File: color.html

package info (click to toggle)
libtheora 1.1.1%2Bdfsg.1-14
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 7,460 kB
  • ctags: 3,487
  • sloc: ansic: 32,561; sh: 9,675; makefile: 743
file content (602 lines) | stat: -rw-r--r-- 18,375 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
<HTML>
<HEAD><TITLE>xiph.org: Ogg Theora documentation</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#202020" LINK="#006666" VLINK="#000000">
<H1><FONT COLOR="#000070">
Ogg Theora I specification: color space conventions
</FONT></H1>
<H1>Overview</H1>
<P>
There are a large number of different color standards used in digital video.
Since Theora is a lossy codec, it restricts itself to only a few of them to
 simplify playback.
Unlike the alternate method of describing all the parameters of the color
 model, this allows a few dedicated routines for color conversion to be written
 and heavily optimized in a decoder.
More flexible conversion functions should instead be specified in an encoder,
 where additional computational complexity is more easily tolerated.
The color spaces were selected to give a fair representation of color standards
 in use around the world today.
Most of the standards that do not exactly match one of these can be converted
 to one fairly easily.
</P>
<P>
The Theora codec identification header contains an 8-bit value that describes
 the color space.
This merely selects one of the color spaces available from an enumerated list.
Currently, only two color spaces are defined, with a third possibility that
 indicates the color space is "unknown".
All of them are Y'C<SUB>b</SUB>C<SUB>r</SUB> color spaces with one luma channel
 and two chroma channels.
Each channel contains 8-bit discrete values in the range 0-255, which represent
 non-linear gamma pre-corrected signals.
</P>
<H2>color space parameters</H2>
<P>
The parameters which describe each color space are listed below.
These are the parameters needed to map colors from the encoded
 Y'C<SUB>b</SUB>C<SUB>r</SUB> representation to the device-independent color
 space CIE XYZ (1931).
</P>
<DL>
<DT>Y'C<SUB>b</SUB>C<SUB>r</SUB> to Y'P<SUB>b</SUB>P<SUB>r</SUB></DT>
<DD>
<P>
This conversion takes 8-bit discrete values in the range 0-255 and maps them to
 real values in the range [0,1] for Y and [-1/2,1/2] for P<SUB>b</SUB>
 and P<SUB>r</SUB>.
Because some values may fall outside the offset and excursion defined for each
 channel in the Y'C<SUB>b</SUB>C<SUB>r</SUB> space, the results may fall
 outside these ranges in Y'P<SUB>b</SUB>P<SUB>r</SUB> space.
No clamping should be done at this stage.
</P>
<P>
Parameters: <EM>Offset<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM>,
 <EM>Excursion<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB>,</SUB></EM>
</P>
<TABLE>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">Y'<SUB>out</SUB></TD>
<TD>=</TD>
<TD ALIGN="LEFT">
(Y'<SUB>in</SUB>-<EM>Offset<SUB>Y</SUB></EM>)/
 <EM>Excursion<SUB>Y</SUB></EM>
</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">P<SUB>b</SUB></TD>
<TD>=</TD>
<TD ALIGN="LEFT">
(C<SUB>b</SUB>-<EM>Offset<SUB>C<SUB>b</SUB></SUB></EM>)/
 <EM>Excursion<SUB>C<SUB>b</SUB></SUB></EM>
</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">P<SUB>r</SUB></TD>
<TD>=</TD>
<TD ALIGN="LEFT">
(C<SUB>r</SUB>-<EM>Offset<SUB>C<SUB>r</SUB></SUB></EM>)/
 <EM>Excursion<SUB>C<SUB>r</SUB></SUB></EM>
</TD>
</TR>
</TABLE>
</DD>
<DT>Y'P<SUB>b</SUB>P<SUB>r</SUB> to R'G'B'</DT>
<DD>
<P>
This conversion takes the one luma and two chroma channel representation and
 maps it to the non-linear R'G'B' space used to drive actual output devices.
Values should be clamped into the range [0,1] after this stage.
