File: Spec.pm

package info (click to toggle)
libtest-spec-perl 0.54-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 308 kB
  • sloc: perl: 2,502; makefile: 2
file content (1049 lines) | stat: -rw-r--r-- 28,992 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
package Test::Spec;
use strict;
use warnings;
use Test::Trap ();        # load as early as possible to override CORE::exit

our $VERSION = '0.54';

use parent 'Exporter';

use Carp ();
use Exporter ();
use File::Spec ();
use Tie::IxHash ();

use constant { DEFINITION_PHASE => 0, EXECUTION_PHASE => 1 };

our $TODO;
our $Debug = $ENV{TEST_SPEC_DEBUG} || 0;

our @EXPORT      = qw(runtests
                      describe xdescribe context xcontext it xit they xthey
                      before after around yield spec_helper
                      *TODO share shared_examples_for it_should_behave_like );
our @EXPORT_OK   = ( @EXPORT, qw(DEFINITION_PHASE EXECUTION_PHASE $Debug) );
our %EXPORT_TAGS = ( all => \@EXPORT_OK,
                     constants => [qw(DEFINITION_PHASE EXECUTION_PHASE)] );
our @CARP_NOT    = ();

our $_Current_Context;
our %_Package_Contexts;
our %_Package_Phase;
our %_Package_Tests;
our %_Shared_Example_Groups;
our $Yield = sub {
  local @CARP_NOT = qw( Test::Spec );
  Carp::croak "yield can be called only by around CODE";
};

# Avoid polluting the Spec namespace by loading these other modules into
# what's essentially a mixin class.  When you write "use Test::Spec",
# you'll get everything from Spec plus everything in ExportProxy. If you
# specify a list, the pool is limited to the stuff in @EXPORT_OK above.
{
  package Test::Spec::ExportProxy;
  use base qw(Exporter);
  BEGIN {
    eval "use Test::Deep 0.103 ()"; # check version and load export list
    Test::Deep->import(grep { $_ ne 'isa' } @Test::Deep::EXPORT);
  }
  use Test::More;
  use Test::Trap;
  use Test::Spec::Mocks;
  our @EXPORT_OK = (
    @Test::More::EXPORT,
    (grep { $_ ne 'isa' } @Test::Deep::EXPORT),
    qw(trap $trap),       # Test::Trap doesn't use Exporter
    @Test::Spec::Mocks::EXPORT,
  );
  our @EXPORT = @EXPORT_OK;
  our %EXPORT_TAGS = (all => \@EXPORT_OK);
}

sub import {
  my $class = shift;
  my $callpkg = caller;

  strict->import;
  warnings->import;

  # specific imports requested
  if (@_) {
    $class->export_to_level(1, $callpkg, @_);
    return;
  }

  eval qq{
    package $callpkg;
    use parent 'Test::Spec';
    # allow Test::Spec usage errors to be reported via Carp
    our \@CARP_NOT = qw($callpkg);
  };
  die $@ if $@;
  Test::Spec::ExportProxy->export_to_level(1, $callpkg);
  $class->export_to_level(1, $callpkg);
}

# PACKAGE->phase
# PACKAGE->phase(NEWPHASE)
sub phase {
  my $invocant = shift;
  my $class = ref($invocant) || $invocant;
  if (@_) {
    $_Package_Phase{$class} = shift;
  }
  if (exists $_Package_Phase{$class}) {
    return $_Package_Phase{$class};
  }
  else {
    return $_Package_Phase{$class} = DEFINITION_PHASE;
  }
}

# PACKAGE->add_test(SUBNAME)
sub add_test {
  my ($class,$test) = @_;
  my $list = $_Package_Tests{$class} ||= [];
  push @$list, $test;
  return;
}

# @subnames = PACKAGE->tests
sub tests {
  my ($class) = @_;
  my $list = $_Package_Tests{$class} ||= [];
  return @$list;
}

