File: unittest.cpp

package info (click to toggle)
libtcod 1.24.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 5,728 kB
  • sloc: ansic: 46,186; cpp: 13,523; python: 4,814; makefile: 44; sh: 25
file content (321 lines) | stat: -rw-r--r-- 13,346 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#define CATCH_CONFIG_MAIN

#include <libtcod/logging.h>

#include <catch2/catch_all.hpp>
#include <clocale>
#include <cstddef>
#include <iostream>
#include <libtcod.hpp>
#include <libtcod/tileset_fallback.hpp>
#include <limits>
#include <random>
#include <string>
#include <utility>

#include "common.hpp"

/// Captures libtcod log output on tests.
struct HandleLogging : Catch::EventListenerBase {
  using EventListenerBase::EventListenerBase;  // inherit constructor
  /// Register logger before each test.
  void testCaseStarting(Catch::TestCaseInfo const&) override {
    TCOD_set_log_level(TCOD_LOG_DEBUG);
    TCOD_set_log_callback(&catch_log, nullptr);
  }
  static void catch_log(const TCOD_LogMessage* message, void*) {
    INFO("libtcod:" << message->source << ":" << message->lineno << ":" << message->level << ":" << message->message);
  }
};
CATCH_REGISTER_LISTENER(HandleLogging)

std::ostream& operator<<(std::ostream& out, const std::array<ptrdiff_t, 2>& data) {
  return out << '{' << data.at(0) << ',' << ' ' << data.at(1) << '}';
}

TEST_CASE("Pathfinder Benchmarks", "[.benchmark]") {
  const int SIZE = 50;
  BENCHMARK("Classic libtcod A* 50x50") {
    TCOD_Map* map = TCOD_map_new(SIZE, SIZE);
    TCOD_map_clear(map, 1, 1);
    TCOD_Path* astar = TCOD_path_new_using_map(map, 1.0f);
    TCOD_path_compute(astar, 0, 0, SIZE - 1, SIZE - 1);
    TCOD_path_delete(astar);
    TCOD_map_delete(map);
  };
}

TEST_CASE("Fallback font.", "[!mayfail]") { REQUIRE(tcod::tileset::new_fallback_tileset()); }

TEST_CASE("Heap test.") {
  struct TCOD_Heap heap;
  TCOD_heap_init(&heap, sizeof(int));
  std::vector<int> INPUT{0, 1, 2, 3, 4, 5, 6, 7};
  for (int& it : INPUT) {
    TCOD_minheap_push(&heap, it, &it);
  }
  std::vector<int> output;
  while (heap.size) {
    int out;
    TCOD_minheap_pop(&heap, &out);
    output.emplace_back(out);
  }
  REQUIRE(INPUT == output);
  TCOD_heap_uninit(&heap);
}

TEST_CASE("Noise Benchmarks", "[.benchmark]") {
  TCOD_Random* rng = TCOD_random_new_from_seed(TCOD_RNG_MT, 0);
  TCOD_Noise* noise1d = TCOD_noise_new(1, TCOD_NOISE_DEFAULT_HURST, TCOD_NOISE_DEFAULT_LACUNARITY, rng);
  TCOD_Noise* noise2d = TCOD_noise_new(2, TCOD_NOISE_DEFAULT_HURST, TCOD_NOISE_DEFAULT_LACUNARITY, rng);
  TCOD_Noise* noise3d = TCOD_noise_new(3, TCOD_NOISE_DEFAULT_HURST, TCOD_NOISE_DEFAULT_LACUNARITY, rng);
  TCOD_Noise* noise4d = TCOD_noise_new(4, TCOD_NOISE_DEFAULT_HURST, TCOD_NOISE_DEFAULT_LACUNARITY, rng);
  const float POINT[4] = {0.5f, 0.5f, 0.5f, 0.5f};
  (void)!TCOD_noise_get_ex(noise1d, POINT, TCOD_NOISE_WAVELET);  // Pre-generate wavelet data.
  (void)!TCOD_noise_get_ex(noise2d, POINT, TCOD_NOISE_WAVELET);
  (void)!TCOD_noise_get_ex(noise3d, POINT, TCOD_NOISE_WAVELET);
  BENCHMARK("Perlin 1D") { (void)!TCOD_noise_get_ex(noise1d, POINT, TCOD_NOISE_PERLIN); };
  BENCHMARK("Perlin 2D") { (void)!TCOD_noise_get_ex(noise2d, POINT, TCOD_NOISE_PERLIN); };
  BENCHMARK("Perlin 3D") { (void)!TCOD_noise_get_ex(noise3d, POINT, TCOD_NOISE_PERLIN); };
  BENCHMARK("Perlin 4D") { (void)!TCOD_noise_get_ex(noise4d, POINT, TCOD_NOISE_PERLIN); };
  BENCHMARK("Simplex 1D") { (void)!TCOD_noise_get_ex(noise1d, POINT, TCOD_NOISE_SIMPLEX); };
  BENCHMARK("Simplex 2D") { (void)!TCOD_noise_get_ex(noise2d, POINT, TCOD_NOISE_SIMPLEX); };
  BENCHMARK("Simplex 3D") { (void)!TCOD_noise_get_ex(noise3d, POINT, TCOD_NOISE_SIMPLEX); };
  BENCHMARK("Simplex 4D") { (void)!TCOD_noise_get_ex(noise4d, POINT, TCOD_NOISE_SIMPLEX); };
  BENCHMARK("Wavelet 1D") { (void)!TCOD_noise_get_ex(noise1d, POINT, TCOD_NOISE_WAVELET); };
  BENCHMARK("Wavelet 2D") { (void)!TCOD_noise_get_ex(noise2d, POINT, TCOD_NOISE_WAVELET); };
  BENCHMARK("Wavelet 3D") { (void)!TCOD_noise_get_ex(noise3d, POINT, TCOD_NOISE_WAVELET); };

