File: datetype.c

package info (click to toggle)
libsynce 0.15-1.1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 1,752 kB
  • sloc: sh: 10,550; ansic: 4,476; makefile: 143
file content (339 lines) | stat: -rw-r--r-- 10,165 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/* $Id: datetype.c 551 2003-01-18 14:13:18Z twogood $ */
#include "synce.h"
#include <math.h>
#include <string.h>
#include <synce_log.h>

#define VAR_TIMEVALUEONLY	DATE_TIMEVALUEONLY
#define VAR_DATEVALUEONLY	DATE_DATEVALUEONLY

static BOOL TmToDATE( struct tm* pTm, DATE *pDateOut );
static BOOL DateToTm( DATE dateIn, DWORD dwFlags, struct tm* pTm );

bool date_from_tm(struct tm* pTm, DATE *pDateOut)
{
	struct tm copy = *pTm;
	copy.tm_year += 1900;
	return TmToDATE(&copy, pDateOut);
}

bool date_to_tm(DATE dateIn, DWORD dwFlags, struct tm* pTm)
{
	struct tm result;
	bool success = DateToTm(dateIn, dwFlags, &result);
	if (success)
	{
		synce_trace("result.tm_year=%i", result.tm_year);
		result.tm_year += 1900;
		*pTm = result;
	}
	return success;
}

/*
 * Note a leap year is one that is a multiple of 4
 * but not of a 100.  Except if it is a multiple of
 * 400 then it is a leap year.
 */
#define isleap(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))

/*
 * Copyright 1998 Jean-Claude Cote
 *
 * These functions come from wine/dlls/oleaut32/variant.c in release 20020228
 * of the WINE project. See http://www.winehq.org/ for more information. 
 *
 * Licensing information for the code below:
 *
 *   http://source.winehq.org/source/LICENSE?v=wine20020228
 *
 */

/*
 * Note a leap year is one that is a multiple of 4
 * but not of a 100.  Except if it is a multiple of
 * 400 then it is a leap year.
 */
/* According to postgreSQL date parsing functions there is
 * a leap year when this expression is true.
 * (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
 * So according to this there is 365.2515 days in one year.
 * One + every four years: 1/4 -> 365.25
 * One - every 100 years: 1/100 -> 365.01
 * One + every 400 years: 1/400 -> 365.0025
 */
/* static const double DAYS_IN_ONE_YEAR = 365.2515;
 *
 *  ^^  Might this be the key to an easy way to factor large prime numbers?
 *  Let's try using arithmetic.  <lawson_whitney@juno.com> 7 Mar 2000
 */
static const double DAYS_IN_ONE_YEAR = 365.0; /*365.2425;*/


/******************************************************************************
 *	   TmToDATE 	[INTERNAL]
 *
 * The date is implemented using an 8 byte floating-point number.
 * Days are represented by whole numbers increments starting with 0.00 has
 * being December 30 1899, midnight.
 * The hours are expressed as the fractional part of the number.
 * December 30 1899 at midnight = 0.00
 * January 1 1900 at midnight = 2.00
 * January 4 1900 at 6 AM = 5.25
 * January 4 1900 at noon = 5.50
 * December 29 1899 at midnight = -1.00
 * December 18 1899 at midnight = -12.00
 * December 18 1899 at 6AM = -12.25
 * December 18 1899 at 6PM = -12.75
 * December 19 1899 at midnight = -11.00
 * The tm structure is as follows:
 * struct tm {
 *		  int tm_sec;	   seconds after the minute - [0,59]
 *		  int tm_min;	   minutes after the hour - [0,59]
 *		  int tm_hour;	   hours since midnight - [0,23]
 *		  int tm_mday;	   day of the month - [1,31]
 *		  int tm_mon;	   months since January - [0,11]
 *		  int tm_year;	   years
 *		  int tm_wday;	   days since Sunday - [0,6]
 *		  int tm_yday;	   days since January 1 - [0,365]
 *		  int tm_isdst;    daylight savings time flag
 *		  };
 *
 * Note: This function does not use the tm_wday, tm_yday, tm_wday,
 * and tm_isdst fields of the tm structure. And only converts years
 * after 1900.
 *
 * Returns TRUE if successful.
 */
static BOOL TmToDATE( struct tm* pTm, DATE *pDateOut )
{
    int leapYear = 0;

    if( (pTm->tm_year - 1900) < 0 ) return FALSE;

    /* Start at 1. This is the way DATE is defined.
     * January 1, 1900 at Midnight is 1.00.
     * January 1, 1900 at 6AM is 1.25.
     * and so on.
     */
    *pDateOut = 1;

    /* Add the number of days corresponding to
     * tm_year.
     */
    *pDateOut += (pTm->tm_year - 1900) * 365;

    /* Add the leap days in the previous years between now and 1900.
     * Note a leap year is one that is a multiple of 4
     * but not of a 100.  Except if it is a multiple of
     * 400 then it is a leap year.
     */
    *pDateOut += ( (pTm->tm_year - 1) / 4 ) - ( 1900 / 4 );
    *pDateOut -= ( (pTm->tm_year - 1) / 100 ) - ( 1900 / 100 );
    *pDateOut += ( (pTm->tm_year - 1) / 400 ) - ( 1900 / 400 );

    /* Set the leap year flag if the
     * current year specified by tm_year is a
     * leap year. This will be used to add a day
     * to the day count.
     */
    if( isleap( pTm->tm_year ) )
        leapYear = 1;

