1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
|
#!/usr/bin/perl -w
use strict;
use Test::More tests => 248;
BEGIN { use_ok( 'Test::LectroTest::Generator', qw(:common :combinators) ) }
=head1 NAME
gens.t - Unit tests for Test::LectroTest::Generator
=head1 SYNOPSIS
perl -Ilib t/gens.t
=head1 DESCRIPTION
B<Important:> This test suite relies upon a number of randomized tests
and statistical inferences. As a result, there is a small probability
(about 1 in 200) that some part of the suite will fail even if
everything is working properly. Therefore, if a test fails, re-run
the test suite to determine whether the supposed problem is real or
just a rare instance of the Fates poking fun at you.
This documentation is written mainly for programmers who maintain the
test suite. If you are an end user of the LectroTest modules, you can
stop reading now because otherwise you will be bored to tears.
=cut
# set up warning net for errors in this test suite
BEGIN {
no warnings 'redefine';
my $ok = \&Test::Builder::ok;
*Test::Builder::ok = sub { (my $r = $ok->(@_)) || emit_warning(); $r };
}
sub emit_warning {
Test::Builder->new->diag(<<EOF);
============================================================
IMPORTANT! A TEST FAILURE MAY NOT REPRESENT A REAL PROBLEM.
This test suite relies upon a number of randomized tests and
statistical inferences. So, there is a small probability
that some part of the suite will fail even if everything is
actually fine. Therefore, re-run the test suite. You do
not have a problem unless the suite fails repeatably.
============================================================
EOF
}
#==============================================================================
=head1 Configuration
The $tsize variable determines how many trials to run durring the
collection of distribution stats, mainly for the Int generator. The
more trials you run, the smaller the deviations from the expected
results you can detect. It is suggested that you do not change this
value.
=cut
my $tsize = 10_000;
#==============================================================================
#==============================================================================
#==============================================================================
=head1 Fundamental tests
Here we sanity check that the fundamental object types can be created
and that they have the right base class.
=cut
for (qw/Int Bool Float Char String List Elements(1) Unit(1)
Paste OneOf(Unit(0)) Each Map{} Concat Flatten
ConcatMap{} FlattenMap{} /,
'Hash(Unit(1),Unit(1))', 'Frequency([1,"a"])', 'Sized{1}Unit(0)') {
my $g = eval $_ or die $@;
ok(defined $g, "$_ constructor returns something");
ok($g->isa('Test::LectroTest::Generator'),
"$_ ctor returns a Test::LectroTest::Generator");
}
#==============================================================================
#==============================================================================
#==============================================================================
# Helpers
sub clipped_triangle_mean($$$) {
my ($m,$s,$n) = @_;
my $bot = max($m,$s);
my $mfrac = max(($m-$s)/($n-$s+1),0);
return $m + (1-$mfrac) * (($bot-$m)/2+($n-$bot)/4);
}
sub max {
my $max;
foreach (@_) {
$max = $_ if !defined($max) || $_ > $max;
}
$max;
}
#==============================================================================
#==============================================================================
#==============================================================================
=head1 Generator tests
Here we test the generators. We perform the following tests.
=cut
#==============================================================================
=pod
=head2 Bool
The Bool distribution is really an Int distribution over the
range [0,1]. Therefore, we make sure that it has a mean of 0.5.
=cut
dist_mean_ok("Bool", Bool, [1..$tsize], sub{$_[0]}, 0.5);
#==============================================================================
=pod
=head2 Char
The Char distribution should return only the characters in the set we
give it, and all of the characters in the set should be possible
output values. First, we test to see that a trivial Char generator
for a single character always returns that character.
=cut
{
my $gstr = 'Char(charset=>"x")';
my $gen = eval $gstr;
my @vals = map {$gen->generate($_)} 1..1000;
is( scalar( grep { $_ eq "x" } @vals ), 1000,
"$gstr generates only 'x' values" );
}
=pod
Next, we make sure that a Char generator with a ten-character
range generates all ten characters and does so with equal
probability.