  BENCHMARK("Simplex fbM 1D octaves=4") { (void)!TCOD_noise_get_fbm_ex(noise1d, POINT, 4, TCOD_NOISE_SIMPLEX); };
  BENCHMARK("Simplex fbM 2D octaves=4") { (void)!TCOD_noise_get_fbm_ex(noise2d, POINT, 4, TCOD_NOISE_SIMPLEX); };
  BENCHMARK("Simplex fbM 3D octaves=4") { (void)!TCOD_noise_get_fbm_ex(noise3d, POINT, 4, TCOD_NOISE_SIMPLEX); };
  BENCHMARK("Simplex fbM 4D octaves=4") { (void)!TCOD_noise_get_fbm_ex(noise4d, POINT, 4, TCOD_NOISE_SIMPLEX); };
  BENCHMARK("Simplex turbulence 1D octaves=4") {
    (void)!TCOD_noise_get_turbulence_ex(noise1d, POINT, 4, TCOD_NOISE_SIMPLEX);
  };
  BENCHMARK("Simplex turbulence 2D octaves=4") {
    (void)!TCOD_noise_get_turbulence_ex(noise2d, POINT, 4, TCOD_NOISE_SIMPLEX);
  };
  BENCHMARK("Simplex turbulence 3D octaves=4") {
    (void)!TCOD_noise_get_turbulence_ex(noise3d, POINT, 4, TCOD_NOISE_SIMPLEX);
  };
  BENCHMARK("Simplex turbulence 4D octaves=4") {
    (void)!TCOD_noise_get_turbulence_ex(noise4d, POINT, 4, TCOD_NOISE_SIMPLEX);
  };