    /* Add the number of days corresponding to
     * the month.
     */
    switch( pTm->tm_mon )
    {
    case 2:
        *pDateOut += 31;
        break;
    case 3:
        *pDateOut += ( 59 + leapYear );
        break;
    case 4:
        *pDateOut += ( 90 + leapYear );
        break;
    case 5:
        *pDateOut += ( 120 + leapYear );
        break;
    case 6:
        *pDateOut += ( 151 + leapYear );
        break;
    case 7:
        *pDateOut += ( 181 + leapYear );
        break;
    case 8:
        *pDateOut += ( 212 + leapYear );
        break;
    case 9:
        *pDateOut += ( 243 + leapYear );
        break;
    case 10:
        *pDateOut += ( 273 + leapYear );
        break;
    case 11:
        *pDateOut += ( 304 + leapYear );
        break;
    case 12:
        *pDateOut += ( 334 + leapYear );
        break;
    }
    /* Add the number of days in this month.
     */
    *pDateOut += pTm->tm_mday;

    /* Add the number of seconds, minutes, and hours
     * to the DATE. Note these are the fracionnal part
     * of the DATE so seconds / number of seconds in a day.
     */
    *pDateOut += pTm->tm_hour / 24.0;
    *pDateOut += pTm->tm_min / 1440.0;
    *pDateOut += pTm->tm_sec / 86400.0;
    return TRUE;
}

/******************************************************************************
 *	   DateToTm 	[INTERNAL]
 *
 * This function converts a windows DATE to a tm structure.
 *
 * It does not fill all the fields of the tm structure.
 * Here is a list of the fields that are filled:
 * tm_sec, tm_min, tm_hour, tm_year, tm_day, tm_mon.
 *
 * Note this function does not support dates before the January 1, 1900
 * or ( dateIn < 2.0 ).
 *
 * Returns TRUE if successful.
 */
static BOOL DateToTm( DATE dateIn, DWORD dwFlags, struct tm* pTm )
{
    double decimalPart = 0.0;
    double wholePart = 0.0;

    /* Do not process dates smaller than January 1, 1900.
     * Which corresponds to 2.0 in the windows DATE format.
     */
    if( dateIn < 2.0 ) return FALSE;

    memset(pTm,0,sizeof(*pTm));

    /* Because of the nature of DATE format which
     * associates 2.0 to January 1, 1900. We will
     * remove 1.0 from the whole part of the DATE
     * so that in the following code 1.0
     * will correspond to January 1, 1900.
     * This simplifies the processing of the DATE value.
     */
    dateIn -= 1.0;

    wholePart = (double) floor( dateIn );
    decimalPart = fmod( dateIn, wholePart );

    if( !(dwFlags & VAR_TIMEVALUEONLY) )
    {
        int nDay = 0;
        int leapYear = 0;
        double yearsSince1900 = 0;
        /* Start at 1900, this is where the DATE time 0.0 starts.
         */
        pTm->tm_year = 1900;
        /* find in what year the day in the "wholePart" falls into.
         * add the value to the year field.
         */
        yearsSince1900 = floor( (wholePart / DAYS_IN_ONE_YEAR) + 0.001 );
        pTm->tm_year += yearsSince1900;
        /* determine if this is a leap year.
         */
        if( isleap( pTm->tm_year ) )
        {
            leapYear = 1;
            wholePart++;
        }

        /* find what day of that year the "wholePart" corresponds to.
         * Note: nDay is in [1-366] format
         */
        nDay = (int) ( wholePart - floor( yearsSince1900 * DAYS_IN_ONE_YEAR ) );
        /* Set the tm_yday value.
         * Note: The day must be converted from [1-366] to [0-365]
         */
        /*pTm->tm_yday = nDay - 1;*/
        /* find which month this day corresponds to.
         */
        if( nDay <= 31 )
        {
            pTm->tm_mday = nDay;
            pTm->tm_mon = 0;
        }
        else if( nDay <= ( 59 + leapYear ) )
        {
            pTm->tm_mday = nDay - 31;
            pTm->tm_mon = 1;
        }
        else if( nDay <= ( 90 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 59 + leapYear );
            pTm->tm_mon = 2;
        }
        else if( nDay <= ( 120 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 90 + leapYear );
            pTm->tm_mon = 3;
        }
        else if( nDay <= ( 151 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 120 + leapYear );
            pTm->tm_mon = 4;
        }
        else if( nDay <= ( 181 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 151 + leapYear );
            pTm->tm_mon = 5;
        }
        else if( nDay <= ( 212 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 181 + leapYear );
            pTm->tm_mon = 6;
        }
        else if( nDay <= ( 243 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 212 + leapYear );
            pTm->tm_mon = 7;
        }
        else if( nDay <= ( 273 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 243 + leapYear );
            pTm->tm_mon = 8;
        }
        else if( nDay <= ( 304 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 273 + leapYear );
            pTm->tm_mon = 9;
        }
        else if( nDay <= ( 334 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 304 + leapYear );
            pTm->tm_mon = 10;
        }
        else if( nDay <= ( 365 + leapYear ) )
        {
            pTm->tm_mday = nDay - ( 334 + leapYear );
            pTm->tm_mon = 11;
        }
    }
    if( !(dwFlags & VAR_DATEVALUEONLY) )
    {
        /* find the number of seconds in this day.
         * fractional part times, hours, minutes, seconds.
         */
        pTm->tm_hour = (int) ( decimalPart * 24 );
        pTm->tm_min = (int) ( ( ( decimalPart * 24 ) - pTm->tm_hour ) * 60 );
        pTm->tm_sec = (int) ( ( ( decimalPart * 24 * 60 ) - ( pTm->tm_hour * 60 ) - pTm->tm_min ) * 60 );
    }
    return TRUE;
}