=cut
{
my $gstr = 'Char(charset=>"a-j")';
my $gen = eval $gstr;
complete_and_uniform_ok($gen, $gstr, ["a".."j"]);
}
=pod
Next, we run a few tests to make sure that the parser for
character set specifications work. We try the following:
"a", "-", "a-a", "-a", "a-", "aA-C", "A-Ca":
=cut
# cset-spec expected charset
for ( ["a" ,"a" ],
["-" ,"-" ],
["a-a" ,"a" ],
["-a" ,"-a" ],
["a-" ,"-a" ],
["aA-C" ,"ABCa" ],
["A-Ca" ,"ABCa" ],
["X-YaA-C" ,"ABCXYa" ],
["A-CaX-Y" ,"ABCXYa" ],
)
{
my ($cspec, $expected) = @$_;
my @expected = split //, $expected;
my $gstr = "Char(charset=>'$cspec')";
my $gen = eval $gstr;
my @got = map { $gen->generate } 1..10_000;
@got = sort keys %{{ map {($_,1)} @got }}; # uniq
my $got = join '', @got;
is ($got, $expected, "$gstr generated the char set '$expected'");
}
#==============================================================================
=pod
=head2 Elements and OneOf
The Elements tests indirectly test OneOf, upon which the Elements
generator is built. We ensure that the Elements distribution is
complete and uniform.
=cut
for ([0..9],["a".."j"])
{
my $g = Elements(@$_);
complete_and_uniform_ok($g, "Elements(@$_)", $_);
}
=pod
We must also test the pre-flight check.
=cut
like( eval { Elements() } || $@,
qr/must be.*at least one element/,
"pre-flight: Elements(<empty>) caught"
);
#==============================================================================
=pod
=head2 Float
The Float tests are modeled after the Int tests, but there are subtle
differences in order to accomodate the differences between the
underlying generators. In particular, Float has an (approximately)
continuous distribution whereas Int has a discrete distribution.
First, we test seven Float generators having ranges 201 wide and
centered around -300, -200, ... 200, 300. The generators are unsized
(B<sized=E<gt>0>) and thus should have means at the range centers.
=cut
for (-3..3) {
my $center = $_ * 100;
my ($m,$n) = ($center-100, $center+100);
dist_mean_ok("Float(sized=>0,range=>[$m,$n])",
Float(sized=>0,range=>[$m,$n]),
[1..$tsize],sub{$_[0]}, $center);
}
=pod
Second, we test five more Float generators having ranges from [0,$span]
where $span becomes increasingly large, finally equaling the
configuration parameter $tsize. These generators are sized, and so we
would expect the mean of their distributions to be equal to a weighted
average of X1 and X2, where X1 is the mean of the equivalent un-sized
distribution, and X2 is half of the mean of the sizing guidance over
the range of values for which the sizing constrains the range.
=cut
for (1..5) {
my $span = $_ * $tsize/5;
# Weights Means
my $expected_mean = (($tsize-$span)/$tsize)* ($span/2) # X1
+ ($span/$tsize) * ($span/4); # X2
dist_mean_ok("Float(sized=>1,range=>[0,$span])",
Float(sized=>1,range=>[0,$span]),
[0..$tsize],sub{$_[0]}, $expected_mean);
}
=pod
Third, we repeat the above test, this time using balanced ranges
[-$span,$span] for the same increasing progression of $span values.
Because the range is balanced, as is the effect of sizing, the
mean of the distributions must be zero.
=cut
for (1..5) {
my $span = $_ * $tsize/5;
dist_mean_ok("Float(sized=>1,range=>[-$span,$span])",
Float(sized=>1,range=>[-$span,$span]),
[0..$tsize],sub{$_[0]}, 0);
}
=pod
Fourth, we run a series of unsized tests over 3-element ranges near
zero. Because the ranges are so small, we expect that if there were
off-by-one errors in the code, they would stand out here.
=cut
for (-3..3) {
my ($m,$n) = ($_-1,$_+1);
dist_mean_ok("Float(sized=>0,range=>[$m,$n])",
Float(sized=>0,range=>[$m,$n]),
[0..$tsize],sub{$_[0]}, $_);
}
=pod
Fifth, we make sure that LectroTest prevents us from providing an
empty range.