  TCOD_noise_delete(noise4d);
  TCOD_noise_delete(noise3d);
  TCOD_noise_delete(noise2d);
  TCOD_noise_delete(noise1d);
  TCOD_random_delete(rng);
}
TEST_CASE("Noise Vectorized Benchmarks", "[.benchmark]") {
  TCOD_Random* rng = TCOD_random_new_from_seed(TCOD_RNG_MT, 0);
  TCOD_Noise* noise1d = TCOD_noise_new(1, TCOD_NOISE_DEFAULT_HURST, TCOD_NOISE_DEFAULT_LACUNARITY, rng);
  TCOD_Noise* noise2d = TCOD_noise_new(2, TCOD_NOISE_DEFAULT_HURST, TCOD_NOISE_DEFAULT_LACUNARITY, rng);
  TCOD_Noise* noise3d = TCOD_noise_new(3, TCOD_NOISE_DEFAULT_HURST, TCOD_NOISE_DEFAULT_LACUNARITY, rng);
  TCOD_Noise* noise4d = TCOD_noise_new(4, TCOD_NOISE_DEFAULT_HURST, TCOD_NOISE_DEFAULT_LACUNARITY, rng);
  constexpr int ARRAY_SIZE = 1024;
  {
    const float POINT[4] = {0.5f, 0.5f, 0.5f, 0.5f};
    (void)!TCOD_noise_get_ex(noise1d, POINT, TCOD_NOISE_WAVELET);  // Pre-generate wavelet data.
    (void)!TCOD_noise_get_ex(noise2d, POINT, TCOD_NOISE_WAVELET);
    (void)!TCOD_noise_get_ex(noise3d, POINT, TCOD_NOISE_WAVELET);
  }
  float x[ARRAY_SIZE];
  float y[ARRAY_SIZE];
  float z[ARRAY_SIZE];
  float w[ARRAY_SIZE];
  float out[ARRAY_SIZE];
  BENCHMARK("Perlin 2Dx256") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[2] = {i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_ex(noise2d, point, TCOD_NOISE_PERLIN);
    }
  };
  BENCHMARK("Perlin 2Dx256 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = i * 0.1f;
    }
    TCOD_noise_get_vectorized(noise2d, TCOD_NOISE_PERLIN, ARRAY_SIZE, x, y, NULL, NULL, out);
  };
  BENCHMARK("Perlin 3Dx256") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[3] = {i * 0.1f, i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_ex(noise3d, point, TCOD_NOISE_PERLIN);
    }
  };
  BENCHMARK("Perlin 3Dx256 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = z[i] = i * 0.1f;
    }
    TCOD_noise_get_vectorized(noise3d, TCOD_NOISE_PERLIN, ARRAY_SIZE, x, y, z, NULL, out);
  };
  BENCHMARK("Perlin 4Dx256") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[4] = {i * 0.1f, i * 0.1f, i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_ex(noise4d, point, TCOD_NOISE_PERLIN);
    }
  };
  BENCHMARK("Perlin 4Dx256 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = z[i] = w[i] = i * 0.1f;
    }
    TCOD_noise_get_vectorized(noise4d, TCOD_NOISE_PERLIN, ARRAY_SIZE, x, y, z, w, out);
  };
  BENCHMARK("Simplex 2Dx256") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[2] = {i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_ex(noise2d, point, TCOD_NOISE_SIMPLEX);
    }
  };
  BENCHMARK("Simplex 2Dx256 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = i * 0.1f;
    }
    TCOD_noise_get_vectorized(noise2d, TCOD_NOISE_SIMPLEX, ARRAY_SIZE, x, y, NULL, NULL, out);
  };
  BENCHMARK("Simplex 3Dx256") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[3] = {i * 0.1f, i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_ex(noise3d, point, TCOD_NOISE_SIMPLEX);
    }
  };
  BENCHMARK("Simplex 3Dx256 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = z[i] = i * 0.1f;
    }
    TCOD_noise_get_vectorized(noise3d, TCOD_NOISE_SIMPLEX, ARRAY_SIZE, x, y, z, NULL, out);
  };
  BENCHMARK("Simplex 4Dx256") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[4] = {i * 0.1f, i * 0.1f, i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_ex(noise4d, point, TCOD_NOISE_SIMPLEX);
    }
  };
  BENCHMARK("Simplex 4Dx256 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = z[i] = w[i] = i * 0.1f;
    }
    TCOD_noise_get_vectorized(noise4d, TCOD_NOISE_SIMPLEX, ARRAY_SIZE, x, y, z, w, out);
  };
  BENCHMARK("Wavelet 2Dx256") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[2] = {i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_ex(noise2d, point, TCOD_NOISE_WAVELET);
    }
  };
  BENCHMARK("Wavelet 2Dx256 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = i * 0.1f;
    }
    TCOD_noise_get_vectorized(noise2d, TCOD_NOISE_WAVELET, ARRAY_SIZE, x, y, NULL, NULL, out);
  };
  BENCHMARK("Wavelet 3Dx256") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[3] = {i * 0.1f, i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_ex(noise3d, point, TCOD_NOISE_WAVELET);
    }
  };
  BENCHMARK("Wavelet 3Dx256 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = z[i] = i * 0.1f;
    }
    TCOD_noise_get_vectorized(noise3d, TCOD_NOISE_WAVELET, ARRAY_SIZE, x, y, z, NULL, out);
  };
  BENCHMARK("Perlin fBm 2Dx256 octaves=4") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[2] = {i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_fbm_ex(noise2d, point, 4, TCOD_NOISE_PERLIN);
    }
  };
  BENCHMARK("Perlin fBm 2Dx256 octaves=4 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = i * 0.1f;
    }
    TCOD_noise_get_fbm_vectorized(noise2d, TCOD_NOISE_PERLIN, 4, ARRAY_SIZE, x, y, NULL, NULL, out);
  };
  BENCHMARK("Perlin turbulence 2Dx256 octaves=4") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      const float point[2] = {i * 0.1f, i * 0.1f};
      (void)!TCOD_noise_get_turbulence_ex(noise2d, point, 4, TCOD_NOISE_PERLIN);
    }
  };
  BENCHMARK("Perlin turbulence 2Dx256 octaves=4 vectorized") {
    for (int i = 0; i < ARRAY_SIZE; ++i) {
      x[i] = y[i] = i * 0.1f;
    }
    TCOD_noise_get_turbulence_vectorized(noise2d, TCOD_NOISE_PERLIN, 4, ARRAY_SIZE, x, y, NULL, NULL, out);
  };
  TCOD_noise_delete(noise4d);
  TCOD_noise_delete(noise3d);
  TCOD_noise_delete(noise2d);
  TCOD_noise_delete(noise1d);
  TCOD_random_delete(rng);
}

