1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
|
package Test::LectroTest::Generator;
{
$Test::LectroTest::Generator::VERSION = '0.5001';
}
use strict;
use warnings;
use Carp;
BEGIN {
use Exporter ();
our ($VERSION, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);
my @gens = qw( &Int &Bool &Char &String &List &Hash
&Float &Elements &Unit );
my @combs = qw( &Paste &OneOf &Frequency &Sized &Each
&Apply &Map
&Concat &Flatten &ConcatMap &FlattenMap );
my @specials = qw( &Gen) ;
@ISA = qw(Exporter);
@EXPORT = ();
@EXPORT_OK = ( @gens, @combs, @specials);
%EXPORT_TAGS = ( common => [@gens]
, combinators => [@combs]
, all => [@gens, @combs, @specials] );
}
our @EXPORT_OK;
=head1 NAME
Test::LectroTest::Generator - Random value generators and combinators
=head1 VERSION
version 0.5001
=head1 SYNOPSIS
use Test::LectroTest::Generator qw(:common :combinators);
my $int_gen = Int;
my $pct_gen = Int( range=>[0,100] );
my $flt_gen = Float( range=>[0,1] );
my $bln_gen = Bool;
my $chr_gen = Char( charset=>"a-z" );
my $str_gen = String( charset=>"A-Z0-9", length=>[3,] );
my $ary_gen = List( Int(sized=>0) );
my $hsh_gen = Hash( $str_gen, $pct_gen );
my $uni_gen = Unit( "e" ); # always returns "e"
my $elm_gen = Elements("e1", "e2", "e3", "e4");
for my $sizing_guidance (1..100) {
my $i = $int_gen->generate( $sizing_guidance );
print "$i ";
}
print "\n";
# generates single digits
my $digit_gen = Elements( 0..9 ); # or Int(range=>[0,9],sized=>0)
# generates SSNs like "910-77-2236"
my $ssn_gen = Paste( Paste( ($digit_gen) x 3 ),
Paste( ($digit_gen) x 2 ),
Paste( ($digit_gen) x 4 ),
glue => "-" );
# print 10 SSNs
print( map {$ssn_gen->generate($_)."\n"} 1..10 );
my $english_dist_vowel_gen =
Frequency( [8.167,Unit("a")], [12.702,Unit("e")],
[6.996,Unit("i")], [ 7.507,Unit("o")],
[2.758,Unit("u")] );
# Source: http://www.csm.astate.edu/~rossa/datasec/frequency.html
=head1 DESCRIPTION
This module provides random value generators for common data types and
provides an interface and tools for creating your own generators. It
also provides generator combinators that can be used to create
more-complex generators by combining simple ones.
A generator is an object having a method C<generate>, which takes a
single argument, I<size> and returns a new random value. The
generated value is always a scalar. Generators that produce data
structures return references to them.
=head2 Sizing guidance
The C<generate> method interprets its I<size> argument as guidance
about the complexity of the value it should create. Typically,
smaller I<size> values result in smaller generated numbers and shorter
generated strings and lists. Some generators, for which sizing
doesn't make sense, ignore sizing guidance altogether; those that do
use sizing guidance can be told to ignore it via the B<sized>
modifier.
The purpose of sizing is to allow LectroTest to generate simple values
at first and then, as testing progresses, to slowly ramp up the
complexity. In this way, counterexamples for obvious problems
will be easier for you to understand.
=cut
#==============================================================================
# modifier defaults
our %defaults = (
Int => { range => [-32768 , 32767 ], sized => 1 },
Float => { range => [-32768.0, 32767.0], sized => 1 },
List => { length => undef },
Char => { charset => "\x00-\x7f", },
String => { },
Paste => { glue => "" },
);
#==============================================================================
# methods
sub new {
my $class = shift;
return bless { @_ }, $class;
}
sub generate {
my ($self, $size) = @_;
return scalar $self->{generator}->($size);
}
#==============================================================================
# helpers
sub _defargs {
my $gen_name = shift;
shift while ref($_[0]); # skip template, if any
return { %{$defaults{$gen_name}}, @_ };
}
sub _template {
my $tmpl = [];
push @$tmpl, shift while ref($_[0]);
return $tmpl;
}
#==============================================================================
# plain old functions
sub Gen(&) {
my ($genfn) = @_;
return Test::LectroTest::Generator->new(generator=>$genfn);
}
=pod
=head2 Generators
The following functions create fully-formed generators, ready to use.