# runtests
# PACKAGE->runtests # @ARGV or $ENV{SPEC}
# PACKAGE->runtests(PATTERNS)
sub runtests {
  my $class = $_[0];
  if (not defined $class) {
    $class = caller;
  }
  elsif (not eval { $class->isa(__PACKAGE__) }) {
    $class = caller;
  }
  else {
    shift;  # valid class, remove from arg stack.
  }
  $class->_materialize_tests;
  $class->phase(EXECUTION_PHASE);

  my @which = @_         ? @_           :
              $ENV{SPEC} ? ($ENV{SPEC}) : ();

  my @tests = $class->_pick_tests(@which);
  return $class->_execute_tests( @tests );
}

sub builder {
  # this is a singleton.
  Test::Builder->new;
}

sub _pick_tests {
  my ($class,@matchers) = @_;
  my @tests = $class->tests;

  my $pattern = join("|", @matchers);
  @tests = grep { $_->name =~ /$pattern/i } @tests;

  return @tests;
}

sub _execute_tests {
  my ($class,@tests) = @_;
  for my $test (@tests) {
    $test->run();
  }

  # Ensure we don't keep any references to user variables so they go out
  # of scope in a predictable fashion.
  %_Package_Tests = %_Package_Contexts = ();

  # XXX: this doesn't play nicely with Test::NoWarnings and friends
  $class->builder->done_testing;
}

# it DESC => CODE
# it CODE
# it DESC
sub it(@) {
  my $package = caller;
  my $code;
  if (@_ && ref($_[-1]) eq 'CODE') {
    $code = pop;
  }
  my $name = shift;
  if (not ($code || $name)) {
    Carp::croak "it() requires at least one of (description,code)";
  }
  $name ||= "behaves as expected (whatever that means)";
  push @{ _autovivify_context($package)->tests }, {
    name => $name,
    code => $code,
    todo => $TODO,
  };
  return;
}

# alias "they" to "it", for describing behavior of multiple items
sub they(@);
BEGIN { *they = \&it }

# describe DESC => CODE
# describe CODE
sub describe(@) {
  my $package = caller;
  my $code = pop;
  if (ref($code) ne 'CODE') {
    Carp::croak "expected subroutine reference as last argument";
  }
  my $name = shift || $package;

  my $container;
  if ($_Current_Context) {
    $container = $_Current_Context->context_lookup;
  }
  else {
    $container = $_Package_Contexts{$package} ||= Test::Spec::_ixhash();
  }

  __PACKAGE__->_accumulate_examples({
    container => $container,
    name => $name,
    class => $package,
    code => $code,
    label => $name,
  });
}

# around CODE
sub around(&) {
  my $package = caller;
  my $code = pop;
  if (ref($code) ne 'CODE') {
    Carp::croak "expected subroutine reference as last argument";
  }
  my $context = _autovivify_context($package);
  push @{ $context->around_blocks }, { code => $code };
}

# yield
sub yield() {
  $Yield->();
}

# make context() an alias for describe()
sub context(@);
BEGIN { *context = \&describe }

# used to easily disable suites/specs during development
sub xit(@) {
  local $TODO = '(disabled)';
  it(@_);
}

sub xthey(@) {
  local $TODO = '(disabled)';
  they(@_);
}

sub xdescribe(@) {
  local $TODO = '(disabled)';
  describe(@_);
}

# make xcontext() an alias for xdescribe()
sub xcontext(@);
BEGIN { *xcontext = \&xdescribe }

# shared_examples_for DESC => CODE
sub shared_examples_for($&) {
  my $package = caller;
  my ($name,$code) = @_;
  if (not defined($name)) {
    Carp::croak "expected example group name as first argument";
  }
  if (ref($code) ne 'CODE') {
    Carp::croak "expected subroutine reference as last argument";
  }

  __PACKAGE__->_accumulate_examples({
    container => \%_Shared_Example_Groups,
    name => $name,
    class => undef,   # shared examples are global
    code => $code,
    label => '',
  });
}

# used by both describe() and shared_examples_for() to build example
# groups in context
sub _accumulate_examples {
  my ($klass,$args) = @_;
  my $container = $args->{container};
  my $name = $args->{name};
  my $class = $args->{class};
  my $code = $args->{code};
  my $label = $args->{label};

  my $context;
  # Don't clobber contexts of the same name, aggregate them.
  if ($container->{$name}) {
    $context = $container->{$name};
  }
  else {
    $container->{$name} = $context = Test::Spec::Context->new;
    $context->name( $label );
    # A context gets either a parent or a class. This is because the
    # class should be inherited from the parent to support classless
    # shared example groups.
    if ($_Current_Context) {
      $context->parent( $_Current_Context );
    }
    else {
      $context->class( $class );
    }
  }

