1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
#!/usr/bin/env python
import os, sys
sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path
from svm import *
from svm import __all__ as svm_all
from svm import scipy, sparse
if sys.version_info[0] < 3:
range = xrange
from itertools import izip as zip
_cstr = lambda s: s.encode("utf-8") if isinstance(s,unicode) else str(s)
else:
_cstr = lambda s: bytes(s, "utf-8")
###########################################################
#### Debian: merge commonutil.py into this svmutil.py #####
###########################################################
from array import array
import sys
try:
import scipy
from scipy import sparse
except:
scipy = None
sparse = None
common_all = ['svm_read_problem', 'evaluations', 'csr_find_scale_param', 'csr_scale']
def svm_read_problem(data_file_name, return_scipy=False):
"""
svm_read_problem(data_file_name, return_scipy=False) -> [y, x], y: list, x: list of dictionary
svm_read_problem(data_file_name, return_scipy=True) -> [y, x], y: ndarray, x: csr_matrix
Read LIBSVM-format data from data_file_name and return labels y
and data instances x.
"""
if scipy != None and return_scipy:
prob_y = array('d')
prob_x = array('d')
row_ptr = array('l', [0])
col_idx = array('l')
else:
prob_y = []
prob_x = []
row_ptr = [0]
col_idx = []
indx_start = 1
for i, line in enumerate(open(data_file_name)):
line = line.split(None, 1)
# In case an instance with all zero features
if len(line) == 1: line += ['']
label, features = line
prob_y.append(float(label))
if scipy != None and return_scipy:
nz = 0
for e in features.split():
ind, val = e.split(":")
if ind == '0':
indx_start = 0
val = float(val)
if val != 0:
col_idx.append(int(ind)-indx_start)
prob_x.append(val)
nz += 1
row_ptr.append(row_ptr[-1]+nz)
else:
xi = {}
for e in features.split():
ind, val = e.split(":")
xi[int(ind)] = float(val)
prob_x += [xi]
if scipy != None and return_scipy:
prob_y = scipy.frombuffer(prob_y, dtype='d')
prob_x = scipy.frombuffer(prob_x, dtype='d')
col_idx = scipy.frombuffer(col_idx, dtype='l')
row_ptr = scipy.frombuffer(row_ptr, dtype='l')
prob_x = sparse.csr_matrix((prob_x, col_idx, row_ptr))
return (prob_y, prob_x)
def evaluations_scipy(ty, pv):
"""
evaluations_scipy(ty, pv) -> (ACC, MSE, SCC)
ty, pv: ndarray
Calculate accuracy, mean squared error and squared correlation coefficient
using the true values (ty) and predicted values (pv).
"""
if not (scipy != None and isinstance(ty, scipy.ndarray) and isinstance(pv, scipy.ndarray)):
raise TypeError("type of ty and pv must be ndarray")
if len(ty) != len(pv):
raise ValueError("len(ty) must be equal to len(pv)")
ACC = 100.0*(ty == pv).mean()
MSE = ((ty - pv)**2).mean()
l = len(ty)
sumv = pv.sum()
sumy = ty.sum()
sumvy = (pv*ty).sum()
sumvv = (pv*pv).sum()
sumyy = (ty*ty).sum()
with scipy.errstate(all = 'raise'):
try:
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
except:
SCC = float('nan')
return (float(ACC), float(MSE), float(SCC))
def evaluations(ty, pv, useScipy = True):
"""
evaluations(ty, pv, useScipy) -> (ACC, MSE, SCC)
ty, pv: list, tuple or ndarray
useScipy: convert ty, pv to ndarray, and use scipy functions for the evaluation
Calculate accuracy, mean squared error and squared correlation coefficient
using the true values (ty) and predicted values (pv).