These functions are exported into your code's namespace if you ask for
C<:generators> or C<:all> when you C<use> this module.
Each generator has a C<generate> method that you can call to extract
a new, random value from the generator.
=over 4
=item Int
my $gen = Int( range=>[0,9], sized=>0 );
Creates a generator for integer values, by default in the range [-32768,32767],
inclusive, but this can be changed via the optional B<range> modifier.
=over 4
=item Int( range=>[I<low>, I<high>] )
Causes the generated values to be constrained to the range [I<low>,
I<high>], inclusive. By default, the range is [-32768, 32767].
B<Note:> If your range is empty (i.e., I<low> E<gt> I<high>),
LectroTest will complain.
B<Note:> If zero is not within the range you provide, sizing makes no
sense because the intersection of your range and the sizing range can
be empty, and thus you must turn off sizing with C<sized=E<gt>0>.
If you forget, LectroTest will complain.
=item Int( sized=>I<bool> )
If true (the default), constrains the absolute value of the generated
integers to the sizing guidance provided to the C<generate> method.
Otherwise, the generated values are constrained only by the range.
=back
=cut
sub Int(@) {
my $args = _defargs("Int", @_);
my ($sized, $rlo, $rhi) = ($args->{sized}, map int, @{$args->{range}});
croak "range=>[$rlo,$rhi] is empty" if $rlo > $rhi;
if (!$sized) {
# if unsized, use this simpler generator
my $span = $rhi - $rlo + 1;
return Gen {
return $rlo + int(rand($span));
};
}
# otherwise, provide a sizing-capable generator
croak "the given range=>[$rlo,$rhi] does not contain zero "
. "and cannot be used with a sized generator"
if 0 < $rlo || 0 > $rhi;
return Gen {
my ($lo, $hi) = ($rlo, $rhi);
my $size = shift;
if (defined $size) {
$size = int( $size + 0.5 );
$lo = -$size if -$size > $lo;
$hi = $size if $size < $hi;
}
return $lo + int(rand($hi - $lo + 1));
};
}
=pod
=item Float
my $gen = Float( range=>[-2.0,2.0], sized=>1 );
Creates a generator for floating-point values, by default in the range
[-32768.0,32768.0), but this can be changed via the optional B<range> modifier.
By default Float generators are sized.
=over 4
=item Float( range=>[I<low>, I<high>] )
Causes the generated values to be constrained to the range [I<low>,
I<high>). By default, the range is [-32768.0,32768.0). (Note that
the I<high> value itself can never be generated, but values
infinitesimally close to it can.)
B<Note:> If your range is empty (i.e., I<low> E<gt> I<high>),
LectroTest will complain.
B<Note:> If zero is not within the range you provide, sizing makes no
sense because the intersection of your range and the sizing range can
be empty, and thus you must turn off sizing with C<sized=E<gt>0>.
If you forget, LectroTest will complain.
=item Float( sized=>I<bool> )
If true (the default), constrains the absolute value of the generated
values to the sizing guidance provided to the C<generate> method.
Otherwise, the generated values are constrained only by the range.
=back
=cut
sub Float(@) {
my $args = _defargs("Float", @_);
my ($sized, $rlo, $rhi) = ($args->{sized}, @{$args->{range}});
croak "range=>[$rlo,$rhi] is empty" if $rlo > $rhi;
if (!$sized) {
# if unsized, use this simpler generator
my $span = $rhi - $rlo;
return Gen {
return $rlo + rand($span);
};
}
# otherwise, provide a sizing-capable generator
croak "the given range [$rlo,$rhi] does not contain zero "
. "and cannot be used with a sized generator"
if $rlo > 0 || 0 > $rhi;
return Gen {
my ($lo, $hi) = ($rlo, $rhi);
my $size = shift;
if (defined $size) {
$lo = -$size if -$size > $lo;
$hi = $size if $size < $hi;
}
return $lo + rand($hi - $lo);
};
}
=pod
=item Bool
my $gen = Bool;
Creates a generator for boolean values: 0 for false, 1 for true.
The generator ignores sizing guidance.