  # evaluate the context function, which will set up lexical variables and
  # define tests and other contexts
  $context->contextualize($code);
}

# it_should_behave_like DESC
sub it_should_behave_like($) {
  my ($name) = @_;
  if (not defined($name)) {
    Carp::croak "expected example_group_name as first argument";
  }
  if (!$_Current_Context) {
    Carp::croak "it_should_behave_like can only be used inside a describe or shared_examples_for context";
  }
  my $context = $_Shared_Example_Groups{$name} ||
    Carp::croak "unrecognized example group \"$name\"";

  # make a copy so we can assign the correct class name (via parent),
  # which is needed for flattening the context into actual test
  # functions later.
  my $shim = $context->clone;
  $shim->parent($_Current_Context);

  # add our shared_examples_for context as if it had been written inline
  # as a describe() block
  $_Current_Context->context_lookup->{"__shared_examples__:$name"} = $shim;
}

# before CODE
# before all => CODE
# before each => CODE
sub before (@) {
  my $package = caller;
  my $code = pop;
  if (ref($code) ne 'CODE') {
    Carp::croak "expected subroutine reference as last argument";
  }
  my $type = shift || 'each';
  if ($type ne 'each' && $type ne 'all') {
    Carp::croak "before type should be one of 'each' or 'all'";
  }
  my $context = _autovivify_context($package);
  push @{ $context->before_blocks }, { type => $type, code => $code };
}

# after CODE
# after all => CODE
# after each => CODE
sub after (@) {
  my $package = caller;
  my $code = pop;
  if (ref($code) ne 'CODE') {
    Carp::croak "expected subroutine reference as last argument";
  }
  my $type = shift || 'each';
  if ($type ne 'each' and $type ne 'all') {
    Carp::croak "after type should be one of 'each' or 'all'";
  }
  my $context = _autovivify_context($package);
  push @{ $context->after_blocks }, { type => $type, code => $code };
}

# spec_helper FILESPEC
sub spec_helper ($) {
  my $filespec = shift;
  my ($callpkg,$callfile) = caller;
  my $load_path;
  if (File::Spec->file_name_is_absolute($filespec)) {
    $load_path = $filespec;
  }
  else {
    my ($callvol,$calldir,undef)  = File::Spec->splitpath($callfile);
    my (undef,$filedir,$filename) = File::Spec->splitpath($filespec);
    my $newdir = File::Spec->catdir($calldir,$filedir);
    $load_path = File::Spec->catpath($callvol,$newdir,$filename);
  }
  my $sub = eval "package $callpkg;\n" . q[sub {
    my ($file,$origpath) = @_;
    open(my $IN, "<", $file)
      || die "could not open spec_helper '$origpath': $!";
    defined(my $content = do { local $/; <$IN> })
      || die "could not read spec_helper '$origpath': $!";
    eval("# line 1 \"$origpath\"\n" . $content);
    die "$@\n" if $@;
  }];
  $sub->($load_path,$filespec);
}

sub share(\%) {
  my $hashref = shift;
  tie %$hashref, 'Test::Spec::SharedHash';
}

sub _materialize_tests {
  my $class = shift;
  my $contexts = $_Package_Contexts{$class};
  if (not $contexts && %$contexts) {
    Carp::carp "no examples defined in spec package $class";
    return;
  }
  for my $context (values %$contexts) {
    $context->_materialize_tests();
  }
}

sub in_context {
  my ($class,$context) = @_;
  if (!$_Current_Context) {
    return '';
  }
  elsif ($context == $_Current_Context) {
    return 1;
  }
  elsif ($context->ancestor_of($_Current_Context)) {
    return 1;
  }
  else {
    return '';
  }
}