=cut
for ( 'Float(range=>[1,0])', 'Float(range=>[0,-1])' ) {
like( eval $_ || $@,
qr/is empty/,
"$_ is caught as an empty range" );
}
for ( 'Float(range=>[0,0])' ) {
isa_ok( eval $_,
'Test::LectroTest::Generator',
"$_ is not wrongly caught as empty / " );
}
=pod
Sixth, we test the case where the generator is called
without sizing guidance. In this case the full range is
used.
=cut
for (-3..3) {
my ($m,$n) = ($_ - 4, $_ + 4);
my $g = Sized { undef } Float(range=>[$m,$n]);
dist_mean_ok("Sized{undef} Float(range=>[$m,$n])",
$g, [(undef)x$tsize], sub{$_[0]}, $_);
}
=pod
Finally, we make sure that LectroTest prevents us from using a sized
generator with a given range that does not contain zero.
=cut
for ( 'Float(range=>[-10,-1])', 'Float(range=>[1,10])' ) {
like( eval $_ || $@,
qr/does not contain zero/,
"$_ is caught as incompatible with sizing" );
}
for ( 'Float(range=>[-10,0])', 'Float(range=>[0,10])', 'Float' ) {
isa_ok( eval $_,
'Test::LectroTest::Generator',
"$_ is not wrongly caught as incompatible with sizing /" );
}
#==============================================================================
#==============================================================================
=pod
=head2 Int
We must test Int hardcore because it is the generator upon which
most others are built.
First, we test seven Int generators having ranges ten elements
wide and centered around -3000, -2000, ... 2000, 3000.
We ensure that each of the generators is complete and uniformly
distributed.
=cut
for (-3..3) {
my $center = $_ * 1_000;
my ($m,$n) = ($center-5, $center+4);
my $g = Int(sized=>0,range=>[$m,$n]);
complete_and_uniform_ok($g, "Int(sized=>0,range=>[$m,$n])",[$m..$n]);
}
=pod
Second, we test seven more Int generators having ranges 201 elements
wide and centered around -300, -200, ... 200, 300. The generators
are unsized (B<sized=E<gt>0>) and thus should have means at the
range centers.
=cut
for (-3..3) {
my $center = $_ * 100;
my ($m,$n) = ($center-100, $center+100);
dist_mean_ok("Int(sized=>0,range=>[$m,$n])",
Int(sized=>0,range=>[$m,$n]),
[1..$tsize],sub{$_[0]}, $center);
}
=pod
Third, we test five more Int generators having ranges from [0,$span]
where $span becomes increasingly large, finally equaling the
configuration parameter $tsize. These generators are sized, and so we
would expect the mean of their distributions to be equal to a weighted
average of X1 and X2, where X1 is the mean of the equivalent un-sized
distribution, and X2 is half of the mean of the sizing guidance over
the range of values for which the sizing constrains the range.
=cut
for (1..5) {
my $span = $_ * $tsize/5;
# Weights Means
my $expected_mean = (($tsize-$span)/$tsize)* ($span/2) # X1
+ ($span/$tsize) * ($span/4); # X2
dist_mean_ok("Int(sized=>1,range=>[0,$span])",
Int(sized=>1,range=>[0,$span]),
[0..$tsize],sub{$_[0]}, $expected_mean);
}
=pod
Fourth, we repeat the above test, this time using balanced ranges
[-$span,$span] for the same increasing progression of $span values.
Because the range is balanced, as is the effect of sizing, the
mean of the distributions must be zero.
=cut
for (1..5) {
my $span = $_ * $tsize/5;
dist_mean_ok("Int(sized=>1,range=>[-$span,$span])",
Int(sized=>1,range=>[-$span,$span]),
[0..$tsize],sub{$_[0]}, 0);
}
=pod
Fifth, we run a series of unsized tests over 3-element ranges near
zero. Because the ranges are so small, we expect that if there were
off-by-one errors in the code, they would stand out here.
=cut
for (-3..3) {
my ($m,$n) = ($_-1,$_+1);
dist_mean_ok("Int(sized=>0,range=>[$m,$n])",
Int(sized=>0,range=>[$m,$n]),
[0..$tsize],sub{$_[0]}, $_);
}
=pod
Sixth, we make sure that LectroTest prevents us from providing an
empty range.