=cut
sub Bool(@) {
return Int( @_, range=>[0,1], sized=>0 );
}
=pod
=item Char
my $gen = Char( charset=>"A-Za-z0-9_" );
Creates a generator for characters. By default the characters are in
the ASCII range [0,127], inclusive, but this behavior can be changed
with the B<charset> modifier:
=over 4
=item Char( charset=>I<cset> )
Characters will be drawn from the character set given by the
character-set specification I<cset>. The syntax of I<cset> is
similar the Perl C<tr> built-in and is a string comprised of
characters and character ranges:
=over 4
=item I<c>
Adds the character I<c> to the set.
=item I<c>-I<d>
Adds the characters in the range I<c> through I<d> (inclusive) to the
set. Note: If I<c> is lexicographically greater than I<d>, the range
is empty, and no characters will be added to the set.
=back
Examples:
=over 4
=item charset=>"abcdwxyz"
The characters "a", "b", "c", "d", "w", "x", "y", and "z" are in the set.
=item charset=>"a-dx-z"
Shorter version of the previous example.
=item charset=>"\x00-\x7f"
The ASCII character set.
=item charset=>"-_A-Za-z0-9"
The character set contains "-", "_", upper- and lower-case
ASCII letters, and the digits 0-9. Notice that the dash must
occur first so that it is not misinterpreted as denoting
a range of characters.
=back
=back
=cut
sub _to_range($) {
my ($lo, $hi) = @{shift()}[0,1];
[ map {chr} ord$lo .. ord $hi ]
}
sub _parse_charset($) {
local ($_) = @_;
my @ranges;
while (/(.)(?:-(.))?/sg) {
push @ranges, [$1, defined $2 ? $2 : $1];
}
[ sort keys %{{ map {($_,1)} map {@{_to_range($_)}} @ranges }} ]
}
sub Char(@) {
my $cset = _defargs("Char", @_)->{charset};
return Elements( @{ _parse_charset($cset) } )
}
=pod
=item List(I<elemgen>)
my $gen = List( Bool, length=>[1,10] );
Creates a generator for lists (which are returned as array refs). The
elements of the lists are generated by the generator given as
I<elemgen>. The lengths of the generated lists are constrained by
sizing guidance at the time of generation. You can override the
default sizing behavior using the optional B<length> modifier:
When the list generator calls the element generator, it divides the
sizing guidance by the length of the list. For example, if the list
being generated will have 7 elements, when the list generator calls
the element generator to generate each element, it will scale the
sizing guidance by 1/7. In this way the sizing guidance provides
a rough constraint on the total number of elements produced,
regardless of the depth of the list structure being generated.
=over 4
=item List( ..., length=>I<N> )
Generated lists are exactly length I<N>.
=item List( ..., length=>[I<M>,] )
Generated lists are at least length I<M>. (Maximum length is
constrained by sizing factor.)
=item List( ..., length=>[I<M>,I<N>] )
Generated lists are of length between I<M> and I<N>, inclusive.
Sizing guidance is ignored.
=back
B<Advanced Note:> If more than one I<elemgen> is given, they will be
used in turn to create successive elements. In this case, the length
of the list will be multiplied by the number of generators given. For
example, providing two generators will create double-length lists.
=cut
sub List(@) {
my $template = _template(@_);
my $builder = sub {
my ($len, $size) = @_;
my $subsize = defined $size ? $size / ($len+1) : 1;
my @list;
foreach (1..$len) {
foreach my $generator (@$template) {
push @list, $generator->generate($subsize);
}
}
return \@list;
};
# return generator customized for length specification
my $lenspec = _defargs("List", @_)->{length};
# case 0: length=>undef
if ( ! defined $lenspec ) {
$lenspec = [0,]; # convert into case 2
}
# case 1: length=>N
if ( ! ref($lenspec) ) {
my $n = $lenspec;
croak "length=>$n can't be < 0" if $n < 0;
return Gen {
return $builder->($lenspec, @_);
}
}
# case 2: length=>[M,]
elsif ( ref($lenspec) eq 'ARRAY' && @$lenspec == 1 ) {
my ($m) = @$lenspec;
croak "length=>[$m,] can't be < 0" if $m < 0;
return Gen {
my ($size) = @_;
return $builder->( $m >= $size
? $m
: $m + int(rand($size - $m + 1)),
@_);
};
}
# case 3: length=>[M,N]
elsif ( ref($lenspec) eq 'ARRAY' && @$lenspec == 2 ) {
my ($m,$n) = @$lenspec;
croak "length=>[$m,$n]) is invalid" if $m > $n || $m < 0;
return Gen {
return $builder->( $m + int(rand($n - $m + 1)), @_ )
};
}
# case 4: bad length specification
else {
croak "length specification length=>$lenspec is bad";
}
}
=pod
=item Hash(I<keygen>, I<valgen>)
my $gen = Hash( String( charset=>"A-Z", length=>3 ),
Float( range=>[0.0, 100.0] );
Creates a generator for hashes (which are returned as hash refs). The
keys of the hash are generated by the generator given as I<keygen>,
and the values are generated by the generator I<valgen>.
