1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
.\" Process this file with
.\" groff -man -Tascii svm-train.1
.\"
.TH svm-train 1 "MAY 2006" Linux "User Manuals"
.SH NAME
svm-train \- train one or more SVM instance(s) on a given data set to produce a model file
.SH SYNOPSIS
.B svm-train [-s
.I svm_type
.B ] [ -t
.I kernel_type
.B ] [ -d
.I degree
.B ] [ -g
.I gamma
.B ] [ -r
.I coef0
.B ] [ -c
.I cost
.B ] [ -n
.I nu
.B ] [ -p
.I epsilon
.B ] [ -m
.I cachesize
.B ] [ -e
.I epsilon
.B ] [ -h
.I shrinking
.B ] [ -b
.I probability_estimates ]
.B ] [ -wi
.I weight
.B ] [ -v
.I n
.B ] [ -q ]
.I training_set_file [ model_file ]
.SH DESCRIPTION
.B svm-train
trains a Support Vector Machine to learn the data indicated in the
.I training_set_file
and produce a
.I model_file
to save the results of the learning optimization. This model can be
used later with
.BR svm_predict (1)
or other LIBSVM enabled software.
.SH OPTIONS
.IP "-s svm_type"
svm_type defaults to 0 and can be any value between 0 and 4 as follows:
.TP
.B 0
--
.I C-SVC
.TP
.B 1
--
.I nu-SVC
.TP
.B 2
--
.I one-class SVM
.TP
.B 3
--
.I epsilon-SVR
.TP
.B 4
--
.I nu-SVR
.IP "-t kernel_type"
kernel_type defaults to 2 (Radial Basis Function (RBF) kernel) and can be any value between 0 and 4 as follows:
.TP
.B 0
--
.I linear: u.v
.TP
.B 1
--
.I polynomial: (gamma*u.v + coef0)^degree
.TP
.B 2
--
.I radial basis function: exp(-gamma*|u-v|^2)
.TP
.B 3
--
.I sigmoid: tanh(gamma*u.v + coef0)
.TP
.B 4
--
.I precomputed kernel (kernel values in training_set_file)
--
.IP "-d degree"
Sets the
.I degree
of the kernel function, defaulting to 3
.IP "-g gamma"
Adjusts the
.I gamma
in the kernel function (default 1/k)
.IP "-r coef0"
Sets the
.I coef0
(constant offset) in the kernel function (default 0)
.IP "-c cost"
Sets the parameter C (
.I cost
) of C-SVC, epsilon-SVR, and nu-SVR (default 1)
.IP "-n nu"
Sets the parameter
.I nu
of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
.IP "-p epsilon"
Set the
.I epsilon
in the loss function of epsilon-SVR (default 0.1)
.IP "-m cachesize"
Set the cache memory size to
.I cachesize
in MB (default 100)
.IP "-e epsilon"
Set the tolerance of termination criterion to
.I epsilon
(default 0.001)
.IP "-h shrinking"
Whether to use the
.I shrinking
heuristics, 0 or 1 (default 1)
.IP "-b probability-estimates"
.I probability_estimates
is a binary value indicating whether to calculate probability estimates when training the SVC or SVR model. Values are 0 or 1 and defaults to 0 for speed.
.IP "-wi weight"
Set the parameter C (cost) of class
.I i
to weight*C, for C-SVC (default 1)
.IP "-v n"
Set
.I n
for
.I n
\-fold cross validation mode
.IP "-q"
quiet mode; suppress messages to stdout.
.SH FILES
.I training_set_file
must be prepared in the following simple sparse training vector format:
.TP
<label> <index1>:<value1> <index2>:<value2> . . .
.TP
.
.TP
.
.TP
.
.TP
There is one sample per line. Each sample consists of a target value (label or regression target) followed by a sparse representation of the input vector. All unmentioned coordinates are assumed to be 0. For classification, <label> is an integer indicating the class label (multi-class is supported). For regression, <label> is the target value which can be any real number. For one-class SVM, it's not used so can be any number. Except using precomputed kernels (explained in another section), <index>:<value> gives a feature (attribute) value. <index> is an integer starting from 1 and <value> is a real number. Indices must be in an ASCENDING order.
.SH ENVIRONMENT
No environment variables.
.SH DIAGNOSTICS
None documented; see Vapnik et al.
.SH BUGS
Please report bugs to the Debian BTS.
.SH AUTHOR
Chih-Chung Chang, Chih-Jen Lin <cjlin@csie.ntu.edu.tw>, Chen-Tse Tsai <ctse.tsai@gmail.com> (packaging)
.SH "SEE ALSO"
.BR svm-predict (1),
.BR svm-scale (1)
|