File: main.cpp

package info (click to toggle)
libtcod 1.24.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,756 kB
  • sloc: ansic: 46,186; cpp: 13,523; python: 4,814; makefile: 44; sh: 25
file content (407 lines) | stat: -rw-r--r-- 14,269 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*
 * Copyright (c) 2010 Jice
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * The name of Jice may not be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY JICE ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL JICE BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include <SDL.h>
#include <math.h>
#include <stdio.h>

#include <array>
#include <libtcod.hpp>
#include <libtcod/timer.hpp>
#include <vector>

// gas simulation
// based on Jos Stam, "Real-Time Fluid Dynamics for Games". Proceedings of the Game Developer Conference, March 2003.
// http://www.dgp.toronto.edu/people/stam/reality/Research/pub.html

static constexpr auto WIDTH = 50;
static constexpr auto HEIGHT = 50;

static constexpr auto WIDTHx2 = WIDTH * 2;
static constexpr auto HEIGHTx2 = HEIGHT * 2;
// use square map
static constexpr auto N = std::min(WIDTHx2, HEIGHTx2);
// store a 2D map in a 1D array
static constexpr auto SIZE = (N + 2) * (N + 2);
// convert x,y to array index
constexpr int IX(int x, int y) { return x + (N + 2) * y; }

// 2D velocity maps (current and previous)
static std::array<float, SIZE> u_current, v_current, u_prev, v_prev;
// density maps (current and previous)
static std::array<float, SIZE> dens, dens_prev;
TCODImage img(WIDTHx2, HEIGHTx2);

static constexpr auto VISCOSITY = 1E-6f;
static constexpr auto DIFF = 1E-5f;
static constexpr auto FORCE = 12000.0f;
static constexpr auto SOURCE = 1250000.0f;
static float stepDelay = 0.0f;

static int player_x = N / 4, player_y = N / 4;

// set boundary conditions
void set_bnd(int b, std::array<float, SIZE>& x) {
  for (int i = 1; i <= N; ++i) {
    // west and east walls
    x[IX(0, i)] = b == 1 ? -x[IX(1, i)] : x[IX(1, i)];
    x[IX(N + 1, i)] = b == 1 ? -x[IX(N, i)] : x[IX(N, i)];
    // boundary doesn't work on north and south walls...
    // dunno why...
    x[IX(i, 0)] = b == 1 ? -x[IX(i, 1)] : x[IX(i, 1)];
    x[IX(i, N + 1)] = b == 1 ? -x[IX(i, N)] : x[IX(i, N)];
  }
  // boundary conditions at corners
  x[IX(0, 0)] = 0.5f * (x[IX(1, 0)] + x[IX(0, 1)]);
  x[IX(0, N + 1)] = 0.5f * (x[IX(1, N + 1)] + x[IX(0, N)]);
  x[IX(N + 1, 0)] = 0.5f * (x[IX(N, 0)] + x[IX(N + 1, 1)]);
  x[IX(N + 1, N + 1)] = 0.5f * (x[IX(N, N + 1)] + x[IX(N + 1, N)]);
}

// update density map according to density sources
// x : density map
// s : density source map
// dt : elapsed time
void add_source(std::array<float, SIZE>& density, const std::array<float, SIZE>& source, float delta) {
  for (size_t i = 0; i < source.size(); ++i) {
    density[i] += delta * source[i];
  }
}

// update density or velocity map for diffusion
// b : boundary width
// x : current density map
// x0 : previous density map
// diff : diffusion coef
// dt : elapsed time
void diffuse(
    int b,
    std::array<float, SIZE>& density,
    const std::array<float, SIZE>& density_prev,
    float diffusion_coef,
    float delta_time) {
  const float a = diffusion_coef * delta_time * N * N;
  for (int k = 0; k < 20; ++k) {
    for (int i = 1; i <= N; ++i) {
      for (int j = 1; j <= N; ++j) {
        density[IX(i, j)] = (density_prev[IX(i, j)] + a * (density[IX(i - 1, j)] + density[IX(i + 1, j)] +
                                                           density[IX(i, j - 1)] + density[IX(i, j + 1)])) /
                            (1 + 4 * a);
      }
    }
    set_bnd(b, density);
  }
}