# NOT a method, just a subroutine that takes a package name.
sub _autovivify_context {
  my ($package) = @_;
  if ($_Current_Context) {
    return $_Current_Context;
  }
  else {
    my $name = '';  # unnamed context
    return $_Package_Contexts{$package}{$name} ||=
      Test::Spec::Context->new({ name => $name, class => $package, parent => undef });
  }
}

# Public interface.
sub current_context {
  $_Current_Context
}

sub contexts {
  my ($class) = @_;
  my @ctx = values %{ $_Package_Contexts{$class} || {} };
  return wantarray ? @ctx : \@ctx;
}

sub _ixhash {
  tie my %h, 'Tie::IxHash';
  \%h;
}

# load context implementation
require Test::Spec::Context;
require Test::Spec::SharedHash;

1;

=head1 NAME

Test::Spec - Write tests in a declarative specification style

=head1 SYNOPSIS

  use Test::Spec; # automatically turns on strict and warnings

  describe "A date" => sub {

    my $date;

    describe "in a leap year" => sub {

      before each => sub {
        $date = DateTime->new(year => 2000, month => 2, day => 28);
      };

      it "should know that it is in a leap year" => sub {
        ok($date->is_leap_year);
      };

      it "should recognize Feb. 29" => sub {
        is($date->add(days => 1)->day, 29);
      };

    };

    describe "not in a leap year" => sub {
      before each => sub {
        $date = DateTime->new(year => 2001, month => 2, day => 28);
      };

      it "should know that it is NOT in a leap year" => sub {
        ok(!$date->is_leap_year);
      };

      it "should NOT recognize Feb. 29" => sub {
        is($date->add(days => 1)->day, 1);
      };
    };

  };

  runtests unless caller;

  # Generates the following output:
  # ok 1 - A date in a leap year should know that it is in a leap year
  # ok 2 - A date in a leap year should recognize Feb. 29
  # ok 3 - A date not in a leap year should know that it is NOT in a leap year
  # ok 4 - A date not in a leap year should NOT recognize Feb. 29
  # 1..4


=head1 DESCRIPTION

This is a declarative specification-style testing system for behavior-driven
development (BDD) in Perl. The tests (a.k.a. examples) are named with strings
instead of subroutine names, so your fingers will suffer less fatigue from
underscore-itis, with the side benefit that the test reports are more legible.

This module is inspired by and borrows heavily from L<RSpec|http://rspec.info/documentation>, 
a BDD tool for the Ruby programming language.

=head2 EXPORTS

When given B<no list> (i.e. C<use Test::Spec;>), this class will export:

=over 4

=item * Spec definition functions

These are the functions you will use to define behaviors and run your specs:
C<describe>, C<it>, C<they>, C<before>, C<after>, C<runtests>, C<share>,
C<shared_examples_for>, C<it_should_behave_like>, and C<spec_helper>.

=item * The stub/mock functions in L<Test::Spec::Mocks>.

=item * Everything that L<Test::More> normally exports

This includes C<ok>, C<is> and friends. You'll use these to assert
correct behavior.

=item * Everything that L<Test::Deep> normally exports

More assertions including C<cmp_deeply>.

=item * Everything that C<Test::Trap> normally exports

The C<trap()> function, which let you test behaviors that call C<exit()> and
other hard things like that. "A block eval on steroids."

=back

If you specify an import list, only functions directly from C<Test::Spec>
(those documented below) are available.

=head2 FUNCTIONS

=over 4

=item runtests

=item runtests(@patterns)

Runs all the examples whose descriptions match one of the (non case-sensitive)
regular expressions in C<@patterns>. If C<@patterns> is not provided,
runs I<all> examples. The environment variable "SPEC" will be used as a
default pattern if present.

If called as a function (i.e. I<not> a method call with "->"), C<runtests>
will autodetect the package from which it is called and run that
package's examples. A useful idiom is:

  runtests unless caller;

which will run the examples when the file is loaded as a script (for example,
by running it from the command line), but not when it is loaded as a module
(with C<require> or C<use>).

=item describe DESCRIPTION => CODE

=item describe CODE

Defines a specification context under which examples and more
descriptions can be defined.  All examples I<must> come inside a C<describe>
block.

