1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
|
/******************************************************************************
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#pragma once
#include <thrust/detail/config.h>
#if THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC
#include <thrust/system/cuda/config.h>
#include <thrust/detail/cstdint.h>
#include <thrust/detail/temporary_array.h>
#include <thrust/system/cuda/detail/util.h>
#include <thrust/detail/raw_reference_cast.h>
#include <thrust/detail/type_traits/iterator/is_output_iterator.h>
#include <cub/device/device_reduce.cuh>
#include <thrust/system/cuda/detail/par_to_seq.h>
#include <thrust/system/cuda/detail/get_value.h>
#include <thrust/system/cuda/detail/dispatch.h>
#include <thrust/system/cuda/detail/make_unsigned_special.h>
#include <thrust/functional.h>
#include <thrust/system/cuda/detail/core/agent_launcher.h>
#include <thrust/detail/minmax.h>
#include <thrust/distance.h>
#include <thrust/detail/alignment.h>
#include <cub/util_math.cuh>
THRUST_NAMESPACE_BEGIN
// forward declare generic reduce
// to circumvent circular dependency
template <typename DerivedPolicy,
typename InputIterator,
typename T,
typename BinaryFunction>
T __host__ __device__
reduce(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
InputIterator first,
InputIterator last,
T init,
BinaryFunction binary_op);
namespace cuda_cub {
namespace __reduce {
template<bool>
struct is_true : thrust::detail::false_type {};
template<>
struct is_true<true> : thrust::detail::true_type {};
template <int _BLOCK_THREADS,
int _ITEMS_PER_THREAD = 1,
int _VECTOR_LOAD_LENGTH = 1,
cub::BlockReduceAlgorithm _BLOCK_ALGORITHM = cub::BLOCK_REDUCE_RAKING,
cub::CacheLoadModifier _LOAD_MODIFIER = cub::LOAD_DEFAULT,
cub::GridMappingStrategy _GRID_MAPPING = cub::GRID_MAPPING_DYNAMIC>
struct PtxPolicy
{
enum
{
BLOCK_THREADS = _BLOCK_THREADS,
ITEMS_PER_THREAD = _ITEMS_PER_THREAD,
VECTOR_LOAD_LENGTH = _VECTOR_LOAD_LENGTH,
ITEMS_PER_TILE = _BLOCK_THREADS * _ITEMS_PER_THREAD
};
static const cub::BlockReduceAlgorithm BLOCK_ALGORITHM = _BLOCK_ALGORITHM;
static const cub::CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER;
static const cub::GridMappingStrategy GRID_MAPPING = _GRID_MAPPING;
}; // struct PtxPolicy
template<class,class>
struct Tuning;
template <class T>
struct Tuning<sm30, T>
{
enum
{
// Relative size of T type to a 4-byte word
SCALE_FACTOR_4B = (sizeof(T) + 3) / 4,
// Relative size of T type to a 1-byte word
SCALE_FACTOR_1B = sizeof(T),
};
typedef PtxPolicy<256,
CUB_MAX(1, 20 / SCALE_FACTOR_4B),
2,
cub::BLOCK_REDUCE_WARP_REDUCTIONS,
cub::LOAD_DEFAULT,
cub::GRID_MAPPING_RAKE>
type;
}; // Tuning sm30
template <class T>
struct Tuning<sm35, T> : Tuning<sm30,T>
{
// ReducePolicy1B (GTX Titan: 228.7 GB/s @ 192M 1B items)
typedef PtxPolicy<128,
CUB_MAX(1, 24 / Tuning::SCALE_FACTOR_1B),
4,
cub::BLOCK_REDUCE_WARP_REDUCTIONS,
cub::LOAD_LDG,
cub::GRID_MAPPING_DYNAMIC>
ReducePolicy1B;
// ReducePolicy4B types (GTX Titan: 255.1 GB/s @ 48M 4B items)
typedef PtxPolicy<256,
CUB_MAX(1, 20 / Tuning::SCALE_FACTOR_4B),
4,
cub::BLOCK_REDUCE_WARP_REDUCTIONS,
cub::LOAD_LDG,
cub::GRID_MAPPING_DYNAMIC>
ReducePolicy4B;
typedef typename thrust::detail::conditional<(sizeof(T) < 4),
ReducePolicy1B,
ReducePolicy4B>::type type;
}; // Tuning sm35
template <class InputIt,
class OutputIt,
class T,
class Size,
class ReductionOp>
struct ReduceAgent
{
typedef typename detail::make_unsigned_special<Size>::type UnsignedSize;
template<class Arch>
struct PtxPlan : Tuning<Arch,T>::type
{
// we need this type definition to indicate "specialize_plan" metafunction
// that this PtxPlan may have specializations for different Arch
// via Tuning<Arch,T> type.