The Hash generator takes an optional B<length> modifier that
specifies the desired hash length (= number of keys):
=over 4
=item Hash( ..., length=>I<length-spec> )
Specifies the desired length of the generated hashes, using the same
I<length-spec> syntax as for the List generator. Note that the
generated hashes may be smaller than expected because of key
collision.
=back
=cut
sub Hash(@) {
croak "Hash(keygen,valgen,...) requires two generators"
unless @{_template(@_)} == 2;
my $listgen = List(@_);
return Gen {
return { @{$listgen->generate(@_)} }
};
}
=pod
=item String
my $gen = String( length=>[3,], charset=>"A-Z" );
Creates a generator for strings. By default the strings will
be drawn from the ASCII character set (0 through 127) and
be of length constrained by the sizing factor. Both defaults
can be changed using modifiers:
=over 4
=item String( charset=>I<cset> )
Characters will be drawn from the character set given by the
character-set specification I<cset>. The syntax of I<cset> is
similar the Perl C<tr> operator and is a string comprised of
characters and character ranges. See Char for a full
description.
=item String( length=>I<length-spec> )
Specifies the desired length of generated strings, using the same
I<length-spec> syntax as for the List generator.
=back
=cut
sub String(@) {
my $args = _defargs("String", @_);
my ($cset, $length) = @$args{qw(charset length)};
my $lcgen = List(Char(defined $cset ? (charset=>$cset) : ()),
defined $length ? (length=>$length) : ());
return Gen {
join "", @{$lcgen->generate(@_)};
}
}
=pod
=item Elements(I<e1>, I<e2>, ...)
my $gen = Elements( "alpha", "beta", "gamma" );
Creates a generator that chooses among the given elements I<e1>, I<e2>,
... with equal probability. Each call to the C<generate> method will
return one of the element values. Sizing guidance has no effect on
this generator.
B<Note:> This generator builder does not accept modifiers. If you
pass any, they will be interpreted as elements to be added to the pool
from which the generator randomly selects, which is probably not
what you want.
=cut
sub Elements(@) {
croak "Elements(e...) must be given at least one element" unless @_;
return OneOf( map {Unit($_)} @_ );
}
=pod
=item Unit(I<e>)
my $gen = Unit( "alpha" );
Creates a generator that always returns the value I<e>. Not too
useful on its own but can be handy as a building block for combinators
to chew on. Naturally, sizing guidance has no effect on this
generator.
B<Note:> This generator builder does not accept modifiers.
=cut
sub Unit($) {
my ($e) = @_;
return Gen {
return $e;
}
}
=pod
=back
=head2 Generator combinators
The following combinators allow you to build more complicated
generators from simpler ones. These combinators are exported into
your code's namespace if you ask for C<:combinators> or C<:all> when
you C<use> this module.
=over 4
=item Paste(I<gens>..., glue=>I<str>)
my $gen = Paste( (String(charset=>"0-9",length=>4)) x 4,
glue => " " );
# gens credit-card numbers like "4592 9459 9023 1369"
my $lgen = Paste( List( String(charset=>"0-9",length=>4)
, length=>4 ), glue => " " );
# another way of doing the same
Creates a combined generator that generates values by joining the
values generated by each of the supplied sub-generators I<gens>.
(Generated list values will have their elements "flattened" into the
rest of the generated results before joining.) The resulting string is
returned.
The values are joined using the given glue string I<str>. If no
B<glue> modifier is provided, the default glue is the empty string.
The sizing guidance given to the combined generator will
be passed unchanged to each of the sub-generators.
=cut
sub Paste(@) {
my @gens = @{_template(@_)};
my $glue = _defargs("Paste", @_)->{glue};
Apply( sub { join $glue, map @$_, @_ }, Flatten(@gens) );
}
=pod
=item OneOf(I<gens>...)
my $gen = OneOf( Unit(0), List(Int,length=>3) );
# generates scalar 0 or a 3-element list of integers
Creates a combined generator that generates each value by selecting at
random (with equal probability) one of the sub-generators in I<gens>
and using that generator to generate the output value.