=over 4

=item C<describe> blocks can be nested to DRY up your specs.

For large specifications, C<describe> blocks can save you a lot of duplication:

  describe "A User object" => sub {
    my $user;
    before sub {
      $user = User->new;
    };
    describe "from a web form" => sub {
      before sub {
        $user->init_from_tree({ username => "bbill", ... });
      };
      it "should read its attributes from the form";
      describe "when saving" => sub {
        it "should require a unique username";
        it "should require a password";
      };
    };
  };

The setup work done in each C<before> block cascades from one level
to the next, so you don't have to make a call to some
initialization function manually in each test. It's done
automatically based on context.

=item Using describe blocks improves legibility without requiring more typing.

The name of the context will be included by default in the
success/failure report generated by Test::Builder-based testing methods (e.g.
Test::More's ok() function).  For an example like this:

  describe "An unladen swallow" => sub {
    it "has an airspeed of 11 meters per second" => sub {
      is($swallow->airspeed, "11m/s");
    };
  };

The output generated is:

  ok 1 - An unladen swallow has an airspeed of 11 meters per second

Contrast this to the following test case to generate the same output:

  sub unladen_swallow_airspeed : Test {
    is($swallow->airspeed, "11m/s",
       "An unladen swallow has an airspeed of 11 meters per second");
  }

=back

C<describe> blocks execute in the order in which they are defined. Multiple
C<describe> blocks with the same name are allowed. They do not replace each
other, rather subsequent C<describe>s extend the existing one of the same
name.

=item context

An alias for C<describe()>.

=item xdescribe

Specification contexts may be disabled by calling C<xdescribe> instead of
C<describe()>. All examples inside an C<xdescribe> are reported as
"# TODO (disabled)", which prevents Test::Harness/prove from counting them
as failures.

=item xcontext

An alias for C<xdescribe()>.

=item it SPECIFICATION => CODE

=item it CODE

=item it TODO_SPECIFICATION

Defines an example to be tested.  Despite its awkward name, C<it> allows
a natural (in my opinion) way to describe expected behavior:

  describe "A captive of Buffalo Bill" => sub {
    it "puts the lotion on its skin" => sub {
      ...
    };
    it "puts the lotion in the basket"; # TODO
  };

If a code reference is not passed, the specification is assumed to be
unimplemented and will be reported as "TODO (unimplemented)" in the test
results (see L<Test::Builder/todo_skip>. TODO tests report as skipped,
not failed.

=item they SPECIFICATION => CODE

=item they CODE

=item they TODO_SPECIFICATION

An alias for L</it>.  This is useful for describing behavior for groups of
items, so the verb agrees with the noun:

  describe "Captives of Buffalo Bill" => sub {
    they "put the lotion on their skin" => sub {
      ...
    };
    they "put the lotion in the basket"; # TODO
  };

=item xit/xthey

Examples may be disabled by calling xit()/xthey() instead of it()/they().
These examples are reported as "# TODO (disabled)", which prevents
Test::Harness/prove from counting them as failures.

=item before each => CODE

=item before all => CODE

=item before CODE

Defines code to be run before tests in the current describe block are
run. If "each" is specified, CODE will be re-executed for every test in
the context. If "all" is specified, CODE will only be executed before
the first test.

The default is "each", due to this logic presented in RSpec's documentation:

I<"It is very tempting to use before(:all) and after(:all) for situations
in which it is not appropriate. before(:all) shares some (not all) state
across multiple examples. This means that the examples become bound
together, which is an absolute no-no in testing. You should really only
ever use before(:all) to set up things that are global collaborators but
not the things that you are describing in the examples.>

I<The most common cases of abuse are database access and/or fixture setup.
Every example that accesses the database should start with a clean
slate, otherwise the examples become brittle and start to lose their
value with false negatives and, worse, false positives.">

(L<http://rspec.info/documentation/before_and_after.html>)

There is no restriction on having multiple before blocks.  They will run in
sequence within their respective "each" or "all" groups.  C<before "all">
blocks run before C<before "each"> blocks.

=item after each => CODE

=item after all => CODE

=item after CODE

Like C<before>, but backwards.  Runs CODE after each or all tests,
respectively.  The default is "each".