//
typedef Tuning<Arch,T> tuning;
typedef typename cub::CubVector<T, PtxPlan::VECTOR_LOAD_LENGTH> Vector;
typedef typename core::LoadIterator<PtxPlan, InputIt>::type LoadIt;
typedef cub::BlockReduce<T,
PtxPlan::BLOCK_THREADS,
PtxPlan::BLOCK_ALGORITHM,
1,
1,
Arch::ver>
BlockReduce;
typedef cub::CacheModifiedInputIterator<PtxPlan::LOAD_MODIFIER,
Vector,
Size>
VectorLoadIt;
struct TempStorage
{
typename BlockReduce::TempStorage reduce;
//
Size dequeue_offset;
}; // struct TempStorage
}; // struct PtxPlan
// Reduction need additional information which is not covered in
// default core::AgentPlan. We thus inherit from core::AgentPlan
// and add additional member fields that are needed.
// Other algorithms, e.g. merge, may not need additional information,
// and may use AgentPlan directly, instead of defining their own Plan type.
//
struct Plan : core::AgentPlan
{
cub::GridMappingStrategy grid_mapping;
template <class P>
THRUST_RUNTIME_FUNCTION
Plan(P) : core::AgentPlan(P()),
grid_mapping(P::GRID_MAPPING)
{
}
};
// this specialized PtxPlan for a device-compiled Arch
// ptx_plan type *must* only be used from device code
// Its use from host code will result in *undefined behaviour*
//
typedef typename core::specialize_plan_msvc10_war<PtxPlan>::type::type ptx_plan;
typedef typename ptx_plan::TempStorage TempStorage;
typedef typename ptx_plan::Vector Vector;
typedef typename ptx_plan::LoadIt LoadIt;
typedef typename ptx_plan::BlockReduce BlockReduce;
typedef typename ptx_plan::VectorLoadIt VectorLoadIt;
enum
{
ITEMS_PER_THREAD = ptx_plan::ITEMS_PER_THREAD,
BLOCK_THREADS = ptx_plan::BLOCK_THREADS,
ITEMS_PER_TILE = ptx_plan::ITEMS_PER_TILE,
VECTOR_LOAD_LENGTH = ptx_plan::VECTOR_LOAD_LENGTH,
ATTEMPT_VECTORIZATION = (VECTOR_LOAD_LENGTH > 1) &&
(ITEMS_PER_THREAD % VECTOR_LOAD_LENGTH == 0) &&
thrust::detail::is_pointer<InputIt>::value &&
thrust::detail::is_arithmetic<
typename thrust::detail::remove_cv<T> >::value
};
struct impl
{
//---------------------------------------------------------------------
// Per thread data
//---------------------------------------------------------------------
TempStorage &storage;
InputIt input_it;
LoadIt load_it;
ReductionOp reduction_op;
//---------------------------------------------------------------------
// Constructor
//---------------------------------------------------------------------
THRUST_DEVICE_FUNCTION impl(TempStorage &storage_,
InputIt input_it_,
ReductionOp reduction_op_)
: storage(storage_),
input_it(input_it_),
load_it(core::make_load_iterator(ptx_plan(), input_it)),
reduction_op(reduction_op_) {}
//---------------------------------------------------------------------
// Utility
//---------------------------------------------------------------------
// Whether or not the input is aligned with the vector type
// (specialized for types we can vectorize)
//
template <class Iterator>
static THRUST_DEVICE_FUNCTION bool
is_aligned(Iterator d_in,
thrust::detail::true_type /* can_vectorize */)
{
return (size_t(d_in) & (sizeof(Vector) - 1)) == 0;