=cut
for ( 'Int(range=>[1,0])', 'Int(range=>[0,-1])' ) {
like( eval $_ || $@,
qr/is empty/,
"$_ is caught as an empty range" );
}
for ( 'Int(range=>[0,0])' ) {
isa_ok( eval $_,
'Test::LectroTest::Generator',
"$_ is not wrongly caught as empty / " );
}
=pod
Seventh, we test the case where the generator is called
without sizing guidance. In this case the full range is
used.
=cut
for (-3..3) {
my ($m,$n) = ($_ - 5, $_ + 4);
my $g = Sized { undef } Int(range=>[$m,$n]);
complete_and_uniform_ok($g, "Sized{undef} Int(range=>[$m,$n])",[$m..$n]);
}
=pod
Finally, we make sure that LectroTest prevents us from using a sized
generator with a given range that does not contain zero.
=cut
for ( 'Int(range=>[-10,-1])', 'Int(range=>[1,10])' ) {
like( eval $_ || $@,
qr/does not contain zero/,
"$_ is caught as incompatible with sizing" );
}
for ( 'Int(range=>[-10,0])', 'Int(range=>[0,10])', 'Int' ) {
isa_ok( eval $_,
'Test::LectroTest::Generator',
"$_ is not wrongly caught as incompatible with sizing /" );
}
#==============================================================================
=pod
=head2 Hash
Hash is a thin wrapper around List and so we need only a few
Hash-specific tests to get good coverage.
=cut
for( 'Unit(0),Unit(1) {0=>1}',
'Int(range=>[0,5],sized=>0),Unit(1),length=>1000 {0=>1,1=>1,2=>1,3=>1,4=>1,5=>1}' )
{
my ($hash_args, $expected) = split ' ', $_, 2;
my $gen_spec = "Hash($hash_args)";
is_deeply( (eval $gen_spec)->generate(1000),
eval $expected,
"$gen_spec gens $expected");
}
=pod
Still, we need to test the pre-flight checks.
=cut
like( eval { Hash(Int) } || $@,
qr/requires two/,
"pre-flight: Hash(Int) caught"
);
#==============================================================================
=pod
=head2 List
We consider four test cases to determine whether List respects
its B<length> modifier. First, we test the default list generation
method, where list length is constrained only by the sizing guidance.
For sizing guidance in [1..I<N>], the expected mean generated list
length is (1+I<N>)/4.
=cut
{
my $gstr = "List(Unit(1))";
my $gen = eval $gstr;
for (1,5,10,25) {
dist_mean_ok( "$gstr elem length under sizing [1..$_]",
$gen, [(1..$_)x($tsize/$_)],
sub { scalar @{$_[0]} }, (1+$_)/4 );
}
}
=pod
Second, we test the B<length=E<gt>>I<N> variant. It should
generate lists whose length always equals I<N>.
=cut
{
for my $len (0..3) {
my $gstr = "List(Unit('x'),length=>$len)";
my $gen = eval $gstr;
my @vals = map {$gen->generate($_)} 1..$tsize;
is( scalar ( grep { $len == grep {'x' eq $_} @$_ } @vals ), $tsize,
"All lists from $gstr are [('x')x$len]" );
}
}
=pod
Third, we test the B<length=E<gt>>[I<M>,] variant. For sizing
guidance in [I<S>..I<N>], the expected mean of the
distribution is given by the formula in the helper
function C<clipped_triangle_mean>(I<M>,I<S>,I<N>).
(Note that when I<M>=0 this case is equivalent to the first case.)
=cut
{
for my $s (0,1,2) {
for ([0,5],[1,5],[4,5],[5,10]) {
my ($m,$n) = @$_;
my $gstr = "List(Unit('x'),length=>[$m,])";
my $gen = eval $gstr;
dist_mean_ok("$gstr elem length under sizing [$s..$n]",
$gen, [($s..$n)x($tsize/$n)],
sub { scalar @{$_[0]} },
clipped_triangle_mean($m,$s,$n));
}
}
}
=pod
Fourth, we test the B<length=E<gt>>[I<M>,I<N>] variant. The
expected mean generated list length is (I<M>+I<N>)/2, regardless
of sizing guidance (which should be ignored in this case).
