File: svm-train.1

package info (click to toggle)
libsvm 3.24%2Bds-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 992 kB
  • sloc: java: 3,680; cpp: 3,146; ansic: 2,253; python: 1,270; makefile: 153; sh: 41
file content (174 lines) | stat: -rw-r--r-- 3,809 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
.\" Process this file with
.\" groff -man -Tascii svm-train.1
.\"
.TH svm-train 1 "MAY 2006" Linux "User Manuals"
.SH NAME
svm-train \- train one or more SVM instance(s) on a given data set to produce a model file
.SH SYNOPSIS
.B svm-train [-s
.I svm_type
.B ] [ -t
.I kernel_type
.B ] [ -d
.I degree
.B ] [ -g
.I gamma
.B ] [ -r
.I coef0
.B ] [ -c
.I cost
.B ] [ -n
.I nu
.B ] [ -p
.I epsilon
.B ] [ -m
.I cachesize
.B ] [ -e
.I epsilon
.B ] [ -h
.I shrinking
.B ] [ -b
.I probability_estimates ]
.B ] [ -wi
.I weight
.B ] [ -v
.I n
.B ] [ -q ]

.I training_set_file [ model_file ]
.SH DESCRIPTION
.B svm-train
trains a Support Vector Machine to learn the data indicated in the
.I training_set_file
 and produce a
.I model_file
 to save the results of the learning optimization.  This model can be
used later with
.BR svm_predict (1)
or other LIBSVM enabled software.
.SH OPTIONS
.IP "-s svm_type"
svm_type defaults to 0 and can be any value between 0 and 4 as follows:
.TP
.B 0
--
.I C-SVC
.TP
.B 1
--
.I nu-SVC
.TP
.B 2
--
.I one-class SVM
.TP
.B 3
--
.I epsilon-SVR
.TP
.B 4
--
.I nu-SVR

.IP "-t kernel_type"
kernel_type defaults to 2 (Radial Basis Function (RBF) kernel) and can be any value between 0 and 4 as follows:
.TP
.B 0
--
.I linear: u.v
.TP
.B 1
--
.I polynomial: (gamma*u.v + coef0)^degree
.TP
.B 2
--
.I radial basis function: exp(-gamma*|u-v|^2)
.TP
.B 3
--
.I sigmoid: tanh(gamma*u.v + coef0)
.TP
.B 4
--
.I precomputed kernel (kernel values in training_set_file)
--
.IP "-d degree"
Sets the
.I degree
of the kernel function, defaulting to 3
.IP "-g gamma"
Adjusts the
.I gamma
in the kernel function (default 1/k)
.IP "-r coef0"
Sets the
.I coef0
(constant offset) in the kernel function (default 0)
.IP "-c cost"
Sets the parameter C (
.I cost
) of C-SVC, epsilon-SVR, and nu-SVR (default 1)
.IP "-n nu"
Sets the parameter 
.I nu
of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
.IP "-p epsilon"
Set the
.I epsilon
in the loss function of epsilon-SVR (default 0.1)
.IP "-m cachesize"
Set the cache memory size to
.I cachesize
in MB (default 100)
.IP "-e epsilon"
Set the tolerance of termination criterion to
.I epsilon
(default 0.001)
.IP "-h shrinking"
Whether to use the
.I shrinking
 heuristics, 0 or 1 (default 1)
.IP "-b probability-estimates"
.I probability_estimates
is a binary value indicating whether to calculate probability estimates when training the SVC or SVR model.  Values are 0 or 1 and defaults to 0 for speed.
.IP "-wi weight"
Set the parameter C (cost) of class
.I i
to weight*C, for C-SVC (default 1)
.IP "-v n"
Set
.I n
for
.I n
\-fold cross validation mode
.IP "-q"
quiet mode; suppress messages to stdout.
.SH FILES
.I training_set_file
must be prepared in the following simple sparse training vector format:

.TP
<label> <index1>:<value1> <index2>:<value2> . . .
.TP
 .
.TP
 .
.TP
 .

.TP
There is one sample per line.  Each sample consists of a target value (label or regression target) followed by a sparse representation of the input vector.  All unmentioned coordinates are assumed to be 0.  For classification, <label> is an integer indicating the class label (multi-class is supported). For regression, <label> is the target value which can be any real number. For one-class SVM, it's not used so can be any number.  Except using precomputed kernels (explained in another section), <index>:<value> gives a feature (attribute) value.  <index> is an integer starting from 1 and <value> is a real number. Indices must be in an ASCENDING order.

.SH ENVIRONMENT
No environment variables.

.SH DIAGNOSTICS
None documented; see Vapnik et al.
.SH BUGS
Please report bugs to the Debian BTS.
.SH AUTHOR
Chih-Chung Chang, Chih-Jen Lin <cjlin@csie.ntu.edu.tw>, Chen-Tse Tsai <ctse.tsai@gmail.com> (packaging)
.SH "SEE ALSO"
.BR svm-predict (1),
.BR svm-scale (1)