"""
if scipy != None and useScipy:
return evaluations_scipy(scipy.asarray(ty), scipy.asarray(pv))
if len(ty) != len(pv):
raise ValueError("len(ty) must be equal to len(pv)")
total_correct = total_error = 0
sumv = sumy = sumvv = sumyy = sumvy = 0
for v, y in zip(pv, ty):
if y == v:
total_correct += 1
total_error += (v-y)*(v-y)
sumv += v
sumy += y
sumvv += v*v
sumyy += y*y
sumvy += v*y
l = len(ty)
ACC = 100.0*total_correct/l
MSE = total_error/l
try:
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
except:
SCC = float('nan')
return (float(ACC), float(MSE), float(SCC))
def csr_find_scale_param(x, lower=-1, upper=1):
assert isinstance(x, sparse.csr_matrix)
assert lower < upper
l, n = x.shape
feat_min = x.min(axis=0).toarray().flatten()
feat_max = x.max(axis=0).toarray().flatten()
coef = (feat_max - feat_min) / (upper - lower)
coef[coef != 0] = 1.0 / coef[coef != 0]
# (x - ones(l,1) * feat_min') * diag(coef) + lower
# = x * diag(coef) - ones(l, 1) * (feat_min' * diag(coef)) + lower
# = x * diag(coef) + ones(l, 1) * (-feat_min' * diag(coef) + lower)
# = x * diag(coef) + ones(l, 1) * offset'
offset = -feat_min * coef + lower
offset[coef == 0] = 0
if sum(offset != 0) * l > 3 * x.getnnz():
print(
"WARNING: The #nonzeros of the scaled data is at least 2 times larger than the original one.\n"
"If feature values are non-negative and sparse, set lower=0 rather than the default lower=-1.",
file=sys.stderr)
return {'coef':coef, 'offset':offset}
def csr_scale(x, scale_param):
assert isinstance(x, sparse.csr_matrix)
offset = scale_param['offset']
coef = scale_param['coef']
assert len(coef) == len(offset)
l, n = x.shape
if not n == len(coef):
print("WARNING: The dimension of scaling parameters and feature number do not match.", file=sys.stderr)
coef = resize(coef, n)
offset = resize(offset, n)
# scaled_x = x * diag(coef) + ones(l, 1) * offset'
offset = sparse.csr_matrix(offset.reshape(1, n))
offset = sparse.vstack([offset] * l, format='csr', dtype=x.dtype)
scaled_x = x.dot(sparse.diags(coef, 0, shape=(n, n))) + offset
if scaled_x.getnnz() > x.getnnz():
print(
"WARNING: original #nonzeros %d\n" % x.getnnz() +
" > new #nonzeros %d\n" % scaled_x.getnnz() +
"If feature values are non-negative and sparse, get scale_param by setting lower=0 rather than the default lower=-1.",
file=sys.stderr)
return scaled_x
#####################################
#### End of merged commonutil.py ####
#####################################
__all__ = ['svm_load_model', 'svm_predict', 'svm_save_model', 'svm_train'] + svm_all + common_all
def svm_load_model(model_file_name):
"""
svm_load_model(model_file_name) -> model
Load a LIBSVM model from model_file_name and return.
"""
model = libsvm.svm_load_model(_cstr(model_file_name))
if not model:
print("can't open model file %s" % model_file_name)
return None
model = toPyModel(model)
return model
def svm_save_model(model_file_name, model):
"""
svm_save_model(model_file_name, model) -> None
Save a LIBSVM model to the file model_file_name.
"""
libsvm.svm_save_model(_cstr(model_file_name), model)
def svm_train(arg1, arg2=None, arg3=None):
"""
svm_train(y, x [, options]) -> model | ACC | MSE
y: a list/tuple/ndarray of l true labels (type must be int/double).
x: 1. a list/tuple of l training instances. Feature vector of
each training instance is a list/tuple or dictionary.
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
svm_train(prob [, options]) -> model | ACC | MSE
svm_train(prob, param) -> model | ACC| MSE
Train an SVM model from data (y, x) or an svm_problem prob using
'options' or an svm_parameter param.
If '-v' is specified in 'options' (i.e., cross validation)
either accuracy (ACC) or mean-squared error (MSE) is returned.
options:
-s svm_type : set type of SVM (default 0)
0 -- C-SVC (multi-class classification)
1 -- nu-SVC (multi-class classification)
2 -- one-class SVM
3 -- epsilon-SVR (regression)
4 -- nu-SVR (regression)
-t kernel_type : set type of kernel function (default 2)
0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u'*v + coef0)
4 -- precomputed kernel (kernel values in training_set_file)
-d degree : set degree in kernel function (default 3)
-g gamma : set gamma in kernel function (default 1/num_features)
-r coef0 : set coef0 in kernel function (default 0)
-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-m cachesize : set cache memory size in MB (default 100)
-e epsilon : set tolerance of termination criterion (default 0.001)
-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
-v n: n-fold cross validation mode
-q : quiet mode (no outputs)
"""
prob, param = None, None
if isinstance(arg1, (list, tuple)) or (scipy and isinstance(arg1, scipy.ndarray)):
assert isinstance(arg2, (list, tuple)) or (scipy and isinstance(arg2, (scipy.ndarray, sparse.spmatrix)))
y, x, options = arg1, arg2, arg3
param = svm_parameter(options)
prob = svm_problem(y, x, isKernel=(param.kernel_type == PRECOMPUTED))
elif isinstance(arg1, svm_problem):
prob = arg1
if isinstance(arg2, svm_parameter):
param = arg2
else:
param = svm_parameter(arg2)
if prob == None or param == None:
raise TypeError("Wrong types for the arguments")
if param.kernel_type == PRECOMPUTED:
for i in range(prob.l):
xi = prob.x[i]
idx, val = xi[0].index, xi[0].value
if idx != 0:
raise ValueError('Wrong input format: first column must be 0:sample_serial_number')
if val <= 0 or val > prob.n:
raise ValueError('Wrong input format: sample_serial_number out of range')
if param.gamma == 0 and prob.n > 0:
param.gamma = 1.0 / prob.n
libsvm.svm_set_print_string_function(param.print_func)
err_msg = libsvm.svm_check_parameter(prob, param)
if err_msg:
raise ValueError('Error: %s' % err_msg)
if param.cross_validation:
l, nr_fold = prob.l, param.nr_fold
target = (c_double * l)()
libsvm.svm_cross_validation(prob, param, nr_fold, target)
ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
if param.svm_type in [EPSILON_SVR, NU_SVR]:
print("Cross Validation Mean squared error = %g" % MSE)
print("Cross Validation Squared correlation coefficient = %g" % SCC)
return MSE
else:
print("Cross Validation Accuracy = %g%%" % ACC)
return ACC
else:
m = libsvm.svm_train(prob, param)
m = toPyModel(m)
