1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
/*
* Copyright (c) 2010 Jice
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * The name of Jice may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JICE ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL JICE BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <SDL.h>
#include <math.h>
#include <stdio.h>
#include <array>
#include <libtcod.hpp>
#include <libtcod/timer.hpp>
#include <vector>
// gas simulation
// based on Jos Stam, "Real-Time Fluid Dynamics for Games". Proceedings of the Game Developer Conference, March 2003.
// http://www.dgp.toronto.edu/people/stam/reality/Research/pub.html
static constexpr auto WIDTH = 50;
static constexpr auto HEIGHT = 50;
static constexpr auto WIDTHx2 = WIDTH * 2;
static constexpr auto HEIGHTx2 = HEIGHT * 2;
// use square map
static constexpr auto N = std::min(WIDTHx2, HEIGHTx2);
// store a 2D map in a 1D array
static constexpr auto SIZE = (N + 2) * (N + 2);
// convert x,y to array index
constexpr int IX(int x, int y) { return x + (N + 2) * y; }
// 2D velocity maps (current and previous)
static std::array<float, SIZE> u_current, v_current, u_prev, v_prev;
// density maps (current and previous)
static std::array<float, SIZE> dens, dens_prev;
TCODImage img(WIDTHx2, HEIGHTx2);
static constexpr auto VISCOSITY = 1E-6f;
static constexpr auto DIFF = 1E-5f;
static constexpr auto FORCE = 12000.0f;
static constexpr auto SOURCE = 1250000.0f;
static float stepDelay = 0.0f;
static int player_x = N / 4, player_y = N / 4;
// set boundary conditions
void set_bnd(int b, std::array<float, SIZE>& x) {
for (int i = 1; i <= N; ++i) {
// west and east walls
x[IX(0, i)] = b == 1 ? -x[IX(1, i)] : x[IX(1, i)];
x[IX(N + 1, i)] = b == 1 ? -x[IX(N, i)] : x[IX(N, i)];
// boundary doesn't work on north and south walls...
// dunno why...
x[IX(i, 0)] = b == 1 ? -x[IX(i, 1)] : x[IX(i, 1)];
x[IX(i, N + 1)] = b == 1 ? -x[IX(i, N)] : x[IX(i, N)];
}
// boundary conditions at corners
x[IX(0, 0)] = 0.5f * (x[IX(1, 0)] + x[IX(0, 1)]);
x[IX(0, N + 1)] = 0.5f * (x[IX(1, N + 1)] + x[IX(0, N)]);
x[IX(N + 1, 0)] = 0.5f * (x[IX(N, 0)] + x[IX(N + 1, 1)]);
x[IX(N + 1, N + 1)] = 0.5f * (x[IX(N, N + 1)] + x[IX(N + 1, N)]);
}
// update density map according to density sources
// x : density map
// s : density source map
// dt : elapsed time
void add_source(std::array<float, SIZE>& density, const std::array<float, SIZE>& source, float delta) {
for (size_t i = 0; i < source.size(); ++i) {
density[i] += delta * source[i];
}
}
// update density or velocity map for diffusion
// b : boundary width
// x : current density map
// x0 : previous density map
// diff : diffusion coef
// dt : elapsed time
void diffuse(
int b,
std::array<float, SIZE>& density,
const std::array<float, SIZE>& density_prev,
float diffusion_coef,
float delta_time) {
const float a = diffusion_coef * delta_time * N * N;
for (int k = 0; k < 20; ++k) {
for (int i = 1; i <= N; ++i) {
for (int j = 1; j <= N; ++j) {
density[IX(i, j)] = (density_prev[IX(i, j)] + a * (density[IX(i - 1, j)] + density[IX(i + 1, j)] +
density[IX(i, j - 1)] + density[IX(i, j + 1)])) /
(1 + 4 * a);
}
}
set_bnd(b, density);
}
}
// update density map according to velocity map
// b : boundary width
// d : current density map
// d0 : previous density map
// u,v : current velocity map
// dt : elapsed time
void advect(
int b,
std::array<float, SIZE>& density,
const std::array<float, SIZE>& density_prev,
const std::array<float, SIZE>& velocity_u,
const std::array<float, SIZE>& velocity_v,
float delta_time) {
const float dt0 = delta_time * N;
for (int i = 1; i <= N; ++i) {
for (int j = 1; j <= N; ++j) {
float x = i - dt0 * velocity_u[IX(i, j)];
float y = j - dt0 * velocity_v[IX(i, j)];
if (x < 0.5) x = 0.5;
if (x > N + 0.5) x = N + 0.5;
const int i0 = (int)x;
const int i1 = i0 + 1;
