);
return;
}
}
else
{
if(svm_check_probability_model(model)!=0)
info("Model supports probability estimates, but disabled in predicton.\n");
}
predict(nlhs, plhs, prhs, model, prob_estimate_flag);
// destroy model
svm_free_and_destroy_model(&model);
}
else
{
mexPrintf("model file should be a struct array\n");
fake_answer(nlhs, plhs);
}
return;
}
|