<P>
Parameters: <EM>K<SUB>b</SUB></EM>, <EM>K<SUB>r</SUB></EM>
</P>
<TABLE>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">R'</TD>
<TD>=</TD>
<TD ALIGN="LEFT">Y' + 2(1-<EM>K<SUB>r</SUB></EM>)P<SUB>r</SUB></TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">G'</TD>
<TD>=</TD>
<TD ALIGN="LEFT">
Y' +
 2((<EM>K<SUB>b</SUB></EM>-1)<EM>K<SUB>b</SUB></EM>/
 (1-<EM>K<SUB>b</SUB></EM>-<EM>K<SUB>r</SUB></EM>))P<SUB>b</SUB> +
 2((<EM>K<SUB>r</SUB></EM>-1)<EM>K<SUB>r</SUB></EM>/
 (1-<EM>K<SUB>b</SUB></EM>-<EM>K<SUB>r</SUB></EM>))P<SUB>r</SUB>
</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">B'</TD>
<TD>=</TD>
<TD ALIGN="LEFT">Y' + 2(1-<EM>K<SUB>b</SUB></EM>)P<SUB>b</SUB></TD>
</TR>
</TABLE>
</DD>
<DT>R'G'B' to RGB (Output device gamma correction)</DT>
<DD>
<P>
This conversion takes the non-linear R'G'B' voltage levels and maps it to the
 linear light levels produced by the actual output device.
Note that this conversion is only that of the output device, and its inverse is
 <EM>not</EM> that used by the input device.
Because a dim viewing environment is assumed in most television standards, the
 overall gamma between the input and output devices is usually around 1.1 to
 1.2, and not a strict 1.0.
</P>
<P>
For calibration with actual output devices, the model
<TABLE>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">L</TD>
<TD>=</TD>
<TD ALIGN="LEFT">(E'+&Delta;)<SUP><EM>&gamma;</EM></SUP></TD>
</TR>
</TABLE>
should be used, with &Delta; the free parameter and <EM>&gamma;</EM> held
 fixed to the value specified in this document.
The conversion function presented here is an idealized version with &Delta;=0.
</P>
<P>
Parameters: <EM>&gamma;</EM>
</P>
<TABLE>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">R</TD>
<TD>=</TD>
<TD ALIGN="LEFT">R'<SUP><EM>&gamma;</EM></SUP></TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">G</TD>
<TD>=</TD>
<TD ALIGN="LEFT">G'<SUP><EM>&gamma;</EM></SUP></TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">B</TD>
<TD>=</TD>
<TD ALIGN="LEFT">B'<SUP><EM>&gamma;</EM></SUP></TD>
</TR>
</TABLE>
</DD>
<DT>RGB to R'G'B' (Input device gamma correction)</DT>
<DD>
<P>
This conversion takes linear light levels and maps them to the non-linear
 voltage levels used to drive the actual output device.
This information is merely informative.
It is not required for building a decoder or for converting between the various
 formats and the actual output capabilities of a particular device.
</P>
<P>
A linear segment is introduced on the low end to reduce noise in dark areas of
 the image.
The rest of the scale is adjusted so that the power segment of the curve
 intersects the linear segment with the proper slope, and so that it still maps
 0 to 0 and 1 to 1.
</P>
<P>
Parameters: <EM>&beta;</EM>, <EM>&alpha;</EM>, <EM>&delta;</EM>,
 <EM>&epsilon;</EM>
</P>
<TABLE>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">R'</TD>
<TD>=</TD>
<TD ALIGN="LEFT">
(1+<EM>&epsilon;</EM>)R<SUP>&beta;</SUP>-<EM>&epsilon;</EM>
</TD>
<TD>for <EM>&delta;</EM> &le; R &le; 1</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">R'</TD>
<TD>=</TD>
<TD ALIGN="LEFT"><EM>&alpha;</EM>R</TD>
<TD>for 0 &le; R &lt; <EM>&delta;</EM></TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">G'</TD>
<TD>=</TD>
<TD ALIGN="LEFT">
(1+<EM>&epsilon;</EM>)G<SUP>&beta;</SUP>-<EM>&epsilon;</EM>
</TD>
<TD>for <EM>&delta;</EM> &le; G &le; 1</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">G'</TD>
<TD>=</TD>
<TD ALIGN="LEFT"><EM>&alpha;</EM>G</TD>
<TD>for 0 &le; G &lt; <EM>&delta;</EM></TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">B'</TD>
<TD>=</TD>
<TD ALIGN="LEFT">
(1+<EM>&epsilon;</EM>)B<SUP>&beta;</SUP>-<EM>&epsilon;</EM>
</TD>
<TD>for <EM>&delta;</EM> &le; B &le; 1</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">B'</TD>
<TD>=</TD>
<TD ALIGN="LEFT"><EM>&alpha;</EM>B</TD>
<TD>for 0 &le; B &lt; <EM>&delta;</EM></TD>
</TR>
</TABLE>
</DD>
<DT>RGB to CIE XYZ (1931)</DT>
<DD>
<P>
This conversion maps a device-dependent linear RGB space to the
 device-independent linear CIE XYZ space.