}
// Whether or not the input is aligned with the vector type
// (specialized for types we cannot vectorize)
//
template <class Iterator>
static THRUST_DEVICE_FUNCTION bool
is_aligned(Iterator,
thrust::detail::false_type /* can_vectorize */)
{
return false;
}
//---------------------------------------------------------------------
// Tile processing
//---------------------------------------------------------------------
// Consume a full tile of input (non-vectorized)
//
template <int IS_FIRST_TILE>
THRUST_DEVICE_FUNCTION void
consume_tile(T & thread_aggregate,
Size block_offset,
int /*valid_items*/,
thrust::detail::true_type /* is_full_tile */,
thrust::detail::false_type /* can_vectorize */)
{
T items[ITEMS_PER_THREAD];
// Load items in striped fashion
cub::LoadDirectStriped<BLOCK_THREADS>(threadIdx.x,
load_it + block_offset,
items);
// Reduce items within each thread stripe
thread_aggregate =
(IS_FIRST_TILE) ? cub::internal::ThreadReduce(items, reduction_op)
: cub::internal::ThreadReduce(items, reduction_op,
thread_aggregate);
}
// Consume a full tile of input (vectorized)
//
template <int IS_FIRST_TILE>
THRUST_DEVICE_FUNCTION void
consume_tile(T & thread_aggregate,
Size block_offset,
int /*valid_items*/,
thrust::detail::true_type /* is_full_tile */,
thrust::detail::true_type /* can_vectorize */)
{
// Alias items as an array of VectorT and load it in striped fashion
enum
{
WORDS = ITEMS_PER_THREAD / VECTOR_LOAD_LENGTH
};
T items[ITEMS_PER_THREAD];
Vector *vec_items = reinterpret_cast<Vector *>(items);
// Vector Input iterator wrapper type (for applying cache modifier)
T *d_in_unqualified = const_cast<T *>(input_it) +
block_offset +
(threadIdx.x * VECTOR_LOAD_LENGTH);
VectorLoadIt vec_load_it(reinterpret_cast<Vector *>(d_in_unqualified));
#pragma unroll
for (int i = 0; i < WORDS; ++i)
{
vec_items[i] = vec_load_it[BLOCK_THREADS * i];
}
// Reduce items within each thread stripe
thread_aggregate =
(IS_FIRST_TILE) ? cub::internal::ThreadReduce(items, reduction_op)
: cub::internal::ThreadReduce(items, reduction_op,
thread_aggregate);
}
// Consume a partial tile of input
//
template <int IS_FIRST_TILE, class CAN_VECTORIZE>
THRUST_DEVICE_FUNCTION void
consume_tile(T & thread_aggregate,
Size block_offset,
int valid_items,
thrust::detail::false_type /* is_full_tile */,
CAN_VECTORIZE)
{
// Partial tile
int thread_offset = threadIdx.x;
// Read first item
if ((IS_FIRST_TILE) && (thread_offset < valid_items))
{
thread_aggregate = load_it[block_offset + thread_offset];
thread_offset += BLOCK_THREADS;
}
// Continue reading items (block-striped)
while (thread_offset < valid_items)
{
thread_aggregate = reduction_op(
thread_aggregate,
thrust::raw_reference_cast(load_it[block_offset + thread_offset]));
thread_offset += BLOCK_THREADS;
}
}
//---------------------------------------------------------------
// Consume a contiguous segment of tiles
//---------------------------------------------------------------------
// Reduce a contiguous segment of input tiles
//