# If prob is destroyed, data including SVs pointed by m can remain.
m.x_space = prob.x_space
return m
def svm_predict(y, x, m, options=""):
"""
svm_predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals)
y: a list/tuple/ndarray of l true labels (type must be int/double).
It is used for calculating the accuracy. Use [] if true labels are
unavailable.
x: 1. a list/tuple of l training instances. Feature vector of
each training instance is a list/tuple or dictionary.
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
Predict data (y, x) with the SVM model m.
options:
-b probability_estimates: whether to predict probability estimates,
0 or 1 (default 0); for one-class SVM only 0 is supported.
-q : quiet mode (no outputs).
The return tuple contains
p_labels: a list of predicted labels
p_acc: a tuple including accuracy (for classification), mean-squared
error, and squared correlation coefficient (for regression).
p_vals: a list of decision values or probability estimates (if '-b 1'
is specified). If k is the number of classes, for decision values,
each element includes results of predicting k(k-1)/2 binary-class
SVMs. For probabilities, each element contains k values indicating
the probability that the testing instance is in each class.
Note that the order of classes here is the same as 'model.label'
field in the model structure.
"""
def info(s):
print(s)
if scipy and isinstance(x, scipy.ndarray):
x = scipy.ascontiguousarray(x) # enforce row-major
elif sparse and isinstance(x, sparse.spmatrix):
x = x.tocsr()
elif not isinstance(x, (list, tuple)):
raise TypeError("type of x: {0} is not supported!".format(type(x)))
if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, scipy.ndarray))):
raise TypeError("type of y: {0} is not supported!".format(type(y)))
predict_probability = 0
argv = options.split()
i = 0
while i < len(argv):
if argv[i] == '-b':
i += 1
predict_probability = int(argv[i])
elif argv[i] == '-q':
info = print_null
else:
raise ValueError("Wrong options")
i+=1
svm_type = m.get_svm_type()
is_prob_model = m.is_probability_model()
nr_class = m.get_nr_class()
pred_labels = []
pred_values = []
if scipy and isinstance(x, sparse.spmatrix):
nr_instance = x.shape[0]
else:
nr_instance = len(x)
if predict_probability:
if not is_prob_model:
raise ValueError("Model does not support probabiliy estimates")
if svm_type in [NU_SVR, EPSILON_SVR]:
info("Prob. model for test data: target value = predicted value + z,\n"
"z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability());
nr_class = 0
prob_estimates = (c_double * nr_class)()
for i in range(nr_instance):
if scipy and isinstance(x, sparse.spmatrix):
indslice = slice(x.indptr[i], x.indptr[i+1])
xi, idx = gen_svm_nodearray((x.indices[indslice], x.data[indslice]), isKernel=(m.param.kernel_type == PRECOMPUTED))
else:
xi, idx = gen_svm_nodearray(x[i], isKernel=(m.param.kernel_type == PRECOMPUTED))
label = libsvm.svm_predict_probability(m, xi, prob_estimates)
values = prob_estimates[:nr_class]
pred_labels += [label]
pred_values += [values]
else:
if is_prob_model:
info("Model supports probability estimates, but disabled in predicton.")
if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC):
nr_classifier = 1
else:
nr_classifier = nr_class*(nr_class-1)//2
dec_values = (c_double * nr_classifier)()
for i in range(nr_instance):
if scipy and isinstance(x, sparse.spmatrix):
indslice = slice(x.indptr[i], x.indptr[i+1])
xi, idx = gen_svm_nodearray((x.indices[indslice], x.data[indslice]), isKernel=(m.param.kernel_type == PRECOMPUTED))
else:
xi, idx = gen_svm_nodearray(x[i], isKernel=(m.param.kernel_type == PRECOMPUTED))
label = libsvm.svm_predict_values(m, xi, dec_values)
if(nr_class == 1):
values = [1]
else:
values = dec_values[:nr_classifier]
pred_labels += [label]
pred_values += [values]
if len(y) == 0:
y = [0] * nr_instance
ACC, MSE, SCC = evaluations(y, pred_labels)
if svm_type in [EPSILON_SVR, NU_SVR]:
info("Mean squared error = %g (regression)" % MSE)
info("Squared correlation coefficient = %g (regression)" % SCC)
else:
info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(round(nr_instance*ACC/100)), nr_instance))
return pred_labels, (ACC, MSE, SCC), pred_values
|