=cut
for (0..3) {
$_ *= 10;
my ($m,$n) = ($_,$_+9);
my $gstr = "List(Unit('x'),length=>[$m,$n])";
my $gen = eval $gstr;
dist_mean_ok("$gstr elem length",
$gen, [0..$tsize],
sub { scalar @{$_[0]} }, ($m+$n)/2 );
}
=pod
Fifth, we check to see if List's pre-flight checks catch common
problems.
=cut
like( eval { List(Int,length=>-1) } || $@,
qr/length.*< 0/,
"pre-flight: List(length=>-1) caught"
);
like( eval { List(Int,length=>[-1]) } || $@,
qr/length.*< 0/,
"pre-flight: List(length=>[-1,]) caught"
);
like( eval { List(Int,length=>[-1,0]) } || $@,
qr/length.*invalid/,
"pre-flight: List(length=>[-1,0]) caught"
);
like( eval { List(Int,length=>[1,0]) } || $@,
qr/length.*invalid/,
"pre-flight: List(length=>[1,0]) caught"
);
for ("[]", "[0,1,2]", "{1=>1}") {
like( eval "List(Int,length=>$_)" || $@,
qr/length spec.*bad/,
"pre-flight: List(length=>$_) caught"
);
}
#==============================================================================
=pod
=head2 String
We consider four test cases to determine whether String respects its
B<length> modifier. These test cases are nearly identical to the four
cases for the List generator. Because String is built on List, these
tests are mostly redundant. However, it is a good idea to have them
anyway because it frees us to change the implementation.
First, we test the default string generation method, where string
length is constrained only by the sizing guidance. For sizing
guidance in [1..I<N>], the expected mean generated string length is
(1+I<N>)/4.
=cut
{
my $gstr = "String()";
my $gen = eval $gstr;
for (1,5,10,25) {
dist_mean_ok( "$gstr length under sizing [1..$_]",
$gen, [(1..$_)x($tsize/$_)],
sub { length $_[0] }, (1+$_)/4 );
}
}
=pod
Second, we test the B<length=E<gt>>I<N> variant. It should
generate strings whose length always equals I<N>.
=cut
{
for my $len (0..3) {
my $gstr = "String(charset=>'x',length=>$len)";
my $gen = eval $gstr;
my @vals = map {$gen->generate($_)} 1..$tsize;
is( scalar ( grep { $_ eq "x"x$len } @vals ), $tsize,
"All strings from $gstr are '" . ("x"x$len) . "'" );
}
}
=pod
Third, we test the B<length=E<gt>>[I<M>,] variant. For sizing
guidance in [I<S>..I<N>] we have the expected mean of the
distribution is given by the formula in the helper function
C<clipped_triangle_mean>(I<M>,I<S>,I<N>).
(Note that when I<M>=0, this test case is equivalent to the first.)
=cut
{
for my $s (0,1,2) {
for ([0,5],[1,5],[4,5],[5,10]) {
my ($m,$n) = @$_;
my $gstr = "String(length=>[$m,])";
my $gen = eval $gstr;
dist_mean_ok("$gstr length under sizing [$s..$n]",
$gen, [($s..$n)x($tsize/$n)],
sub { length $_[0] },
clipped_triangle_mean($m,$s,$n));
}
}
}
=pod
Fourth, we test the B<length=E<gt>>[I<M>,I<N>] variant. The
expected mean generated string length is (I<M>+I<N>)/2, regardless
of sizing guidance (which should be ignored in this case).
=cut
for (0..3) {
$_ *= 10;
my ($m,$n) = ($_,$_+9);
my $gstr = "String(length=>[$m,$n])";
my $gen = eval $gstr;
dist_mean_ok("$gstr elem length",
$gen, [0..$tsize],
sub { length $_[0] }, ($m+$n)/2 );
}
#==============================================================================
=pod
=head2 Unit
The Unit generator is simple and always returns the same value.
So we test it with three values: "a", 1, and 0.334.
=cut
for (qw|"a" 1 0.334|) {
my $v = eval $_;
ok(Unit($v)->generate eq $v, "Unit($_)->generate eq $_");
}
#==============================================================================
#==============================================================================
#==============================================================================
=head1 Combinator tests
Here we test the combinators. We perform the following tests.