if (y < 0.5) y = 0.5;
if (y > N + 0.5) y = N + 0.5;
const int j0 = (int)y;
const int j1 = j0 + 1;
const float s1 = x - i0;
const float s0 = 1 - s1;
const float t1 = y - j0;
const float t0 = 1 - t1;
density[IX(i, j)] = s0 * (t0 * density_prev[IX(i0, j0)] + t1 * density_prev[IX(i0, j1)]) +
s1 * (t0 * density_prev[IX(i1, j0)] + t1 * density_prev[IX(i1, j1)]);
}
}
set_bnd(b, density);
}
void project(
std::array<float, SIZE>& velocity_u,
std::array<float, SIZE>& velocity_v,
std::array<float, SIZE>& p,
std::array<float, SIZE>& div) {
const float h = 1.0f / N;
for (int i = 1; i <= N; ++i) {
for (int j = 1; j <= N; ++j) {
div[IX(i, j)] =
-0.5f * h *
(velocity_u[IX(i + 1, j)] - velocity_u[IX(i - 1, j)] + velocity_v[IX(i, j + 1)] - velocity_v[IX(i, j - 1)]);
p[IX(i, j)] = 0;
}
}
set_bnd(0, div);
set_bnd(0, p);
for (int k = 0; k < 20; ++k) {
for (int i = 1; i <= N; ++i) {
for (int j = 1; j <= N; ++j) {
p[IX(i, j)] = (div[IX(i, j)] + p[IX(i - 1, j)] + p[IX(i + 1, j)] + p[IX(i, j - 1)] + p[IX(i, j + 1)]) / 4;
}
}
set_bnd(0, p);
}
for (int i = 1; i <= N; ++i) {
for (int j = 1; j <= N; ++j) {
velocity_u[IX(i, j)] -= 0.5f * (p[IX(i + 1, j)] - p[IX(i - 1, j)]) / h;
velocity_v[IX(i, j)] -= 0.5f * (p[IX(i, j + 1)] - p[IX(i, j - 1)]) / h;
}
}
set_bnd(1, velocity_u);
set_bnd(2, velocity_v);
}
// do all three density steps
void update_density(
std::array<float, SIZE>& density,
std::array<float, SIZE>& density_prev,
const std::array<float, SIZE>& velocity_u,
const std::array<float, SIZE>& velocity_v,
float diffusion_coef,
float delta_time) {
add_source(density, density_prev, delta_time);
std::swap(density_prev, density);
diffuse(0, density, density_prev, diffusion_coef, delta_time);
std::swap(density_prev, density);
advect(0, density, density_prev, velocity_u, velocity_v, delta_time);
}
void update_velocity(
std::array<float, SIZE>& velocity_u,
std::array<float, SIZE>& velocity_v,
std::array<float, SIZE>& velocity_u_prev,
std::array<float, SIZE>& velocity_v_prev,
float viscosity,
float delta_time) {
add_source(velocity_u, velocity_u_prev, delta_time);
add_source(velocity_v, velocity_v_prev, delta_time);
std::swap(velocity_u_prev, velocity_u);
diffuse(1, velocity_u, velocity_u_prev, viscosity, delta_time);
std::swap(velocity_v_prev, velocity_v);
diffuse(2, velocity_v, velocity_v_prev, viscosity, delta_time);
project(velocity_u, velocity_v, velocity_u_prev, velocity_v_prev);
std::swap(velocity_u_prev, velocity_u);
std::swap(velocity_v_prev, velocity_v);
advect(1, velocity_u, velocity_u_prev, velocity_u_prev, velocity_v_prev, delta_time);
advect(2, velocity_v, velocity_v_prev, velocity_u_prev, velocity_v_prev, delta_time);
project(velocity_u, velocity_v, velocity_u_prev, velocity_v_prev);
}
void init() {
for (auto& it : u_current) it = 0;
for (auto& it : v_current) it = 0;
for (auto& it : u_prev) it = 0;
for (auto& it : v_prev) it = 0;
for (auto& it : dens) it = 0;
for (auto& it : dens_prev) it = 0;
}
void get_from_UI(
std::array<float, SIZE>& density,
std::array<float, SIZE>& velocity_u,
std::array<float, SIZE>& velocity_v,
float delta_time,
tcod::Context& context) {
float vx = 0.0f;
float vy = 0.0f;
const uint8_t* keyboard_state = SDL_GetKeyboardState(nullptr);
stepDelay -= delta_time;
if (stepDelay < 0.0f) {
if ((keyboard_state[SDL_SCANCODE_UP] || keyboard_state[SDL_SCANCODE_W]) && player_y > 0) {
--player_y;
vy -= FORCE;
}
if ((keyboard_state[SDL_SCANCODE_DOWN] || keyboard_state[SDL_SCANCODE_S]) && player_y < N / 2 - 1) {
++player_y;
vx += FORCE;
}
if ((keyboard_state[SDL_SCANCODE_LEFT] || keyboard_state[SDL_SCANCODE_A]) && player_x > 0) {
--player_x;
vx -= FORCE;
}
if ((keyboard_state[SDL_SCANCODE_RIGHT] || keyboard_state[SDL_SCANCODE_D]) && player_x < N / 2 - 1) {
++player_x;
vx += FORCE;
}
stepDelay = 0.2f; // move 5 cells per second
// try to move smoke when you walk inside it. doesn't seem to work...