The sizing guidance given to the combined generator will be passed
unchanged to the selected sub-generator.
B<Note:> This combinator does not accept modifiers.
=cut
sub OneOf(@) {
my $gens = \@_;
my $igen = Int(sized=>0,range=>[0, @_-1]);
return Gen {
return $gens->[$igen->generate]->generate(@_);
}
}
=pod
=item Frequency([I<freq1>, I<gen1>], [I<freq2>, I<gen2>], ...)
my $gen = Frequency( [50, Unit("common" )],
[35, Unit("less common")],
[15, Unit("uncommon" )] );
# generates one of "common", "less common", or
# "uncommon" with respective probabilities
# 50%, 35%, and 15%.
Creates a combined generator that generates each value by selecting at
random one of the generators I<gen1> or I<gen2> or ... and using that
generator to generate the output value. Each generator is selected
with probability proportional to its associated frequency. (If all of
the given frequencies are the same, the Frequency combinator
effectively becomes OneOf.) The frequencies can be any non-negative
numerical values you want and will be normalized to a 0-to-1 scale
internally. At least one frequency must be greater than zero.
The sizing guidance given to the combined generator will be passed
unchanged to the selected sub-generator.
B<Note:> This combinator does not accept modifiers.
=cut
sub Frequency(@) {
my @freqs = map {$_->[0]} @_;
my @gens = map {$_->[1]} @_;
if ((my @baddies = grep {$_ < 0} @freqs)) {
croak "frequencies must be non-negative; got $baddies[0]";
}
my $total = 0;
$total += $_ foreach @freqs;
unless ($total) {
croak "at least one frequency must be greater than zero";
}
@freqs = map {$_/$total} @freqs; # normalize to [0,1] scale
$total = 0;
$_ = $total += $_ for (@freqs); # turn into cumulative freqs
$freqs[-1] = 1; # just in case of round-off error
return Gen {
my $r = rand;
my $i = 0;
$i++ while $freqs[$i] < $r;
return $gens[$i]->generate(@_);
}
}
=pod
=item Each(I<gens>...)
my $gen = Each( Unit(1), Unit("X") );
# always generates [ 1, "X" ]
Creates a generator that returns a list (array ref) whose
successive elements are the successive values generated
by the given generators I<gens>.
The sizing guidance given to the combined generator will be passed
unchanged to each sub-generator.
B<Note:> This combinator does not accept modifiers.
(Note for technical buffs: C<Each(...)> is exactly equivalent to
C<List(..., length=E<gt>1)>).
=cut
sub Each(@) {
return List( @_, length=>1 );
}
=pod
=item Apply(I<fn>, I<gens>...)
my $gen = Apply( sub { $_[0] x $_[1] }
, Unit("X"), Unit(4) );
# always generates "XXXX"
Creates a generator that applies the given function I<fn> to arguments
generated from each of the given sub-generators I<gens> and returns
the resulting value. Each sub-generator contributes one value, and
the values are passed to I<fn> as arguments in the same order as the
sub-generators were given to Apply.
The sizing guidance given to the combined generator will be passed
unchanged to each sub-generator.
B<Note:> The function I<fn> is always evaluated in scalar context.
If you need to generate an array, return it as an array reference.
B<Note:> This combinator does not accept modifiers.
=cut
sub Apply(&@) {
my $f = shift;
my $g = Each( @_ );
return Gen {
scalar $f->( @{$g->generate(@_)} )
};
}
=pod
=item Map(I<fn>, I<gens>...)
my $gen = Map( sub { "X" x $_[0] }
, Unit(4), Unit(3), Unit(0) );
# always generates [ "XXXX", "XXX", "" ]
Creates a generator that applies the given function I<fn> to the
values generated by the given generators I<gen> one at a time and
returns a list (array ref) whose elements are each of the successive
results.
The sizing guidance given to the combined generator will be passed
unchanged to each sub-generator.
B<Note:> The function I<fn> is always evaluated in scalar context.
If you need to generate an array, return it as an array reference.
B<Note:> This combinator does not accept modifiers.