=cut
#==============================================================================
=head2 Frequency
We provide two tests of the Frequency combinator. First, we make
sure that when all of the frequencies are identical the resulting
distribution is complete and uniform. In effect, Frequency behaves
like Elements for this case.
=cut
for ([0..9],["a".."j"])
{
my $g = Frequency( map {[1,Unit($_)]} @$_ );
complete_and_uniform_ok($g, "Frequency(all freqs = 1, @$_)", $_);
}
=pod
Second, we test that the frequencies are actually respected. When a
sub-generator has a zero frequency, it should never be selected. We
test this by creating a "yes" generator with frequency 1 and a "no"
generator with frequency 0. We make sure that the combined
Frequency generator generates only "yes" values. We run two variants
of this test, one for each ordering of the two sub-generators.
=cut
for ('([[0,Unit("no")],[1,Unit("yes")]])',
'([[1,Unit("yes")],[0,Unit("no")]])')
{
my $g = Frequency( @{eval $_} );
my @yesses = grep { $_ eq "yes" } map {$g->generate} 1..1000;
is(scalar @yesses, 1000, "Frequency$_ generates only 'yes'");
}
=pod
Third, we check to make sure the pre-flight checks catch bad arguments.
=cut
like( eval { Frequency() } || $@,
qr/at least one frequency/,
"pre-flight: Frequency() caught"
);
like( eval { Frequency([0,Bool]) } || $@,
qr/at least one frequency.*greater than zero/,
"pre-flight: Frequency([0,Bool]) caught"
);
like( eval { Frequency([1,Bool],[-1,Bool]) } || $@,
qr/non-negative/,
"pre-flight: Frequency([1,Bool],[-1,Bool]) caught"
);
#==============================================================================
=pod
=head2 Paste
To test the Paste generator, we create six Unit generators that
return, respectively, the values "a".."f". Then we combine them in
two ways via Paste combinators. The first does not use glue and
thus should always generate "abcdef". The second uses the glue "-"
and thus should always generate "a-b-c-d-e-f".
=cut
{
my @gens = map {Unit($_)} "a".."f";
is(Paste(@gens)->generate, "abcdef", "Paste w/o glue as expected");
is(Paste(@gens,glue=>'-')->generate, "a-b-c-d-e-f",
"Paste w/ glue as expected");
}
=pod
We also test to see that Paste handles Lists properly. It should
concatenate the elements of all Lists and then paste them together
with the other arguments.
=cut
{
my $lgen0 = List( Unit(1), length=>0 );
my $lgen4 = List( Unit(1), length=>4 );
is(Paste($lgen0)->generate(5), "", "Paste([empty]) => empty str");
is(Paste($lgen4)->generate(5), "1111",
"Paste([1,1,1,1]) => '1111'");
is(Paste(Unit(0),$lgen0,Unit(2))->generate(5), "02",
"Paste(0,[],2) => '02'");
is(Paste(Unit(0),$lgen4,Unit(2))->generate(5), "011112",
"Paste(0,[1,1,1,1],2) => '011112'");
}
#==============================================================================
=pod
=head2 Sized
We run two tests for the Sized combinator. First, we apply the
constant-sizing C<Sized{1}> combinator to a sized-Int generator
over the range[-1,100]. If the combinator works properly,
the sizing guidance passed to the Int generator will always be
one, effectively clipping its range to [-1,1]. Thus we
test that the mean of the resulting distribution is 0.
=cut
{
# const sizing of 1 should clip range to [-1,1];
# thus, w/ uniform distribution, mean = 0
my $gstr = 'Sized{1}(Int(sized=>1,range=>[-1,100]))';
my $gen = eval $gstr;
dist_mean_ok($gstr, $gen, [1..200],sub{$_[0]}, 0);
}
=pod
Second, we apply a "size-halving" combinator C<Sized{$_[0]/2}>
to the same Int generator as before and draw values from
the combined generator for sizing values ranging from [1..200].
We expect the mean of the distribution of generated values
should be equal to (-1 + 100) / 4.