The parameters are the CIE chromaticity coordinates of the three primaries,
 red, green, and blue, as well as the chromaticity coordinates of the white
 point of the device.
This is how hardware manufacturers and standards typically describe a
 particular RGB space.
The math required to convert these parameters into a useful transformation
 matrix is reproduced below.
</P>
<P>
Parameters: <EM>x<SUB>r,g,b,w</SUB></EM>, <EM>y<SUB>r,g,b,w</SUB></EM>
</P>
<TABLE>
<TR>
<TD ALIGN="RIGHT">F</TD>
<TD>=</TD>
<TD ALIGN="LEFT"><TABLE><TR>
<TD><FONT SIZE="300%">(</FONT></TD>
<TD><TABLE>
<TR>
<TD ALIGN="CENTER"><EM>x<SUB>r</SUB></EM>/<EM>y<SUB>r</SUB></EM></TD>
<TD ALIGN="CENTER"><EM>x<SUB>g</SUB></EM>/<EM>y<SUB>g</SUB></EM></TD>
<TD ALIGN="CENTER"><EM>x<SUB>b</SUB></EM>/<EM>y<SUB>b</SUB></EM></TD>
</TR>
<TR>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
<TD ALIGN="CENTER">1</TD>
</TR>
<TR>
<TD ALIGN="CENTER">
(1-<EM>x<SUB>r</SUB></EM>-<EM>y<SUB>r</SUB></EM>)/<EM>y<SUB>r</SUB></EM>
</TD>
<TD ALIGN="CENTER">
(1-<EM>x<SUB>g</SUB></EM>-<EM>y<SUB>g</SUB></EM>)/<EM>y<SUB>g</SUB></EM>
</TD>
<TD ALIGN="CENTER">
(1-<EM>x<SUB>b</SUB></EM>-<EM>y<SUB>b</SUB></EM>)/<EM>y<SUB>b</SUB></EM>
</TD>
</TR>
</TABLE></TD>
<TD<FONT SIZE="300%">)</FONT></TD>
</TR></TABLE></TD>
</TR>
<TR>
<TD ALIGN="RIGHT"><TABLE><TR>
<TD><FONT SIZE="300%">(</FONT></TD>
<TD><TABLE>
<TR><TD ALIGN="CENTER">s<SUB>r</SUB></TD></TR>
<TR><TD ALIGN="CENTER">s<SUB>g</SUB></TD></TR>
<TR><TD ALIGN="CENTER">s<SUB>b</SUB></TD></TR>
</TABLE></TD>
<TD><FONT SIZE="300%">)</FONT></TD>
</TR></TABLE></TD>
<TD>=</TD>
<TD ALIGN="LEFT"><TABLE><TR>
<TD>F<SUP>-1</SUP><FONT SIZE="300%">(</FONT></TD>
<TD><TABLE>
<TR><TD ALIGN="CENTER"><EM>x<SUB>w</SUB></EM>/<EM>y<SUB>w</SUB></EM></TD></TR>
<TR><TD ALIGN="CENTER">1</TD></TR>
<TR><TD ALIGN="CENTER">
(1-<EM>x<SUB>w</SUB></EM>-<EM>y<SUB>w</SUB></EM>)/<EM>y<SUB>w</SUB></EM>
</TD></TR>
</TABLE></TD>
<TD><FONT SIZE="300%">)</FONT></TD>
</TR></TABLE></TD>
</TR>
<TR>
<TD ALIGN="RIGHT"><TABLE><TR>
<TD><FONT SIZE="300%">(</FONT></TD>
<TD><TABLE>
<TR><TD ALIGN="CENTER">X</TD></TR>
<TR><TD ALIGN="CENTER">Y</TD></TR>
<TR><TD ALIGN="CENTER">Z</TD></TR>
</TABLE></TD>
<TD><FONT SIZE="300%">)</FONT></TD>
</TR></TABLE></TD>
<TD>=</TD>
<TD ALIGN="LEFT"><TABLE><TR>
<TD>F<FONT SIZE="300%">(</FONT></TD>
<TD><TABLE>
<TR><TD ALIGN="CENTER">s<SUB>r</SUB>R</TD></TR>
<TR><TD ALIGN="CENTER">s<SUB>g</SUB>G</TD></TR>
<TR><TD ALIGN="CENTER">s<SUB>b</SUB>B</TD></TR>
</TABLE></TD>
<TD><FONT SIZE="300%">)</FONT></TD>
</TR></TABLE></TD>
</TR>
</TABLE>
</DD>
</DL>
<H2>available color spaces</H2>
<P>
These are the color spaces currently defined for use by Ogg Theora video.
Each one has a short name, with which it is referred to in this document, and
 a more detailed specification of the standards from which its parameters are
 derived.
Some standards do not specify all the parameters necessary.
For these unspecified parameters, this document serves as the definition of
 what should be used when encoding or decoding Ogg Theora video.
<H3>Rec 470M (Rec. ITU-R BT.470-6 System M/NTSC with Rec. ITU-R BT.601-5)</H3>
<P>
This color space is used by broadcast television and DVDs in much of the
 Americas, Japan, Korea, and the Union of Myanmar
 [<A HREF="#Rec470">Rec470</A>].
This color space may also be used for System M/PAL (Brazil), with an
 appropriate conversion supplied by the encoder to compensate for the
 different gamma value.
See the Rec 470BG section for an appropriate gamma value to assume for M/PAL
 input.
</P>
<P>
In the US, studio monitors are adjusted to a D65 white point
 (<EM>x<SUB>w</SUB></EM>,<EM>y<SUB>w</SUB></EM>=0.313,0.329).
In Japan, studio monitors are adjusted to a D white of 9300K
 (<EM>x<SUB>w</SUB></EM>,<EM>y<SUB>w</SUB></EM>=0.285,0.293).
</P>
<P>
Rec 470 does not specify a digital encoding of the color signals.
For Ogg Theora, Rec. ITU-R BT.601-5 is used, starting from the R'G'B' signals
 specified by Rec 470 [<A HREF="#Rec601">Rec601</A>].
</P>
<P>
<P>
Rec 470 does not specify an input gamma function.
For Ogg Theora, the Rec 709 input function is used.
This is the same as that specified by SMPTE 170M, which claims to reflect
 modern practice in the creation of NTSC signals (c. 1994)
 [<A HREF="#SMPTE170M">SMPTE170M</A>].
</P>
<H4>parameters</H4>
<TABLE>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>Offset<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT" COLSPAN="2">(16,128,128)</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">
<EM>Excursion<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM>
</TD>
<TD>=</TD>
<TD ALIGN="LEFT" COLSPAN="2">(219,224,224)</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>K<SUB>b</SUB></EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT" COLSPAN="2">0.114</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>K<SUB>r</SUB></EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT" COLSPAN="2">0.299</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&gamma;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">2.2</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&beta;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">0.45</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&alpha;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">4.5</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&delta;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">0.018</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&epsilon;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">0.099</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>x<SUB>r</SUB></EM>,<EM>y<SUB>r</SUB></EM></TD>
<TD>=</TD>
<TD>0.67,</TD>
<TD>0.33</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>x<SUB>g</SUB></EM>,<EM>y<SUB>g</SUB></EM></TD>
<TD>=</TD>
<TD>0.21,</TD>
<TD>0.71</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>x<SUB>b</SUB></EM>,<EM>y<SUB>b</SUB></EM></TD>
<TD>=</TD>
<TD>0.14,</TD>
<TD>0.08</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">
(Illuminant C) <EM>x<SUB>w</SUB></EM>,<EM>y<SUB>w</SUB></EM>
</TD>
<TD>=</TD>
<TD>0.310,</TD>
<TD>0.316</TD>
</TR>
</TABLE>
<H3>
Rec 470BG (Rec. ITU-R BT.470-6 Systems B and G with Rec. ITU-R BT.601-5)
</H3>
<P>
This color space is used by the PAL and SECAM systems in much of the rest of
 the world [<A HREF="#Rec470">Rec470</A>].
This can be used directly by systems (B, B1, D, D1, G, H, I, K, N)/PAL and (B,
 D, G, H, K, K1, L)/SECAM.
</P>
<P>
Note that the Rec 470BG chromaticity values are different from those specified
 in Rec 470M.
When PAL and SECAM systems were first designed, they were based upon the same
 primaries as NTSC.
However, as methods of making color picture tubes have changed, the primaries
 used have changed as well.
The US recommends using correction circuitry to approximate the existing,
 standard NTSC primaries.
Current PAL and SECAM systems have standardized on primaries in accord with
 more recent technology.
</P>
<P>
Rec 470 provisionally permits the use of the NTSC chromaticity values (given
 above) with legacy PAL and SECAM equipment.
In Ogg Theora, material must be decoded assuming the new PAL and SECAM
 primaries.
Material intended for display on old legacy devices should be converted by the
 decoder.
</P>
<P>
The official Rec 470BG specifies a gamma value of <EM>&gamma;</EM>=2.8.
However, in practice this value is unrealistically high
 [<A HREF="#RefPoy97">Poy97</A>].
Rec 470BG states that the overall system gamma should be approximately
 <EM>&gamma;</EM>/<EM>&beta;</EM>=1.2.
However, most cameras pre-correct with a gamma value of <EM>&beta;</EM>=0.45,
 which suggests an output device gamma of approximately <EM>&gamma;</EM>=2.67.
This is the value recommended for use with PAL systems in Ogg Theora.
</P>
<P>
Rec 470 does not specify a digital encoding of the color signals.
For Ogg Theora, Rec. ITU-R BT.601-5 is used, starting from the R'G'B' signals
 specified by Rec 470 [<A HREF="#Rec601">Rec601</A>].
</P>
<P>
Rec 470 does not specify an input gamma function.
For Ogg Theora, the Rec 709 input function is used.
</P>
<H4>parameters</H4>
<TABLE>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>Offset<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT" COLSPAN="2">(16,128,128)</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">
<EM>Excursion<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM>
</TD>
<TD>=</TD>
<TD ALIGN="LEFT" COLSPAN="2">(219,224,224)</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>K<SUB>b</SUB></EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT" COLSPAN="2">0.114</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>K<SUB>r</SUB></EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT" COLSPAN="2">0.299</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&gamma;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">2.67</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&beta;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">0.45</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&alpha;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">4.5</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&delta;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">0.018</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>&epsilon;</EM></TD>
<TD>=</TD>
<TD ALIGN="LEFT">0.099</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>x<SUB>r</SUB></EM>,<EM>y<SUB>r</SUB></EM></TD>
<TD>=</TD>
<TD>0.64,</TD>
<TD>0.33</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>x<SUB>g</SUB></EM>,<EM>y<SUB>g</SUB></EM></TD>
<TD>=</TD>
<TD>0.29,</TD>
<TD>0.60</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT"><EM>x<SUB>b</SUB></EM>,<EM>y<SUB>b</SUB></EM></TD>
<TD>=</TD>
<TD>0.15,</TD>
<TD>0.06</TD>
</TR>
<TR VALIGN="BOTTOM">
<TD ALIGN="RIGHT">
(D65) <EM>x<SUB>w</SUB></EM>,<EM>y<SUB>w</SUB></EM>
</TD>
<TD>=</TD>
<TD>0.313,</TD>
<TD>0.329</TD>
</TR>
</TABLE>
<H2>references</H2>
<DL>
<DT>[<A NAME="Poy97">Poy97</A>]</DT>
<DD>
Poynton, Charles, <I>Frequently-Asked Questions about Gamma</I>.
 <A HREF="http://www.poynton.com/GammaFAQ.html">http://www.poynton.com/GammaFAQ/html</A>,
 Feb. 1997.
</DD>
<DT>[<A NAME="Rec470">Rec470</A>]</DT>
<DD>
Recommendation ITU-R BT.470-6, <I>Conventional Television Systems</I>
 (1970, revised 1998). International Telecommunications Union, 1211 Geneva 20,
 Switzerland.
</DD>
<DT>[<A NAME="Rec601">Rec601</A>]</DT>
<DD>
Recommendation ITU-R BT.601-5, <I>Studio Encoding Parameters of
 Digital Television for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios</I>
 (1982, revised 1995). International Telecommunications Union, 1211 Geneva 20,
 Switzerland.
</DD>
<DT>[<A NAME="Rec709">Rec709</A>]</DT>
<DD>
Recommendation ITU-R BT.709-5, <I>Parameter values for the
 HDTV standards for production and international programme exchange</I>
 (1990, revised 2002). International Telecommunications Union, 1211 Geneva 20,
 Switzerland.
</DD>
<DT>[<A NAME="SMPTE170M">SMPTE170M</A>]</DT>
<DD>
Society of Motion Picture and Television Engineers, <I>Television &mdash;
 Composite Analog Video Signal &mdash; NTSC for Studio Applications</I>.
 SMPTE-170M, 1994
</DD>
<DT>[<A NAME="SMPTE240M">SMPTE240M</A>]</DT>
<DD>
Society of Motion Picture and Television Engineers, <I>Television &mdash;
 Signal Parameters &mdash; 1125-Line High-Definition Production</I>.
 SMPTE-240M, 1999.
</DD>
</DL>
</BODY>
</HTML>