1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
package Tie::Cache::LRU::Array;
use strict;
use Carp::Assert;
use base qw(Tie::Cache::LRU::Virtual);
use constant SUCCESS => 1;
use constant FAILURE => 0;
# Node members.
use enum qw(KEY VALUE PREV NEXT);
=pod
=head1 NAME
Tie::Cache::LRU::Array - Tie::Cache::LRU implemented using arrays
=head1 SYNOPSIS
use Tie::Cache::LRU::Array;
tie %cache, 'Tie::Cache::LRU::Array', 500;
...the rest is as Tie::Cache::LRU...
=head1 DESCRIPTION
This is an alternative implementation of Tie::Cache::LRU using Perl
arrays and built-in array operations instead of a linked list. The
theory is that even though the algorithm employed is more expensive,
it will still be faster for small cache sizes (where small <= ??)
because the work is done inside perl (ie. higer big O, lower
constant). If nothing else, it should use less memory.
=cut
sub TIEHASH {
my($class, $max_size) = @_;
my $self = bless {}, $class;
$max_size = $class->DEFAULT_MAX_SIZE unless defined $max_size;
$self->_init;
$self->max_size($max_size);
return $self;
}
sub _init {
my($self) = @_;
$self->{size} = 0;
$self->{index} = {};
$self->{cache} = [];
$self->{low_idx} = -1;
return SUCCESS;
}
sub FETCH {
my($self, $key) = @_;
return unless exists $self->{index}{$key};
$self->_promote($key);
return $self->{cache}[-1][VALUE];
}
sub _promote {
my($self, $key) = @_;
my $cache = $self->{cache};
my $idx = $self->{index}{$key};
my $node = $cache->[$idx];
return $node if $idx == $#{$cache};
$cache->[$idx] = undef;
push @$cache, $node;
$self->{index}{$key} = $#{$cache};
$self->_reorder_cache if $#$cache > $self->{size} * 2;
return $node;
}
sub _cull {
my($self) = @_;
my $max_size = $self->max_size;
my $cache = $self->{cache};
$self->_reorder_cache if $#$cache > $self->{size} * 2;
my $idx = $self->{low_idx};
my $cache_size = $#{$cache};
for( ; $self->{size} > $max_size; $self->{size}-- ) {
my $node;
do { $node = $cache->[++$idx]; }
until defined $node or $idx > $cache_size;
delete $self->{index}{$node->[KEY]};
$cache->[$idx] = undef;
}
$self->{low_idx} = $idx;
return SUCCESS;
}
sub _reorder_cache {
my($self) = shift;
my $cache = $self->{cache};
my $next_spot = 0;
foreach my $idx (0..$#{$cache}) {
my $node = $cache->[$idx];
next unless defined $node;
if( $idx == $next_spot ) {
$next_spot++;
}
else {
$cache->[$next_spot] = $node;
$self->{index}{$node->[KEY]} = $next_spot++;
}
}
$#{$cache} = $next_spot - 1;
$self->{low_idx} = -1;
}
sub EXISTS {
my($self, $key) = @_;
return exists $self->{index}{$key};
}
sub CLEAR {
my($self) = @_;
$self->_init;
}
sub STORE {
my($self, $key, $val) = @_;
if( exists $self->{index}{$key} ) {
my $node = $self->_promote($key);
$node->[VALUE] = $val;
}
else {
my $node = [];
@{$node}[KEY, VALUE] = ($key, $val);
my $cache = $self->{cache};
push @$cache, $node;
$self->{index}{$key} = $#{$cache};
$self->{size}++;
$self->_cull if $self->{size} > $self->{max_size};
}
return SUCCESS;
}
sub DELETE {
my($self, $key) = @_;
return unless exists $self->{index}{$key};
my $cache = $self->{cache};
my $idx = delete $self->{index}{$key};
my $node = $cache->[$idx];
$cache->[$idx] = undef;
$self->{size}--;
return $node->[VALUE];
}
sub FIRSTKEY {
my($self) = shift;
return unless $self->{size};
my $cache = $self->{cache};
my @nodes;
for my $node (@$cache) {
push @nodes, $node if defined $node;
}
$self->{nodes} = \@nodes;
$self->NEXTKEY;
}
sub NEXTKEY {
my $self = shift;
my $node = pop @{$self->{nodes}};
return $node->[KEY];
}
sub max_size {
my($self) = shift;
if(@_) {
my($new_max_size) = shift;
assert( defined $new_max_size && $new_max_size !~ /\D/ ) if DEBUG;
$self->{max_size} = $new_max_size;
$self->_cull if $self->{size} > $new_max_size;
return SUCCESS;
}
else {
return $self->{max_size};
}
}
sub curr_size {
my($self) = shift;
assert(!@_) if DEBUG;
return $self->{size};
}
sub DESTROY {
my $self = shift;
# Break a possible circular reference, just to be thorough.
$self->{nodes} = [];
}
=pod
=head1 AUTHOR
Michael G Schwern <schwern@pobox.com>
=head1 SEE ALSO
L<Tie::Cache::LRU>, L<Tie::Cache::LRU::Virtual>, L<Tie::Cache>
=cut
1;
|