=cut
sub _Map {
my $f = shift;
my $g = Each( @_ );
return Gen {
[ map { scalar $f->($_) } @{ $g->generate(@_) } ]
};
}
sub Map(&@) {
_Map(@_);
}
=pod
=item Concat(I<gens>...)
my $gen = Concat( List( Unit(1), length=>3 )
, List( Unit("x"), length=>1 ) );
# always generates [1, 1, 1, "x"]
Creates a generator that concatenates the values generated by each of
its sub-generators, resulting in a list (which is returned as a array
reference). The values returned by the sub-generators are expected to
be lists (array refs). If a sub-generator returns a scalar value, it
will be treated like a single-element list that contains the value.
The sizing guidance given to the combined generator will be passed
unchanged to each sub-generator.
B<Note:> If a sub-generator returns something other than a list or
scalar, you will get a run-time error.
B<Note:> This combinator does not accept modifiers.
=cut
# we'll use this helper in Flatten and ConcatMap (and Paste)
sub _concat(@) {
[ map { ref($_) ? @{$_} : ($_) } @_ ];
}
sub Concat(@) {
Apply( \&_concat, @_ );
}
=pod
=item Flatten(I<gens>...)
my $gen = Flatten( Unit( [[[[[[ 1 ]]]]]] ) );
# generates [1]
Flatten is just like Concat except that it recursively flattens any
sublists generated by the generators I<gen> and then concatenates them
to generate a final a list of depth one, regardless of the depth
of any sublists.
The sizing guidance given to the combined generator will be passed
unchanged to each sub-generator.
B<Note:> If a sub-generator returns something other than a list or
scalar, you will get a run-time error.
B<Note:> This combinator does not accept modifiers.
=cut
sub _flatten(@);
sub _flatten(@) {
_concat map { ref($_) ? _flatten(@$_) : ($_) } @_ ;
}
sub Flatten(@) {
Apply( \&_flatten, @_ );
}
=pod
=item ConcatMap(I<fn>, I<gens>)
sub take_odds { my $x = shift;
$x % 2 ? [$x] : [] }
my $gen = ConcatMap( \&take_odds
, Unit(1), Unit(2), Unit(3) );
# generates [1, 3]
Creates a generator that applies the function I<fn> to each of the
values generated by the given generators I<gen> in turn, and then
concatenates the results.
The sizing guidance given to the combined generator will be passed
unchanged to each sub-generator.
B<Note:> The function I<fn> is always evaluated in scalar context.
If you need to generate an array, return it as an array reference.
B<Note:> If a sub-generator returns something other than a list or
scalar, you will get a run-time error.
B<Note:> This combinator does not accept modifiers.
=cut
sub ConcatMap(&@) {
my $g = _Map( @_ );
return Gen {
_concat @{ $g->generate( @_ ) };
};
}
=pod
=item FlattenMap(I<fn>, I<gens>)
my $gen = FlattenMap( sub { [ ($_[0]) x 3 ] }
, Unit([1]), Unit([[2]]) );
# generates [1, 1, 1, 2, 2, 2]
Creates a generator that applies the function I<fn> to each of the
values generated by the given generators I<gen> in turn, and then
flattens and concatenates the results.
The sizing guidance given to the combined generator will be passed
unchanged to each sub-generator.
B<Note:> The function I<fn> is always evaluated in scalar context.
If you need to generate an array, return it as an array reference.
B<Note:> If a sub-generator returns something other than a list or
scalar, you will get a run-time error.
B<Note:> This combinator does not accept modifiers.
=cut
sub FlattenMap(&@) {
my $g = _Map( @_ );
return Gen {
_flatten @{ $g->generate( @_ ) };
};
}
=pod
=item Sized(I<fn>, I<gen>)
my $gen = Sized { 2 * $_[0] } List(Int);
# ^ magnify sizing guidance by factor of two
my $gen2 = Sized { 10 } Int;
# ^ use constant guidance of 10
Creates a generator that adjusts sizing guidance by passing it through
the function I<fn>. Then it calls the generator I<gen> with the
adjusted guidance and returns the result.
B<Note:> This combinator does not accept modifiers.
=cut
sub Sized(&$) {
my ($sizer, $gen) = @_;
return Gen {
return $gen->generate($sizer->(@_));
};
}
=pod
=back
=head2 Rolling your own generators
You can create your own generators by creating any object that
has a C<generate> method. Your method should accept as its
first argument sizing guidance I<size> and, if it makes sense,
adjust the complexity of the values it generates accordingly.