velocity_u[IX(player_x * 2, player_y * 2)] = 5 * vx;
velocity_v[IX(player_x * 2, player_y * 2)] = 5 * vy;
}
for (int i = 0; i < SIZE; ++i) {
velocity_u[i] = velocity_v[i] = density[i] = 0.0f;
}
int mouse_pixel_x;
int mouse_pixel_y;
uint32_t mouse_buttons = SDL_GetMouseState(&mouse_pixel_x, &mouse_pixel_y);
const auto mouse_tile_xy = context.pixel_to_tile_coordinates(std::array<int, 2>{mouse_pixel_x, mouse_pixel_y});
int subtile_x = mouse_tile_xy.at(0) * 2;
int subtile_y = mouse_tile_xy.at(1) * 2;
if (subtile_x < 1 || subtile_x > N || subtile_y < 1 || subtile_y > N) return;
if (mouse_buttons & SDL_BUTTON_LMASK) {
float dx = (float)(mouse_tile_xy.at(0) - player_x);
float dy = (float)(mouse_tile_xy.at(1) - player_y);
float l = sqrtf(dx * dx + dy * dy);
if (l > 0) {
l = 1.0f / l;
dx *= l;
dy *= l;
velocity_u[IX(player_x * 2, player_y * 2)] += FORCE * dx * delta_time;
velocity_v[IX(player_x * 2, player_y * 2)] += FORCE * dy * delta_time;
density[IX(player_x * 2, player_y * 2)] += SOURCE * delta_time;
}
}
}
void update(float elapsed, tcod::Context& context) {
get_from_UI(dens_prev, u_prev, v_prev, elapsed, context);
update_velocity(u_current, v_current, u_prev, v_prev, VISCOSITY, elapsed);
update_density(dens, dens_prev, u_current, v_current, DIFF, elapsed);
}
static constexpr auto TEXT_COLOR = TCOD_ColorRGB{0, 0, 0};
void render(TCOD_Console& console) {
static constexpr TCODColor deepBlue = {63, 15, 0};
static constexpr TCODColor highBlue = {255, 255, 191};
for (int x = 0; x <= N; ++x) {
for (int y = 0; y <= N; ++y) {
float coef = dens[IX(x, y)] / 128.0f;
coef = CLAMP(0.0f, 1.0f, coef);
img.putPixel(x, y, TCODColor::lerp(deepBlue, highBlue, coef));
}
}
TCOD_image_blit_2x(img.get_data(), &console, 0, 0, 0, 0, -1, -1);
console.at(player_x, player_y).ch = '@';
console.at(player_x, player_y).fg = {0, 0, 0, 255};
}
int main(int argc, char* argv[]) {
// initialize the game window
auto tileset = tcod::load_tilesheet("data/fonts/terminal8x8_gs_tc.png", {32, 8}, tcod::CHARMAP_TCOD);
auto console = tcod::Console{WIDTH, HEIGHT};
TCOD_ContextParams params{};
params.tcod_version = TCOD_COMPILEDVERSION;
params.argc = argc;
params.argv = argv;
params.console = console.get();
params.tileset = tileset.get();
params.window_title = "pyromancer flame spell";
params.sdl_window_flags = SDL_WINDOW_RESIZABLE;
params.vsync = false;
auto context = tcod::Context(params);
bool endCredits = false;
init();
auto timer = tcod::Timer();
int desired_fps = 30;
while (true) {
SDL_Event event;
while (SDL_PollEvent(&event)) {
switch (event.type) {
case SDL_QUIT:
return 0;
case SDL_KEYDOWN:
switch (event.key.keysym.scancode) {
case SDL_SCANCODE_RETURN:
case SDL_SCANCODE_RETURN2:
case SDL_SCANCODE_KP_ENTER:
if (event.key.keysym.mod & KMOD_ALT) {
if (auto window = context.get_sdl_window(); window) {
const uint32_t flags = SDL_GetWindowFlags(window);
if (flags & SDL_WINDOW_FULLSCREEN_DESKTOP) {
SDL_SetWindowFullscreen(window, 0);
} else {
SDL_SetWindowFullscreen(window, SDL_WINDOW_FULLSCREEN_DESKTOP);
}
}
}
break;
case SDL_SCANCODE_F1:
desired_fps = 0;
break;
case SDL_SCANCODE_F2:
desired_fps = 30;
break;
case SDL_SCANCODE_F3:
desired_fps = 60;
break;
default:
break;
}
break;
default:
break;
}
}
// update the game
const float delta_time = timer.sync(desired_fps);
update(delta_time, context);
// render the game screen
render(console);
tcod::print(
console,
{1, HEIGHT - 2 - 6},
tcod::stringf(
"FPS:\n%6.2f mean\n%6.2f median\n%6.2f last\n%6.2f min\n%6.2f max\nlimit (F1=0,F2=30,F3=60): %2i fps",
timer.get_mean_fps(),
timer.get_median_fps(),
timer.get_last_fps(),
timer.get_min_fps(),
timer.get_max_fps(),
desired_fps),
TEXT_COLOR,
{});
tcod::print(console, {5, 49}, "Arrows to move, left mouse button to cast", TEXT_COLOR, std::nullopt);
// render libtcod credits
if (!endCredits) endCredits = TCOD_console_credits_render_ex(console.get(), 4, 4, true, delta_time);
context.present(console);
}
}
|