// update density map according to velocity map
// b : boundary width
// d : current density map
// d0 : previous density map
// u,v : current velocity map
// dt : elapsed time
void advect(
    int b,
    std::array<float, SIZE>& density,
    const std::array<float, SIZE>& density_prev,
    const std::array<float, SIZE>& velocity_u,
    const std::array<float, SIZE>& velocity_v,
    float delta_time) {
  const float dt0 = delta_time * N;
  for (int i = 1; i <= N; ++i) {
    for (int j = 1; j <= N; ++j) {
      float x = i - dt0 * velocity_u[IX(i, j)];
      float y = j - dt0 * velocity_v[IX(i, j)];
      if (x < 0.5) x = 0.5;
      if (x > N + 0.5) x = N + 0.5;
      const int i0 = (int)x;
      const int i1 = i0 + 1;
      if (y < 0.5) y = 0.5;
      if (y > N + 0.5) y = N + 0.5;
      const int j0 = (int)y;
      const int j1 = j0 + 1;
      const float s1 = x - i0;
      const float s0 = 1 - s1;
      const float t1 = y - j0;
      const float t0 = 1 - t1;
      density[IX(i, j)] = s0 * (t0 * density_prev[IX(i0, j0)] + t1 * density_prev[IX(i0, j1)]) +
                          s1 * (t0 * density_prev[IX(i1, j0)] + t1 * density_prev[IX(i1, j1)]);
    }
  }
  set_bnd(b, density);
}

void project(
    std::array<float, SIZE>& velocity_u,
    std::array<float, SIZE>& velocity_v,
    std::array<float, SIZE>& p,
    std::array<float, SIZE>& div) {
  const float h = 1.0f / N;
  for (int i = 1; i <= N; ++i) {
    for (int j = 1; j <= N; ++j) {
      div[IX(i, j)] =
          -0.5f * h *
          (velocity_u[IX(i + 1, j)] - velocity_u[IX(i - 1, j)] + velocity_v[IX(i, j + 1)] - velocity_v[IX(i, j - 1)]);
      p[IX(i, j)] = 0;
    }
  }
  set_bnd(0, div);
  set_bnd(0, p);

  for (int k = 0; k < 20; ++k) {
    for (int i = 1; i <= N; ++i) {
      for (int j = 1; j <= N; ++j) {
        p[IX(i, j)] = (div[IX(i, j)] + p[IX(i - 1, j)] + p[IX(i + 1, j)] + p[IX(i, j - 1)] + p[IX(i, j + 1)]) / 4;
      }
    }
    set_bnd(0, p);
  }

  for (int i = 1; i <= N; ++i) {
    for (int j = 1; j <= N; ++j) {
      velocity_u[IX(i, j)] -= 0.5f * (p[IX(i + 1, j)] - p[IX(i - 1, j)]) / h;
      velocity_v[IX(i, j)] -= 0.5f * (p[IX(i, j + 1)] - p[IX(i, j - 1)]) / h;
    }
  }
  set_bnd(1, velocity_u);
  set_bnd(2, velocity_v);
}

// do all three density steps
void update_density(
    std::array<float, SIZE>& density,
    std::array<float, SIZE>& density_prev,
    const std::array<float, SIZE>& velocity_u,
    const std::array<float, SIZE>& velocity_v,
    float diffusion_coef,
    float delta_time) {
  add_source(density, density_prev, delta_time);
  std::swap(density_prev, density);
  diffuse(0, density, density_prev, diffusion_coef, delta_time);
  std::swap(density_prev, density);
  advect(0, density, density_prev, velocity_u, velocity_v, delta_time);
}