static tcod::MapPtr_ new_map_with_radius(int radius, bool start_transparent) {
  int size = radius * 2 + 1;
  tcod::MapPtr_ map{TCOD_map_new(size, size)};
  TCOD_map_clear(map.get(), start_transparent, 0);
  return map;
}
static tcod::MapPtr_ new_empty_map(int radius) { return new_map_with_radius(radius, true); }
static tcod::MapPtr_ new_opaque_map(int radius) { return new_map_with_radius(radius, false); }
static tcod::MapPtr_ new_corridor_map(int radius) {
  tcod::MapPtr_ map{new_map_with_radius(radius, false)};
  for (int i = 0; i < radius * 2 + 1; ++i) {
    TCOD_map_set_properties(map.get(), radius, i, true, true);
    TCOD_map_set_properties(map.get(), i, radius, true, true);
  }
  return map;
}
static tcod::MapPtr_ new_forest_map(int radius) {
  // Forest map with 1 in 4 chance of a blocking tile.
  std::mt19937 rng(0);
  std::uniform_int_distribution<int> chance(0, 3);
  tcod::MapPtr_ map{new_map_with_radius(radius, true)};
  for (int i = 0; i < map->nbcells; ++i) {
    if (chance(rng) == 0) {
      map->cells[i].transparent = false;
    }
  }
  return map;
}
TEST_CASE("FOV Benchmarks", "[.benchmark]") {
  std::array<std::tuple<std::string, tcod::MapPtr_>, 16> test_maps{{
      {"empty_r4", new_empty_map(4)},
      {"empty_r10", new_empty_map(10)},
      {"empty_r50", new_empty_map(50)},
      {"empty_r300", new_empty_map(300)},
      {"opaque_r4", new_opaque_map(4)},
      {"opaque_r10", new_opaque_map(10)},
      {"opaque_r50", new_opaque_map(50)},
      {"opaque_r300", new_opaque_map(300)},
      {"corridor_r4", new_corridor_map(4)},
      {"corridor_r10", new_corridor_map(10)},
      {"corridor_r50", new_corridor_map(50)},
      {"corridor_r300", new_corridor_map(300)},
      {"forest_r4", new_forest_map(4)},
      {"forest_r10", new_forest_map(10)},
      {"forest_r50", new_forest_map(50)},
      {"forest_r300", new_forest_map(300)},
  }};
  for (auto& active_test : test_maps) {
    const std::string& map_name = std::get<0>(active_test);
    TCOD_Map* map = std::get<1>(active_test).get();
    const int radius = TCOD_map_get_width(map) / 2;
    BENCHMARK(map_name + " FOV_BASIC") { (void)!TCOD_map_compute_fov(map, radius, radius, 0, true, FOV_BASIC); };
    BENCHMARK(map_name + " FOV_DIAMOND") { (void)!TCOD_map_compute_fov(map, radius, radius, 0, true, FOV_DIAMOND); };
    BENCHMARK(map_name + " FOV_SHADOW") { (void)!TCOD_map_compute_fov(map, radius, radius, 0, true, FOV_SHADOW); };
    BENCHMARK(map_name + " FOV_RESTRICTIVE") {
      (void)!TCOD_map_compute_fov(map, radius, radius, 0, true, FOV_RESTRICTIVE);
    };
    BENCHMARK(map_name + " FOV_PERMISSIVE_8") {
      (void)!TCOD_map_compute_fov(map, radius, radius, 0, true, FOV_PERMISSIVE_8);
    };
    BENCHMARK(map_name + " FOV_SYMMETRIC_SHADOWCAST") {
      (void)!TCOD_map_compute_fov(map, radius, radius, 0, true, FOV_SYMMETRIC_SHADOWCAST);
    };
  }
}