C<after "all"> blocks run I<after> C<after "each"> blocks.

=item around CODE

Defines code to be run around tests in the current describe block are
run. This code must call C<yield>..

  our $var = 0;

  describe "Something" => sub {
    around {
      local $var = 1;
      yield;
    };

    it "should have localized var" => sub {
      is $var, 1;
    };
  }; 

This CODE will run around each example.

=item yield

Runs examples in context of C<around> block.

=item shared_examples_for DESCRIPTION => CODE

Defines a group of examples that can later be included in
C<describe> blocks or other C<shared_examples_for> blocks. See
L</Shared example groups>.

Example group names are B<global>, but example groups can be defined at any
level (i.e. they can be defined in the global context, or inside a "describe"
block).

  my $browser;
  shared_examples_for "all browsers" => sub {
    it "should open a URL" => sub { ok($browser->open("http://www.google.com/")) };
    ...
  };
  describe "Firefox" => sub {
    before all => sub { $browser = Firefox->new };
    it_should_behave_like "all browsers";
    it "should have firefox features";
  };
  describe "Safari" => sub {
    before all => sub { $browser = Safari->new };
    it_should_behave_like "all browsers";
    it "should have safari features";
  };

=item it_should_behave_like DESCRIPTION

Asserts that the thing currently being tested passes all the tests in
the example group identified by DESCRIPTION (having previously been
defined with a C<shared_examples_for> block). In essence, this is like
copying all the tests from the named C<shared_examples_for> block into
the current context. See L</Shared example groups> and
L<shared_examples_for>.

=item share %HASH

Registers C<%HASH> for sharing data between tests and example groups.
This lets you share variables with code in different lexical scopes
without resorting to using package (i.e. global) variables or jumping
through other hoops to circumvent scope problems.

Every hash that is C<share>d refers to the B<same data>. Sharing a hash
will make its existing contents inaccessible, because afterwards it
contains the same data that all other shared hashes contain. The result
is that you get a hash with global semantics but with lexical scope
(assuming C<%HASH> is a lexical variable).

There are a few benefits of using C<share> over using a "regular"
global hash. First, you don't have to decide what package the hash will
belong to, which is annoying when you have specs in several packages
referencing the same shared examples. You also don't have to clutter
your examples with colons for fully-qualified names. For example, at my
company our specs go in the "ICA::TestCase" hierarchy, and
"$ICA::TestCase::Some::Package::variable" is exhausting to both the eyes
and the hands. Lastly, using C<share> allows C<Test::Spec> to provide
this functionality without deciding on the variable name for you (and
thereby potentially clobbering one of your variables).

  share %vars;      # %vars now refers to the global share
  share my %vars;   # declare and share %vars in one step

=item spec_helper FILESPEC

Loads the Perl source in C<FILESPEC> into the current spec's package. If
C<FILESPEC> is relative (no leading slash), it is treated as relative to
the spec file (i.e. B<not> the currently running script). This lets you
keep helper scripts near the specs they are used by without exercising
your File::Spec skills in your specs.

  # in foo/spec.t
  spec_helper "helper.pl";          # loads foo/helper.pl
  spec_helper "helpers/helper.pl";  # loads foo/helpers/helper.pl
  spec_helper "/path/to/helper.pl"; # loads /path/to/helper.pl

=back

=head2 Shared example groups

This feature comes straight out of RSpec, as does this documentation:

You can create shared example groups and include those groups into other
groups.

Suppose you have some behavior that applies to all editions of your
product, both large and small.

First, factor out the "shared" behavior:

  shared_examples_for "all editions" => sub {
    it "should behave like all editions" => sub {
      ...
    };
  };

then when you need to define the behavior for the Large and Small
editions, reference the shared behavior using the
C<it_should_behave_like()> function.

  describe "SmallEdition" => sub {
    it_should_behave_like "all editions";
  };

  describe "LargeEdition" => sub {
    it_should_behave_like "all editions";
    it "should also behave like a large edition" => sub {
      ...
    };
  };

C<it_should_behave_like> will search for an example group by its
description string, in this case, "all editions".