void update_velocity(
    std::array<float, SIZE>& velocity_u,
    std::array<float, SIZE>& velocity_v,
    std::array<float, SIZE>& velocity_u_prev,
    std::array<float, SIZE>& velocity_v_prev,
    float viscosity,
    float delta_time) {
  add_source(velocity_u, velocity_u_prev, delta_time);
  add_source(velocity_v, velocity_v_prev, delta_time);
  std::swap(velocity_u_prev, velocity_u);
  diffuse(1, velocity_u, velocity_u_prev, viscosity, delta_time);
  std::swap(velocity_v_prev, velocity_v);
  diffuse(2, velocity_v, velocity_v_prev, viscosity, delta_time);
  project(velocity_u, velocity_v, velocity_u_prev, velocity_v_prev);
  std::swap(velocity_u_prev, velocity_u);
  std::swap(velocity_v_prev, velocity_v);
  advect(1, velocity_u, velocity_u_prev, velocity_u_prev, velocity_v_prev, delta_time);
  advect(2, velocity_v, velocity_v_prev, velocity_u_prev, velocity_v_prev, delta_time);
  project(velocity_u, velocity_v, velocity_u_prev, velocity_v_prev);
}

void init() {
  for (auto& it : u_current) it = 0;
  for (auto& it : v_current) it = 0;
  for (auto& it : u_prev) it = 0;
  for (auto& it : v_prev) it = 0;
  for (auto& it : dens) it = 0;
  for (auto& it : dens_prev) it = 0;
}

void get_from_UI(
    std::array<float, SIZE>& density,
    std::array<float, SIZE>& velocity_u,
    std::array<float, SIZE>& velocity_v,
    float delta_time,
    tcod::Context& context) {
  float vx = 0.0f;
  float vy = 0.0f;

  const uint8_t* keyboard_state = SDL_GetKeyboardState(nullptr);

  stepDelay -= delta_time;
  if (stepDelay < 0.0f) {
    if ((keyboard_state[SDL_SCANCODE_UP] || keyboard_state[SDL_SCANCODE_W]) && player_y > 0) {
      --player_y;
      vy -= FORCE;
    }
    if ((keyboard_state[SDL_SCANCODE_DOWN] || keyboard_state[SDL_SCANCODE_S]) && player_y < N / 2 - 1) {
      ++player_y;
      vx += FORCE;
    }
    if ((keyboard_state[SDL_SCANCODE_LEFT] || keyboard_state[SDL_SCANCODE_A]) && player_x > 0) {
      --player_x;
      vx -= FORCE;
    }
    if ((keyboard_state[SDL_SCANCODE_RIGHT] || keyboard_state[SDL_SCANCODE_D]) && player_x < N / 2 - 1) {
      ++player_x;
      vx += FORCE;
    }
    stepDelay = 0.2f;  // move 5 cells per second
    // try to move smoke when you walk inside it. doesn't seem to work...
    velocity_u[IX(player_x * 2, player_y * 2)] = 5 * vx;
    velocity_v[IX(player_x * 2, player_y * 2)] = 5 * vy;
  }

  for (int i = 0; i < SIZE; ++i) {
    velocity_u[i] = velocity_v[i] = density[i] = 0.0f;
  }

  int mouse_pixel_x;
  int mouse_pixel_y;
  uint32_t mouse_buttons = SDL_GetMouseState(&mouse_pixel_x, &mouse_pixel_y);
  const auto mouse_tile_xy = context.pixel_to_tile_coordinates(std::array<int, 2>{mouse_pixel_x, mouse_pixel_y});

  int subtile_x = mouse_tile_xy.at(0) * 2;
  int subtile_y = mouse_tile_xy.at(1) * 2;
  if (subtile_x < 1 || subtile_x > N || subtile_y < 1 || subtile_y > N) return;

  if (mouse_buttons & SDL_BUTTON_LMASK) {
    float dx = (float)(mouse_tile_xy.at(0) - player_x);
    float dy = (float)(mouse_tile_xy.at(1) - player_y);
    float l = sqrtf(dx * dx + dy * dy);
    if (l > 0) {
      l = 1.0f / l;
      dx *= l;
      dy *= l;
      velocity_u[IX(player_x * 2, player_y * 2)] += FORCE * dx * delta_time;
      velocity_v[IX(player_x * 2, player_y * 2)] += FORCE * dy * delta_time;
      density[IX(player_x * 2, player_y * 2)] += SOURCE * delta_time;
    }
  }
}

void update(float elapsed, tcod::Context& context) {
  get_from_UI(dens_prev, u_prev, v_prev, elapsed, context);
  update_velocity(u_current, v_current, u_prev, v_prev, VISCOSITY, elapsed);
  update_density(dens, dens_prev, u_current, v_current, DIFF, elapsed);
}

static constexpr auto TEXT_COLOR = TCOD_ColorRGB{0, 0, 0};

void render(TCOD_Console& console) {
  static constexpr TCODColor deepBlue = {63, 15, 0};
  static constexpr TCODColor highBlue = {255, 255, 191};
  for (int x = 0; x <= N; ++x) {
    for (int y = 0; y <= N; ++y) {
      float coef = dens[IX(x, y)] / 128.0f;
      coef = CLAMP(0.0f, 1.0f, coef);
      img.putPixel(x, y, TCODColor::lerp(deepBlue, highBlue, coef));
    }
  }
  TCOD_image_blit_2x(img.get_data(), &console, 0, 0, 0, 0, -1, -1);

  console.at(player_x, player_y).ch = '@';
  console.at(player_x, player_y).fg = {0, 0, 0, 255};
}

int main(int argc, char* argv[]) {
  // initialize the game window
  auto tileset = tcod::load_tilesheet("data/fonts/terminal8x8_gs_tc.png", {32, 8}, tcod::CHARMAP_TCOD);
  auto console = tcod::Console{WIDTH, HEIGHT};
  TCOD_ContextParams params{};
  params.tcod_version = TCOD_COMPILEDVERSION;
  params.argc = argc;
  params.argv = argv;
  params.console = console.get();
  params.tileset = tileset.get();
  params.window_title = "pyromancer flame spell";
  params.sdl_window_flags = SDL_WINDOW_RESIZABLE;
  params.vsync = false;

  auto context = tcod::Context(params);

  bool endCredits = false;
  init();

  auto timer = tcod::Timer();
  int desired_fps = 30;

  while (true) {
    SDL_Event event;
    while (SDL_PollEvent(&event)) {
      switch (event.type) {
        case SDL_QUIT:
          return 0;
        case SDL_KEYDOWN:
          switch (event.key.keysym.scancode) {
            case SDL_SCANCODE_RETURN:
            case SDL_SCANCODE_RETURN2:
            case SDL_SCANCODE_KP_ENTER:
              if (event.key.keysym.mod & KMOD_ALT) {
                if (auto window = context.get_sdl_window(); window) {
                  const uint32_t flags = SDL_GetWindowFlags(window);
                  if (flags & SDL_WINDOW_FULLSCREEN_DESKTOP) {
                    SDL_SetWindowFullscreen(window, 0);
                  } else {
                    SDL_SetWindowFullscreen(window, SDL_WINDOW_FULLSCREEN_DESKTOP);
                  }
                }
              }
              break;
            case SDL_SCANCODE_F1:
              desired_fps = 0;
              break;
            case SDL_SCANCODE_F2:
              desired_fps = 30;
              break;
            case SDL_SCANCODE_F3:
              desired_fps = 60;
              break;
            default:
              break;
          }
          break;
        default:
          break;
      }
    }
    // update the game
    const float delta_time = timer.sync(desired_fps);
    update(delta_time, context);
    // render the game screen
    render(console);
    tcod::print(
        console,
        {1, HEIGHT - 2 - 6},
        tcod::stringf(
            "FPS:\n%6.2f mean\n%6.2f median\n%6.2f last\n%6.2f min\n%6.2f max\nlimit (F1=0,F2=30,F3=60): %2i fps",
            timer.get_mean_fps(),
            timer.get_median_fps(),
            timer.get_last_fps(),
            timer.get_min_fps(),
            timer.get_max_fps(),
            desired_fps),
        TEXT_COLOR,
        {});
    tcod::print(console, {5, 49}, "Arrows to move, left mouse button to cast", TEXT_COLOR, std::nullopt);
    // render libtcod credits
    if (!endCredits) endCredits = TCOD_console_credits_render_ex(console.get(), 4, 4, true, delta_time);
    context.present(console);
  }
}