template <class CAN_VECTORIZE>
THRUST_DEVICE_FUNCTION T
consume_range_impl(Size block_offset,
Size block_end,
CAN_VECTORIZE can_vectorize)
{
T thread_aggregate;
if (block_offset + ITEMS_PER_TILE > block_end)
{
// First tile isn't full (not all threads have valid items)
int valid_items = block_end - block_offset;
consume_tile<true>(thread_aggregate,
block_offset,
valid_items,
thrust::detail::false_type(),
can_vectorize);
return BlockReduce(storage.reduce)
.Reduce(thread_aggregate, reduction_op, valid_items);
}
// At least one full block
consume_tile<true>(thread_aggregate,
block_offset,
ITEMS_PER_TILE,
thrust::detail::true_type(),
can_vectorize);
block_offset += ITEMS_PER_TILE;
// Consume subsequent full tiles of input
while (block_offset + ITEMS_PER_TILE <= block_end)
{
consume_tile<false>(thread_aggregate,
block_offset,
ITEMS_PER_TILE,
thrust::detail::true_type(),
can_vectorize);
block_offset += ITEMS_PER_TILE;
}
// Consume a partially-full tile
if (block_offset < block_end)
{
int valid_items = block_end - block_offset;
consume_tile<false>(thread_aggregate,
block_offset,
valid_items,
thrust::detail::false_type(),
can_vectorize);
}
// Compute block-wide reduction (all threads have valid items)
return BlockReduce(storage.reduce)
.Reduce(thread_aggregate, reduction_op);
}
// Reduce a contiguous segment of input tiles
//
THRUST_DEVICE_FUNCTION T consume_range(Size block_offset,
Size block_end)
{
typedef is_true<ATTEMPT_VECTORIZATION> attempt_vec;
typedef is_true<true && ATTEMPT_VECTORIZATION> path_a;
typedef is_true<false && ATTEMPT_VECTORIZATION> path_b;
return is_aligned(input_it + block_offset, attempt_vec())
? consume_range_impl(block_offset, block_end, path_a())
: consume_range_impl(block_offset, block_end, path_b());
}
// Reduce a contiguous segment of input tiles
//
THRUST_DEVICE_FUNCTION T
consume_tiles(Size /*num_items*/,
cub::GridEvenShare<Size> &even_share,
cub::GridQueue<UnsignedSize> & /*queue*/,
thrust::detail::integral_constant<cub::GridMappingStrategy, cub::GRID_MAPPING_RAKE> /*is_rake*/)
{
typedef is_true<ATTEMPT_VECTORIZATION> attempt_vec;
typedef is_true<true && ATTEMPT_VECTORIZATION> path_a;
typedef is_true<false && ATTEMPT_VECTORIZATION> path_b;
// Initialize even-share descriptor for this thread block
even_share
.template BlockInit<ITEMS_PER_TILE, cub::GRID_MAPPING_RAKE>();
return is_aligned(input_it, attempt_vec())
? consume_range_impl(even_share.block_offset,
even_share.block_end,
path_a())
: consume_range_impl(even_share.block_offset,
even_share.block_end,
path_b());
}
//---------------------------------------------------------------------
// Dynamically consume tiles
//---------------------------------------------------------------------
// Dequeue and reduce tiles of items as part of a inter-block reduction
//
template <class CAN_VECTORIZE>
THRUST_DEVICE_FUNCTION T
consume_tiles_impl(Size num_items,
cub::GridQueue<UnsignedSize> queue,
CAN_VECTORIZE can_vectorize)
{
using core::sync_threadblock;
// We give each thread block at least one tile of input.