Shared example groups may be included in other shared groups:

  shared_examples_for "All Employees" => sub {
    it "should be payable" => sub {
      ...
    };
  };

  shared_examples_for "All Managers" => sub {
    it_should_behave_like "All Employees";
    it "should be bonusable" => sub {
      ...
    };
  };

  describe Officer => sub {
    it_should_behave_like "All Managers";
    it "should be optionable";
  };

  # generates:
  ok 1 - Officer should be optionable
  ok 2 - Officer should be bonusable
  ok 3 - Officer should be payable

=head3 Refactoring into files

If you want to factor specs into separate files, variable scopes can be
tricky. This is especially true if you follow the recommended pattern
and give each spec its own package name. C<Test::Spec> offers a couple
of functions that ease this process considerably: L<share|/share %HASH>
and L<spec_helper|/spec_helper FILESPEC>.

Consider the browsers example from C<shared_examples_for>. A real
browser specification would be large, so putting the specs for all
browsers in the same file would be a bad idea. So let's say we create
C<all_browsers.pl> for the shared examples, and give Safari and Firefox
C<safari.t> and C<firefox.t>, respectively.

The problem then becomes: how does the code in C<all_browsers.pl> access
the C<$browser> variable? In L<the example code|/shared_examples_for DESCRIPTION =E<gt> CODE>,
C<$browser> is a lexical variable that is in scope for all the examples.
But once those examples are split into multiple files, you would have to
use either package global variables or worse, come up with some other
hack. This is where C<share> and C<spec_helper> come in.

  # safari.t
  package Testcase::Safari;
  use Test::Spec;
  spec_helper 'all_browsers.pl';

  describe "Safari" => sub {
    share my %vars;
    before all => sub { $vars{browser} = Safari->new };
    it_should_behave_like "all browsers";
    it "should have safari features";
  };

  # firefox.t
  package Testcase::Firefox;
  use Test::Spec;
  spec_helper 'all_browsers.pl';

  describe "Firefox" => sub {
    share my %vars;
    before all => sub { $vars{browser} = Firefox->new };
    it_should_behave_like "all browsers";
    it "should have firefox features";
  };

  # in all_browsers.pl
  shared_examples_for "all browsers" => sub {
    # doesn't have to be the same name!
    share my %t;
    it "should open a URL" => sub {
      ok $t{browser}->open("http://www.google.com/");
    };
    ...
  };

=head2 Order of execution

This example, shamelessly adapted from the RSpec website, gives an overview of
the order in which examples run, with particular attention to C<before> and
C<after>.

  describe Thing => sub {
    before all => sub {
      # This is run once and only once, before all of the examples
      # and before any before("each") blocks.
    };

    before each => sub {
      # This is run before each example.
    };

    before sub {
      # "each" is the default, so this is the same as before("each")
    };

    it "should do stuff" => sub {
      ...
    };

    it "should do more stuff" => sub {
      ...
    };

    after each => sub {
      # this is run after each example
    };

    after sub {
      # "each" is the default, so this is the same as after("each")
    };

    after all => sub {
      # this is run once and only once after all of the examples
      # and after any after("each") blocks
    };

  };

=head1 SEE ALSO

L<RSpec|http://rspec.info>, L<Test::More>, L<Test::Deep>, L<Test::Trap>,
L<Test::Builder>.

The mocking and stubbing tools are in L<Test::Spec::Mocks>.

=head1 AUTHOR

Philip Garrett <philip.garrett@icainformatics.com>

=head1 CONTRIBUTING

The source code for Test::Spec lives on L<github|https://github.com/kingpong/perl-Test-Spec>

If you want to contribute a patch, fork my repository, make your change,
and send me a pull request.

=head1 SUPPORT

If you have found a defect or have a feature request please report an
issue at https://github.com/kingpong/perl-Test-Spec/issues. For help
using the module, standard Perl support channels like
L<Stack Overflow|http://stackoverflow.com/> and
L<comp.lang.perl.misc|http://groups.google.com/group/comp.lang.perl.misc>
are probably your best bet.

=head1 COPYRIGHT & LICENSE

Copyright (c) 2010-2011 by Informatics Corporation of America.

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut