1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
|
/*******************************************************************************
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#pragma once
#include <thrust/detail/config.h>
#if THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC
#include <thrust/system/cuda/config.h>
#include <thrust/system/cuda/detail/reduce.h>
#include <thrust/detail/cstdint.h>
#include <thrust/detail/temporary_array.h>
#include <thrust/extrema.h>
#include <thrust/pair.h>
#include <thrust/distance.h>
#include <cub/util_math.cuh>
THRUST_NAMESPACE_BEGIN
namespace cuda_cub {
namespace __extrema {
template <class InputType, class IndexType, class Predicate>
struct arg_min_f
{
Predicate predicate;
typedef tuple<InputType, IndexType> pair_type;
__host__ __device__
arg_min_f(Predicate p) : predicate(p) {}
pair_type __device__
operator()(pair_type const &lhs, pair_type const &rhs)
{
InputType const &rhs_value = get<0>(rhs);
InputType const &lhs_value = get<0>(lhs);
IndexType const &rhs_key = get<1>(rhs);
IndexType const &lhs_key = get<1>(lhs);
// check values first
if (predicate(lhs_value, rhs_value))
return lhs;
else if (predicate(rhs_value, lhs_value))
return rhs;
// values are equivalent, prefer smaller index
if (lhs_key < rhs_key)
return lhs;
else
return rhs;
}
}; // struct arg_min_f
template <class InputType, class IndexType, class Predicate>
struct arg_max_f
{
Predicate predicate;
typedef tuple<InputType, IndexType> pair_type;
__host__ __device__
arg_max_f(Predicate p) : predicate(p) {}
pair_type __device__
operator()(pair_type const &lhs, pair_type const &rhs)
{
InputType const &rhs_value = get<0>(rhs);
InputType const &lhs_value = get<0>(lhs);
IndexType const &rhs_key = get<1>(rhs);
IndexType const &lhs_key = get<1>(lhs);
// check values first
if (predicate(lhs_value, rhs_value))
return rhs;
else if (predicate(rhs_value, lhs_value))
return lhs;
// values are equivalent, prefer smaller index
if (lhs_key < rhs_key)
return lhs;
else
return rhs;
}
}; // struct arg_max_f
template<class InputType, class IndexType, class Predicate>
struct arg_minmax_f
{
Predicate predicate;
typedef tuple<InputType, IndexType> pair_type;
typedef tuple<pair_type, pair_type> two_pairs_type;
typedef arg_min_f<InputType, IndexType, Predicate> arg_min_t;
typedef arg_max_f<InputType, IndexType, Predicate> arg_max_t;
__host__ __device__
arg_minmax_f(Predicate p) : predicate(p)
{
}
two_pairs_type __device__
operator()(two_pairs_type const &lhs, two_pairs_type const &rhs)
{
pair_type const &rhs_min = get<0>(rhs);
pair_type const &lhs_min = get<0>(lhs);
pair_type const &rhs_max = get<1>(rhs);
pair_type const &lhs_max = get<1>(lhs);
auto result = thrust::make_tuple(arg_min_t(predicate)(lhs_min, rhs_min),
arg_max_t(predicate)(lhs_max, rhs_max));
return result;
}
struct duplicate_tuple
{
__device__ two_pairs_type
operator()(pair_type const &t)
{
return thrust::make_tuple(t, t);
}
};
}; // struct arg_minmax_f
template <class T,
class InputIt,
class OutputIt,
class Size,
class ReductionOp>
cudaError_t THRUST_RUNTIME_FUNCTION
doit_step(void * d_temp_storage,
size_t & temp_storage_bytes,
InputIt input_it,
Size num_items,
ReductionOp reduction_op,
OutputIt output_it,
cudaStream_t stream,
bool debug_sync)
{
using core::AgentPlan;
using core::AgentLauncher;
using core::get_agent_plan;
using core::cuda_optional;
typedef typename detail::make_unsigned_special<Size>::type UnsignedSize;
if (num_items == 0)
return cudaErrorNotSupported;
typedef AgentLauncher<
__reduce::ReduceAgent<InputIt, OutputIt, T, Size, ReductionOp> >
reduce_agent;
typename reduce_agent::Plan reduce_plan = reduce_agent::get_plan(stream);
cudaError_t status = cudaSuccess;
if (num_items <= reduce_plan.items_per_tile)
{
size_t vshmem_size = core::vshmem_size(reduce_plan.shared_memory_size, 1);
// small, single tile size
if (d_temp_storage == NULL)
{
temp_storage_bytes = max<size_t>(1, vshmem_size);
return status;
}
char *vshmem_ptr = vshmem_size > 0 ? (char*)d_temp_storage : NULL;
reduce_agent ra(reduce_plan, num_items, stream, vshmem_ptr, "reduce_agent: single_tile only", debug_sync);
ra.launch(input_it, output_it, num_items, reduction_op);
CUDA_CUB_RET_IF_FAIL(cudaPeekAtLastError());
}
else
{
// regular size
cuda_optional<int> sm_count = core::get_sm_count();
CUDA_CUB_RET_IF_FAIL(sm_count.status());
// reduction will not use more cta counts than requested
cuda_optional<int> max_blocks_per_sm =
reduce_agent::
template get_max_blocks_per_sm<InputIt,
OutputIt,
Size,
cub::GridEvenShare<Size>,
cub::GridQueue<UnsignedSize>,
ReductionOp>(reduce_plan);
CUDA_CUB_RET_IF_FAIL(max_blocks_per_sm.status());
int reduce_device_occupancy = (int)max_blocks_per_sm * sm_count;
int sm_oversubscription = 5;
int max_blocks = reduce_device_occupancy * sm_oversubscription;
cub::GridEvenShare<Size> even_share;
even_share.DispatchInit(num_items, max_blocks,
reduce_plan.items_per_tile);
// we will launch at most "max_blocks" blocks in a grid
// so preallocate virtual shared memory storage for this if required
//
size_t vshmem_size = core::vshmem_size(reduce_plan.shared_memory_size,
max_blocks);
// Temporary storage allocation requirements
void * allocations[3] = {NULL, NULL, NULL};
size_t allocation_sizes[3] =
{
max_blocks * sizeof(T), // bytes needed for privatized block reductions
cub::GridQueue<UnsignedSize>::AllocationSize(), // bytes needed for grid queue descriptor0
vshmem_size // size of virtualized shared memory storage
};
status = cub::AliasTemporaries(d_temp_storage,
temp_storage_bytes,
allocations,
allocation_sizes);
CUDA_CUB_RET_IF_FAIL(status);
if (d_temp_storage == NULL)
{
return status;
}
T *d_block_reductions = (T*) allocations[0];
cub::GridQueue<UnsignedSize> queue(allocations[1]);
char *vshmem_ptr = vshmem_size > 0 ? (char *)allocations[2] : NULL;
// Get grid size for device_reduce_sweep_kernel
int reduce_grid_size = 0;
if (reduce_plan.grid_mapping == cub::GRID_MAPPING_RAKE)
{
// Work is distributed evenly
reduce_grid_size = even_share.grid_size;
}
else if (reduce_plan.grid_mapping == cub::GRID_MAPPING_DYNAMIC)
{
// Work is distributed dynamically
size_t num_tiles = cub::DivideAndRoundUp(num_items, reduce_plan.items_per_tile);
// if not enough to fill the device with threadblocks
// then fill the device with threadblocks
reduce_grid_size = static_cast<int>((min)(num_tiles, static_cast<size_t>(reduce_device_occupancy)));
typedef AgentLauncher<__reduce::DrainAgent<Size> > drain_agent;
AgentPlan drain_plan = drain_agent::get_plan();
drain_plan.grid_size = 1;
drain_agent da(drain_plan, stream, "__reduce::drain_agent", debug_sync);
da.launch(queue, num_items);
CUDA_CUB_RET_IF_FAIL(cudaPeekAtLastError());
}
else
{
CUDA_CUB_RET_IF_FAIL(cudaErrorNotSupported);
}
reduce_plan.grid_size = reduce_grid_size;
reduce_agent ra(reduce_plan, stream, vshmem_ptr, "reduce_agent: regular size reduce", debug_sync);
ra.launch(input_it,
d_block_reductions,
num_items,
even_share,
queue,
reduction_op);
CUDA_CUB_RET_IF_FAIL(cudaPeekAtLastError());
typedef AgentLauncher<
__reduce::ReduceAgent<T*, OutputIt, T, Size, ReductionOp> >
reduce_agent_single;
reduce_plan.grid_size = 1;
reduce_agent_single ra1(reduce_plan, stream, vshmem_ptr, "reduce_agent: single tile reduce", debug_sync);
ra1.launch(d_block_reductions, output_it, reduce_grid_size, reduction_op);
CUDA_CUB_RET_IF_FAIL(cudaPeekAtLastError());
}
return status;
} // func doit_step
// this is an init-less reduce, needed for min/max-element functionality
// this will avoid copying the first value from device->host
template <typename Derived,
typename InputIt,
typename Size,
typename BinaryOp,
typename T>
THRUST_RUNTIME_FUNCTION
T extrema(execution_policy<Derived>& policy,
InputIt first,
Size num_items,
BinaryOp binary_op,
T*)
{
size_t temp_storage_bytes = 0;
cudaStream_t stream = cuda_cub::stream(policy);
bool debug_sync = THRUST_DEBUG_SYNC_FLAG;
cudaError_t status;
THRUST_INDEX_TYPE_DISPATCH(status, doit_step<T>, num_items,
(NULL, temp_storage_bytes, first, num_items_fixed,
binary_op, reinterpret_cast<T*>(NULL), stream,
debug_sync));
cuda_cub::throw_on_error(status, "extrema failed on 1st step");
size_t allocation_sizes[2] = {sizeof(T*), temp_storage_bytes};
void * allocations[2] = {NULL, NULL};
size_t storage_size = 0;
status = core::alias_storage(NULL,
storage_size,
allocations,
allocation_sizes);
cuda_cub::throw_on_error(status, "extrema failed on 1st alias storage");
// Allocate temporary storage.
thrust::detail::temporary_array<thrust::detail::uint8_t, Derived>
tmp(policy, storage_size);
void *ptr = static_cast<void*>(tmp.data().get());
status = core::alias_storage(ptr,
storage_size,
allocations,
allocation_sizes);
cuda_cub::throw_on_error(status, "extrema failed on 2nd alias storage");
T* d_result = thrust::detail::aligned_reinterpret_cast<T*>(allocations[0]);
THRUST_INDEX_TYPE_DISPATCH(status, doit_step<T>, num_items,
(allocations[1], temp_storage_bytes, first,
num_items_fixed, binary_op, d_result, stream,
debug_sync));
cuda_cub::throw_on_error(status, "extrema failed on 2nd step");
status = cuda_cub::synchronize(policy);
cuda_cub::throw_on_error(status, "extrema failed to synchronize");
T result = cuda_cub::get_value(policy, d_result);
return result;
}
template <template <class, class, class> class ArgFunctor,
class Derived,
class ItemsIt,
class BinaryPred>
ItemsIt THRUST_RUNTIME_FUNCTION
element(execution_policy<Derived> &policy,
ItemsIt first,
ItemsIt last,
BinaryPred binary_pred)
{
if (first == last)
return last;
typedef typename iterator_traits<ItemsIt>::value_type InputType;
typedef typename iterator_traits<ItemsIt>::difference_type IndexType;
IndexType num_items = static_cast<IndexType>(thrust::distance(first, last));
typedef tuple<ItemsIt, counting_iterator_t<IndexType> > iterator_tuple;
typedef zip_iterator<iterator_tuple> zip_iterator;
iterator_tuple iter_tuple = thrust::make_tuple(first, counting_iterator_t<IndexType>(0));
typedef ArgFunctor<InputType, IndexType, BinaryPred> arg_min_t;
typedef tuple<InputType, IndexType> T;
zip_iterator begin = make_zip_iterator(iter_tuple);
T result = extrema(policy,
begin,
num_items,
arg_min_t(binary_pred),
(T *)(NULL));
return first + thrust::get<1>(result);
}
} // namespace __extrema
/// min element
__thrust_exec_check_disable__
template <class Derived,
class ItemsIt,
class BinaryPred>
ItemsIt __host__ __device__
min_element(execution_policy<Derived> &policy,
ItemsIt first,
ItemsIt last,
BinaryPred binary_pred)
{
ItemsIt ret = first;
if (__THRUST_HAS_CUDART__)
{
ret = __extrema::element<__extrema::arg_min_f>(policy,
first,
last,
binary_pred);
}
else
{
#if !__THRUST_HAS_CUDART__
ret = thrust::min_element(cvt_to_seq(derived_cast(policy)),
first,
last,
binary_pred);
#endif
}
return ret;
}
template <class Derived,
class ItemsIt>
ItemsIt __host__ __device__
min_element(execution_policy<Derived> &policy,
ItemsIt first,
ItemsIt last)
{
typedef typename iterator_value<ItemsIt>::type value_type;
return cuda_cub::min_element(policy, first, last, less<value_type>());
}
/// max element
__thrust_exec_check_disable__
template <class Derived,
class ItemsIt,
class BinaryPred>
ItemsIt __host__ __device__
max_element(execution_policy<Derived> &policy,
ItemsIt first,
ItemsIt last,
BinaryPred binary_pred)
{
ItemsIt ret = first;
if (__THRUST_HAS_CUDART__)
{
ret = __extrema::element<__extrema::arg_max_f>(policy,
first,
last,
binary_pred);
}
else
{
#if !__THRUST_HAS_CUDART__
ret = thrust::max_element(cvt_to_seq(derived_cast(policy)),
first,
last,
binary_pred);
#endif
}
return ret;
}
template <class Derived,
class ItemsIt>
ItemsIt __host__ __device__
max_element(execution_policy<Derived> &policy,
ItemsIt first,
ItemsIt last)
{
typedef typename iterator_value<ItemsIt>::type value_type;
return cuda_cub::max_element(policy, first, last, less<value_type>());
}
/// minmax element
__thrust_exec_check_disable__
template <class Derived,
class ItemsIt,
class BinaryPred>
pair<ItemsIt, ItemsIt> __host__ __device__
minmax_element(execution_policy<Derived> &policy,
ItemsIt first,
ItemsIt last,
BinaryPred binary_pred)
{
pair<ItemsIt, ItemsIt> ret = thrust::make_pair(first, first);
if (__THRUST_HAS_CUDART__)
{
if (first == last)
return thrust::make_pair(last, last);
typedef typename iterator_traits<ItemsIt>::value_type InputType;
typedef typename iterator_traits<ItemsIt>::difference_type IndexType;
IndexType num_items = static_cast<IndexType>(thrust::distance(first, last));
typedef tuple<ItemsIt, counting_iterator_t<IndexType> > iterator_tuple;
typedef zip_iterator<iterator_tuple> zip_iterator;
iterator_tuple iter_tuple = thrust::make_tuple(first, counting_iterator_t<IndexType>(0));
typedef __extrema::arg_minmax_f<InputType, IndexType, BinaryPred> arg_minmax_t;
typedef typename arg_minmax_t::two_pairs_type two_pairs_type;
typedef typename arg_minmax_t::duplicate_tuple duplicate_t;
typedef transform_input_iterator_t<two_pairs_type,
zip_iterator,
duplicate_t>
transform_t;
zip_iterator begin = make_zip_iterator(iter_tuple);
two_pairs_type result = __extrema::extrema(policy,
transform_t(begin, duplicate_t()),
num_items,
arg_minmax_t(binary_pred),
(two_pairs_type *)(NULL));
ret = thrust::make_pair(first + get<1>(get<0>(result)),
first + get<1>(get<1>(result)));
}
else
{
#if !__THRUST_HAS_CUDART__
ret = thrust::minmax_element(cvt_to_seq(derived_cast(policy)),
first,
last,
binary_pred);
#endif
}
return ret;
}
template <class Derived,
class ItemsIt>
pair<ItemsIt, ItemsIt> __host__ __device__
minmax_element(execution_policy<Derived> &policy,
ItemsIt first,
ItemsIt last)
{
typedef typename iterator_value<ItemsIt>::type value_type;
return cuda_cub::minmax_element(policy, first, last, less<value_type>());
}
} // namespace cuda_cub
THRUST_NAMESPACE_END
#endif
|