T thread_aggregate;
Size block_offset = blockIdx.x * ITEMS_PER_TILE;
Size even_share_base = gridDim.x * ITEMS_PER_TILE;
if (block_offset + ITEMS_PER_TILE > num_items)
{
// First tile isn't full (not all threads have valid items)
int valid_items = num_items - block_offset;
consume_tile<true>(thread_aggregate,
block_offset,
valid_items,
thrust::detail::false_type(),
can_vectorize);
return BlockReduce(storage.reduce)
.Reduce(thread_aggregate, reduction_op, valid_items);
}
// Consume first full tile of input
consume_tile<true>(thread_aggregate,
block_offset,
ITEMS_PER_TILE,
thrust::detail::true_type(),
can_vectorize);
if (num_items > even_share_base)
{
// Dequeue a tile of items
if (threadIdx.x == 0)
storage.dequeue_offset = queue.Drain(ITEMS_PER_TILE) +
even_share_base;
sync_threadblock();
// Grab tile offset and check if we're done with full tiles
block_offset = storage.dequeue_offset;
// Consume more full tiles
while (block_offset + ITEMS_PER_TILE <= num_items)
{
consume_tile<false>(thread_aggregate,
block_offset,
ITEMS_PER_TILE,
thrust::detail::true_type(),
can_vectorize);
sync_threadblock();
// Dequeue a tile of items
if (threadIdx.x == 0)
storage.dequeue_offset = queue.Drain(ITEMS_PER_TILE) +
even_share_base;
sync_threadblock();
// Grab tile offset and check if we're done with full tiles
block_offset = storage.dequeue_offset;
}
// Consume partial tile
if (block_offset < num_items)
{
int valid_items = num_items - block_offset;
consume_tile<false>(thread_aggregate,
block_offset,
valid_items,
thrust::detail::false_type(),
can_vectorize);
}
}
// Compute block-wide reduction (all threads have valid items)
return BlockReduce(storage.reduce)
.Reduce(thread_aggregate, reduction_op);
}
// Dequeue and reduce tiles of items as part of a inter-block reduction
//
THRUST_DEVICE_FUNCTION T
consume_tiles(
Size num_items,
cub::GridEvenShare<Size> &/*even_share*/,
cub::GridQueue<UnsignedSize> & queue,
thrust::detail::integral_constant<cub::GridMappingStrategy, cub::GRID_MAPPING_DYNAMIC>)
{
typedef is_true<ATTEMPT_VECTORIZATION> attempt_vec;
typedef is_true<true && ATTEMPT_VECTORIZATION> path_a;
typedef is_true<false && ATTEMPT_VECTORIZATION> path_b;
return is_aligned(input_it, attempt_vec())
? consume_tiles_impl(num_items, queue, path_a())
: consume_tiles_impl(num_items, queue, path_b());
}
}; // struct impl
//---------------------------------------------------------------------
// Agent entry points
//---------------------------------------------------------------------
// single tile reduce entry point
//
THRUST_AGENT_ENTRY(InputIt input_it,
OutputIt output_it,
Size num_items,
ReductionOp reduction_op,
char * shmem)
{
TempStorage& storage = *reinterpret_cast<TempStorage*>(shmem);
if (num_items == 0)
{
return;
}
T block_aggregate =
impl(storage, input_it, reduction_op).consume_range((Size)0, num_items);
if (threadIdx.x == 0)
*output_it = block_aggregate;
}
// single tile reduce entry point
//
THRUST_AGENT_ENTRY(InputIt input_it,
OutputIt output_it,
Size num_items,
ReductionOp reduction_op,
T init,
char * shmem)
{
TempStorage& storage = *reinterpret_cast<TempStorage*>(shmem);
if (num_items == 0)
{
if (threadIdx.x == 0)
*output_it = init;
return;
}
T block_aggregate =
impl(storage, input_it, reduction_op).consume_range((Size)0, num_items);
if (threadIdx.x == 0)
*output_it = reduction_op(init, block_aggregate);
}
THRUST_AGENT_ENTRY(InputIt input_it,
OutputIt output_it,
Size num_items,
cub::GridEvenShare<Size> even_share,
cub::GridQueue<UnsignedSize> queue,
ReductionOp reduction_op,
char * shmem)
{
TempStorage& storage = *reinterpret_cast<TempStorage*>(shmem);
typedef thrust::detail::integral_constant<cub::GridMappingStrategy, ptx_plan::GRID_MAPPING> grid_mapping;
T block_aggregate =
impl(storage, input_it, reduction_op)
.consume_tiles(num_items, even_share, queue, grid_mapping());