=cut
{
# halving sizing should clip range to [-1,h] where h varies from
# [1/2,100] linearly; thus dist forms a triangle w/ peak height at
# 200/2 = 100 and has mean of (-1 + 100) / 4 = 24.75.
my $gstr = 'Sized{$_[0]/2}(Int(sized=>1,range=>[-1,100]))';
my $gen = eval $gstr;
dist_mean_ok($gstr, $gen, [1..200],sub{$_[0]}, (-1 + 100) / 4);
}
#==============================================================================
=pod
=head2 Each
The Each combinator is just a wrapper around List, so the tests
for it are simple.
=cut
for ( 'Each(Unit(1),Unit(2),Unit(3))' )
{
my $g = eval $_;
is_deeply( $g->generate(1), [1,2,3],
"$_ generates [1,2,3]" );
}
#==============================================================================
=pod
=head2 Apply
Apply, in turn, is built upon Each, so we just make sure that
it gets its own additional functionality right.
=cut
for ( 'Apply(sub{join"/",@_},Unit(1),Unit(2),Unit(3))' )
{
my $g = eval $_;
is( $g->generate(1), "1/2/3", "$_ generates 1/2/3" );
}
#==============================================================================
=pod
=head2 Map
Map is also built upon Each. Again, we just make sure it
adds the correct twist.
=cut
for ( ['(Map {"x" x $_[0]} Unit(1),Unit(2))', '["x","xx"]'] )
{
my ($gstr, $expected) = @$_;
my $g = eval $gstr || die $@;
is_deeply( $g->generate(1), eval $expected, "$gstr generates $expected" );
}
#==============================================================================
=pod
=head2 Concat
Testing Concat is straightforward. We just feed it a few
list generators and make sure it returns the right thing.
=cut
for ( ['Concat', '[]']
, ['Concat(List(Int,length=>0))', '[]']
, ['Concat(Unit("a"))', '["a"]']
, ['Concat(Unit("a"),List(Int,length=>0))', '["a"]']
, ['Concat(List(Int,length=>0))', '[]']
, ['Concat(List(Unit([1]),length=>1))', '[[1]]']
, ['Concat(List(Unit(1),length=>2))', '[1,1]']
, ['Concat(List(Unit(1),length=>2),List(Unit([2]),length=>1))'
,'[1,1,[2]]']
)
{
my ($gstr, $expected) = @$_;
my $g = eval $gstr || die $@;
is_deeply( $g->generate(1), eval $expected, "$gstr generates $expected" );
}
=cut
#==============================================================================
=pod
=head2 Flatten
Testing Flatten is like Concat, except here we must make sure
that the resulting list does not contain any other lists.
=cut
for ( ['Flatten', '[]']
, ['Flatten(Unit([[[[[[[]]]]]]]))', '[]']
, ['Flatten(Unit("a"))', '["a"]']
, ['Flatten(Unit("a"),List(Int,length=>0))', '["a"]']
, ['Flatten(List(Int,length=>0))', '[]']
, ['Flatten(List(Unit([9]),length=>1))', '[9]']
, ['Flatten(List(Unit(9),length=>2))', '[9,9]']
, ['Flatten(List(Unit(9),length=>2),List(Unit([2]),length=>1))'
,'[9,9,2]']
)
{
my ($gstr, $expected) = @$_;
my $g = eval $gstr || die $@;
is_deeply( $g->generate(1), eval $expected, "$gstr generates $expected" );
}
=cut
#==============================================================================
=pod
=head2 ConcatMap
Testing ConcatMap is like testing Concat and Map together. (Who
would have guessed?)
=cut
for ( ['ConcatMap{}', '[]']
, ['ConcatMap{1}Unit(2)', '[1]']
, ['ConcatMap{[1]}Unit(2)', '[1]']
, ['ConcatMap{[@_]}Each(Unit(2),Unit(3))', '[[2,3]]']
, ['ConcatMap{[@_]}Unit(2),Unit(3)', '[2,3]']
, ['ConcatMap{my($a)=@_;$a%2?[$a]:[]}Unit(1),Unit(2),Unit(3)', '[1,3]']
)
{
my ($gstr, $expected) = @$_;
my $g = eval $gstr || die $@;
is_deeply( $g->generate(1), eval $expected, "$gstr generates $expected" );
}
#==============================================================================
=pod
=head2 FlattenMap
Can you see where this is going? FlattenMap is just like Flatten
and Map, together as best friends.