The easiest way to create a generator is by using the magic function
C<Gen>. It promotes a block of code into a generator. For example,
here's a home-brew generator for times in ctime(3) format that
is built on top of an Int generator:
use Test::LectroTest::Generator qw( :common Gen );
my $time_gen = Int(range=>[0, 2_147_483_647], sized=>0);
my $ctime_gen = Gen {
scalar localtime $time_gen->generate( @_ );
};
print($ctime_gen->generate($_), "\n") for 1..5;
# Fri Jun 2 18:13:21 1978
# Thu Mar 28 00:55:51 1974
# Wed Mar 26 06:41:09 2025
# Sun Sep 11 15:39:44 2016
# Fri Dec 26 00:39:31 1975
Alternatively, we could build the generator using the Apply
combinator:
my $ctime_gen2 = Apply { localtime $_[0] } $time_gen;
B<Note:> C<Gen> is not exported into your code's namespace by default.
If you want to use it, you must import it by name or import C<:all>
when you use this module.
=cut
1;
=head1 EXAMPLES
Here are some examples to consider.
=head2 Simple examples
use strict;
use Test::LectroTest::Generator qw(:common);
show("Ints (sized by default)", Int);
show("Floats (sized by default)", Float);
show("Percentages (unsized)",
Int( range=>[0,100], sized=>0 ));
show("Lists (sized by default) of Ints (unsized) in [0,10]",
List( Int( sized=>0, range=>[0,10] ) ));
show("Uppercase-alpha identifiers at least 3 chars long",
String( length=>[3,], charset=>"A-Z" ));
show("Hashes (sized by default) of form AAA=>Digit",
Hash( String( length=>3, charset=>"A-Z" ),
Int( sized=>0, range=>[0,9] ) ));
sub show {
print "\n", shift(), "\n";
my ($gen) = @_;
for (1..10) {
my $val = $gen->generate($_);
printf "Size %2d: ", $_;
if (ref $val eq "HASH") {
my @pairs = map {"$_=>$val->{$_}"} keys %$val;
print "{ @pairs }";
}
elsif (ref $val eq "ARRAY") {
print "[ @$val ]"
}
else {
print $val;
}
print "\n";
}
}
=head2 Advanced examples
For these examples we use C<Data::Dumper> to inspect the data
structures we generate. Also, we import not only the common generator
constructors (like Int) but also the generic Gen constructor, which
lets us build generators out of blocks on the fly.
use Data::Dumper;
use Test::LectroTest::Generator qw(:common Gen);
First, here's a recipe for building a list of lists of integers:
my $loloi_gen = List( List( Int(sized=>0) ) );
print Dumper($loloi_gen->generate(10));
You may want to run the example several times to get a feel
for the distribution of the generated output.
Now, a more complicated example. Here we build sized trees of
random depth using a recursive set of generators.
my $tree_gen = do {
my $density = 0.5;
my $leaf_gen = Int( sized=>0 );
my $tree_helper = \1;
my $branch_gen = List( Gen { $$tree_helper->generate(@_) } );
$tree_helper = \Gen {
my ($size) = @_;
return rand($size) < $density
? $leaf_gen->generate($size)
: $branch_gen->generate($size + 1);
};
$$tree_helper;
};
print Dumper($tree_gen->generate(30));
We define a tree as either a leaf or a branch, and we randomly decide
between the two at each node in the growing tree. Leaves are just
integers and become more likely when the sizing guidance diminishes
(which happens as we go deeper). The code uses C<$density> as a
control knob for leaf density. (Try re-running the above code after
changing the value of C<$density>. Try 0, 1, and 2.) Branches,
on the other hand, are lists of trees. Because branches generate
trees, and trees generate branches, we use a reference trick
to set up the mutually recursive relationship. This we encapsulate
within a B<do> block for tidiness.
=head1 SEE ALSO
L<Test::LectroTest> gives a quick overview of automatic,
specification-based testing with LectroTest.
=head1 AUTHOR
Tom Moertel (tom@moertel.com)
=head1 INSPIRATION
The LectroTest project was inspired by Haskell's
QuickCheck module by Koen Claessen and John Hughes:
http://www.cs.chalmers.se/~rjmh/QuickCheck/.
=head1 COPYRIGHT and LICENSE
Copyright (c) 2004-13 by Thomas G Moertel. All rights reserved.
This program is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.
=cut
|