if (threadIdx.x == 0)
output_it[blockIdx.x] = block_aggregate;
}
}; // struct ReduceAgent
template<class Size>
struct DrainAgent
{
typedef typename detail::make_unsigned_special<Size>::type UnsignedSize;
template <class Arch>
struct PtxPlan : PtxPolicy<1> {};
typedef core::specialize_plan<PtxPlan> ptx_plan;
//---------------------------------------------------------------------
// Agent entry point
//---------------------------------------------------------------------
THRUST_AGENT_ENTRY(cub::GridQueue<UnsignedSize> grid_queue,
Size num_items,
char * /*shmem*/)
{
grid_queue.FillAndResetDrain(num_items);
}
}; // struct DrainAgent;
template <class InputIt,
class OutputIt,
class Size,
class ReductionOp,
class T>
cudaError_t THRUST_RUNTIME_FUNCTION
doit_step(void * d_temp_storage,
size_t & temp_storage_bytes,
InputIt input_it,
Size num_items,
T init,
ReductionOp reduction_op,
OutputIt output_it,
cudaStream_t stream,
bool debug_sync)
{
using core::AgentPlan;
using core::AgentLauncher;
using core::get_agent_plan;
using core::cuda_optional;
typedef typename detail::make_unsigned_special<Size>::type UnsignedSize;
if (num_items == 0)
return cudaErrorNotSupported;
typedef AgentLauncher<
ReduceAgent<InputIt, OutputIt, T, Size, ReductionOp> >
reduce_agent;
typename reduce_agent::Plan reduce_plan = reduce_agent::get_plan(stream);
cudaError_t status = cudaSuccess;
if (num_items <= reduce_plan.items_per_tile)
{
size_t vshmem_size = core::vshmem_size(reduce_plan.shared_memory_size, 1);
// small, single tile size
if (d_temp_storage == NULL)
{
temp_storage_bytes = max<size_t>(1, vshmem_size);
return status;
}
char *vshmem_ptr = vshmem_size > 0 ? (char*)d_temp_storage : NULL;
reduce_agent ra(reduce_plan, num_items, stream, vshmem_ptr, "reduce_agent: single_tile only", debug_sync);
ra.launch(input_it, output_it, num_items, reduction_op, init);
CUDA_CUB_RET_IF_FAIL(cudaPeekAtLastError());
}
else
{
// regular size
cuda_optional<int> sm_count = core::get_sm_count();
CUDA_CUB_RET_IF_FAIL(sm_count.status());
// reduction will not use more cta counts than requested
cuda_optional<int> max_blocks_per_sm =
reduce_agent::
template get_max_blocks_per_sm<InputIt,
OutputIt,
Size,
cub::GridEvenShare<Size>,
cub::GridQueue<UnsignedSize>,
ReductionOp>(reduce_plan);
CUDA_CUB_RET_IF_FAIL(max_blocks_per_sm.status());
int reduce_device_occupancy = (int)max_blocks_per_sm * sm_count;
int sm_oversubscription = 5;
int max_blocks = reduce_device_occupancy * sm_oversubscription;
cub::GridEvenShare<Size> even_share;
even_share.DispatchInit(static_cast<int>(num_items), max_blocks,
reduce_plan.items_per_tile);
// we will launch at most "max_blocks" blocks in a grid
// so preallocate virtual shared memory storage for this if required
//
size_t vshmem_size = core::vshmem_size(reduce_plan.shared_memory_size,
max_blocks);
// Temporary storage allocation requirements
void * allocations[3] = {NULL, NULL, NULL};
size_t allocation_sizes[3] =
{
max_blocks * sizeof(T), // bytes needed for privatized block reductions
cub::GridQueue<UnsignedSize>::AllocationSize(), // bytes needed for grid queue descriptor0
vshmem_size // size of virtualized shared memory storage
};
status = cub::AliasTemporaries(d_temp_storage,
temp_storage_bytes,
allocations,
allocation_sizes);
CUDA_CUB_RET_IF_FAIL(status);
if (d_temp_storage == NULL)
{
return status;
}
T *d_block_reductions = (T*) allocations[0];
cub::GridQueue<UnsignedSize> queue(allocations[1]);
char *vshmem_ptr = vshmem_size > 0 ? (char *)allocations[2] : NULL;
// Get grid size for device_reduce_sweep_kernel
int reduce_grid_size = 0;
if (reduce_plan.grid_mapping == cub::GRID_MAPPING_RAKE)
{
// Work is distributed evenly
reduce_grid_size = even_share.grid_size;
}
else if (reduce_plan.grid_mapping == cub::GRID_MAPPING_DYNAMIC)
{
// Work is distributed dynamically
size_t num_tiles = cub::DivideAndRoundUp(num_items, reduce_plan.items_per_tile);
// if not enough to fill the device with threadblocks
// then fill the device with threadblocks
reduce_grid_size = static_cast<int>((min)(num_tiles, static_cast<size_t>(reduce_device_occupancy)));
typedef AgentLauncher<DrainAgent<Size> > drain_agent;
AgentPlan drain_plan = drain_agent::get_plan();
drain_plan.grid_size = 1;
drain_agent da(drain_plan, stream, "__reduce::drain_agent", debug_sync);
da.launch(queue, num_items);
CUDA_CUB_RET_IF_FAIL(cudaPeekAtLastError());
}
else
{
CUDA_CUB_RET_IF_FAIL(cudaErrorNotSupported);
}
reduce_plan.grid_size = reduce_grid_size;
reduce_agent ra(reduce_plan, stream, vshmem_ptr, "reduce_agent: regular size reduce", debug_sync);
ra.launch(input_it,
d_block_reductions,
num_items,
even_share,
queue,
reduction_op);
CUDA_CUB_RET_IF_FAIL(cudaPeekAtLastError());
typedef AgentLauncher<
ReduceAgent<T*, OutputIt, T, Size, ReductionOp> >
reduce_agent_single;
reduce_plan.grid_size = 1;
reduce_agent_single ra1(reduce_plan, stream, vshmem_ptr, "reduce_agent: single tile reduce", debug_sync);
ra1.launch(d_block_reductions, output_it, reduce_grid_size, reduction_op, init);
CUDA_CUB_RET_IF_FAIL(cudaPeekAtLastError());
}
return status;
} // func doit_step
template <typename Derived,
typename InputIt,
typename Size,
typename T,
typename BinaryOp>
THRUST_RUNTIME_FUNCTION
T reduce(execution_policy<Derived>& policy,
InputIt first,
Size num_items,
T init,
BinaryOp binary_op)
{
if (num_items == 0)
return init;
size_t temp_storage_bytes = 0;
cudaStream_t stream = cuda_cub::stream(policy);
bool debug_sync = THRUST_DEBUG_SYNC_FLAG;
cudaError_t status;
status = doit_step(NULL,
temp_storage_bytes,
first,
num_items,
init,
binary_op,
reinterpret_cast<T*>(NULL),
stream,
debug_sync);
cuda_cub::throw_on_error(status, "reduce failed on 1st step");
size_t allocation_sizes[2] = {sizeof(T*), temp_storage_bytes};
void * allocations[2] = {NULL, NULL};
size_t storage_size = 0;
status = core::alias_storage(NULL,
storage_size,
allocations,
allocation_sizes);
cuda_cub::throw_on_error(status, "reduce failed on 1st alias_storage");
// Allocate temporary storage.
thrust::detail::temporary_array<thrust::detail::uint8_t, Derived>
tmp(policy, storage_size);
void *ptr = static_cast<void*>(tmp.data().get());
status = core::alias_storage(ptr,
storage_size,
allocations,
allocation_sizes);
cuda_cub::throw_on_error(status, "reduce failed on 2nd alias_storage");
T* d_result = thrust::detail::aligned_reinterpret_cast<T*>(allocations[0]);
status = doit_step(allocations[1],
temp_storage_bytes,
first,
num_items,
init,
binary_op,
d_result,
stream,
debug_sync);
cuda_cub::throw_on_error(status, "reduce failed on 2nd step");
status = cuda_cub::synchronize(policy);
cuda_cub::throw_on_error(status, "reduce failed to synchronize");
T result = cuda_cub::get_value(policy, d_result);
return result;
}
} // namespace __reduce
namespace detail {
template <typename Derived,
typename InputIt,
typename Size,
typename T,
typename BinaryOp>
THRUST_RUNTIME_FUNCTION
T reduce_n_impl(execution_policy<Derived>& policy,
InputIt first,
Size num_items,
T init,
BinaryOp binary_op)
{
cudaStream_t stream = cuda_cub::stream(policy);
cudaError_t status;
// Determine temporary device storage requirements.
size_t tmp_size = 0;
THRUST_INDEX_TYPE_DISPATCH2(status,
cub::DeviceReduce::Reduce,
(cub::DispatchReduce<
InputIt, T*, Size, BinaryOp
>::Dispatch),
num_items,
(NULL, tmp_size, first, reinterpret_cast<T*>(NULL),
num_items_fixed, binary_op, init, stream,
THRUST_DEBUG_SYNC_FLAG));
cuda_cub::throw_on_error(status, "after reduction step 1");
// Allocate temporary storage.
thrust::detail::temporary_array<thrust::detail::uint8_t, Derived>
tmp(policy, sizeof(T) + tmp_size);
// Run reduction.
// `tmp.begin()` yields a `normal_iterator`, which dereferences to a
// `reference`, which has an `operator&` that returns a `pointer`, which
// has a `.get` method that returns a raw pointer, which we can (finally)
// `static_cast` to `void*`.
//
// The array was dynamically allocated, so we assume that it's suitably
// aligned for any type of data. `malloc`/`cudaMalloc`/`new`/`std::allocator`
// make this guarantee.
T* ret_ptr = thrust::detail::aligned_reinterpret_cast<T*>(tmp.data().get());
void* tmp_ptr = static_cast<void*>((tmp.data() + sizeof(T)).get());
THRUST_INDEX_TYPE_DISPATCH2(status,
cub::DeviceReduce::Reduce,
(cub::DispatchReduce<
InputIt, T*, Size, BinaryOp
>::Dispatch),
num_items,
(tmp_ptr, tmp_size, first, ret_ptr,
num_items_fixed, binary_op, init, stream,
THRUST_DEBUG_SYNC_FLAG));
cuda_cub::throw_on_error(status, "after reduction step 2");
// Synchronize the stream and get the value.
status = cuda_cub::synchronize(policy);
cuda_cub::throw_on_error(status, "reduce failed to synchronize");
// `tmp.begin()` yields a `normal_iterator`, which dereferences to a
// `reference`, which has an `operator&` that returns a `pointer`, which
// has a `.get` method that returns a raw pointer, which we can (finally)
// `static_cast` to `void*`.
//
// The array was dynamically allocated, so we assume that it's suitably
// aligned for any type of data. `malloc`/`cudaMalloc`/`new`/`std::allocator`
// make this guarantee.
return thrust::cuda_cub::get_value(policy,
thrust::detail::aligned_reinterpret_cast<T*>(tmp.data().get()));
}
} // namespace detail
//-------------------------
// Thrust API entry points
//-------------------------
__thrust_exec_check_disable__
template <typename Derived,
typename InputIt,
typename Size,
typename T,
typename BinaryOp>
__host__ __device__
T reduce_n(execution_policy<Derived>& policy,
InputIt first,
Size num_items,
T init,
BinaryOp binary_op)
{
if (__THRUST_HAS_CUDART__)
return thrust::cuda_cub::detail::reduce_n_impl(
policy, first, num_items, init, binary_op);
#if !__THRUST_HAS_CUDART__
return thrust::reduce(
cvt_to_seq(derived_cast(policy)), first, first + num_items, init, binary_op);
#endif
}
template <class Derived, class InputIt, class T, class BinaryOp>
__host__ __device__
T reduce(execution_policy<Derived> &policy,
InputIt first,
InputIt last,
T init,
BinaryOp binary_op)
{
typedef typename iterator_traits<InputIt>::difference_type size_type;
// FIXME: Check for RA iterator.
size_type num_items = static_cast<size_type>(thrust::distance(first, last));
return cuda_cub::reduce_n(policy, first, num_items, init, binary_op);
}
template <class Derived,
class InputIt,
class T>
__host__ __device__
T reduce(execution_policy<Derived> &policy,
InputIt first,
InputIt last,
T init)
{
return cuda_cub::reduce(policy, first, last, init, plus<T>());
}
template <class Derived,
class InputIt>
__host__ __device__
typename iterator_traits<InputIt>::value_type
reduce(execution_policy<Derived> &policy,
InputIt first,
InputIt last)
{
typedef typename iterator_traits<InputIt>::value_type value_type;
return cuda_cub::reduce(policy, first, last, value_type(0));
}
} // namespace cuda_cub
THRUST_NAMESPACE_END
#include <thrust/memory.h>
#include <thrust/reduce.h>
#endif
|