=cut
for ( ['FlattenMap{}', '[]']
, ['FlattenMap{9}Unit(2)', '[9]']
, ['FlattenMap{[8]}Unit(2)', '[8]']
, ['FlattenMap{[[7]]}Unit(2)', '[7]']
, ['FlattenMap{[@_]}Each(Unit(2),Unit(3))', '[2,3]']
, ['FlattenMap{[@_]}Unit(2),Unit([3])', '[2,3]']
, ['FlattenMap{[[[[[9]]]]]}Unit(2),Unit([3])', '[9,9]']
, ['FlattenMap{my($a)=@_;$a%2?[$a]:[]}Unit(9),Unit(2),Unit(3)', '[9,3]']
)
{
my ($gstr, $expected) = @$_;
my $g = eval $gstr || die $@;
is_deeply( $g->generate(1), eval $expected, "$gstr generates $expected" );
}
=cut
#==============================================================================
#==============================================================================
#==============================================================================
# More helpers
=head1 Helper functions
The test suite relies upon a few helper functions.
=head2 sample_distribution_z_score
This function takes an expected mean and a set of data
values. It analyzes the data set to determine its mean M and standard
deviation. Then it computes a z-score for the hypothesis that M is
equal to the expected mean. The return value is the z-score.
=cut
sub sample_distribution_z_score {
my ($expected_mean, $data) = @_;
my ($sum, $ssq, $count) = (0, 0, scalar @$data);
$sum += $_, $ssq += $_**2 for @$data;
my $mean = $sum/$count;
my $numer = $ssq + $count * $mean**2 - 2 * $mean * $sum;
my $s2 = $numer / ($count - 1);
my $stdev = sqrt $s2;
my $sampdev = $stdev / sqrt($count);
my $z_score = ($mean - $expected_mean) / $sampdev;
return $z_score;
}
=pod
=head2 dist_mean_ok
This function is used to determine if the mean of
the distribution of values returned by a generator is
equal to the expected mean. The generator is asked to
generate one value for each element of sizing guidance
given. The resulting values are passed through the given
$numerizer function to convert them into numbers (useful
if you are testing a String or Char generator). The
name you are giving to the whole mean test should be passed
in $name. This is passed to the Test::More C<cmp_ok> function
which records the result of the test.
=cut
sub dist_mean_ok {
my ($name, $gen, $sizes, $numerizer, $expected_mean) = @_;
my @data = map { $numerizer->($gen->generate($_)) } @$sizes;
my $z = sample_distribution_z_score($expected_mean, \@data);
cmp_ok(abs($z), '<', 3.89, # w/in 99.99% confidence interval
sprintf "$name dist mean is $expected_mean (z-score = %.2f)", $z);
}
=pod
=head2 complete_and_uniform_ok
This function determines whether the given generator $g
returns values that are uniformly distributed across the complete
range of values it is supposed to cover. In order for this test to
function properly the generator must be designed to select from
among ten distinct values. (E.g., Int(range=>[0,9]) is fine but not
Int(range=>[1,100]).) The test draws 10,000 output values from the
generator and then ensures that all ten @$expected_values are
represented in the output and that all ten were selected with
equal probability. The result of the test is reported
via the Test::More C<ok> function.
=cut
sub complete_and_uniform_ok {
my ($g, $dist_name, $expected_values) = @_;
die unless @$expected_values == 10;
my %counts;
$counts{$_}++ for map { $g->generate } 1..10_000;
my $test = 0; # assume failure
foreach my $count (values %counts) {
# if the distribution is uniform, the following
# test will succeed with 99.997 percent probability
$test = 875 <= $count && $count <= 1125;
last unless $test;
}
ok($test && grep(defined,@counts{@$expected_values}) == 10,
"$dist_name is complete and uniformly distributed");
}
=head1 AUTHOR
Tom Moertel (tom@moertel.com)
=head1 COPYRIGHT and LICENSE
Copyright (C) 2004 by Thomas G Moertel. All rights reserved.
This program is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.
|