1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
|
/**********************************************************************
Function.c
An object embedding two Dvectors for the ease of manipulation as
a function.
Copyright (C) 2006 Vincent Fourmond
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
**********************************************************************/
#include <namespace.h>
#include <ruby.h>
#include "dvector.h"
#include "../symbols.c"
#include <math.h>
/* compiler-dependent definitions, such as is_okay_number */
#include <defs.h>
/* the class we're defining */
static VALUE cFunction;
static VALUE cDvector;
/* ID used by different functions */
static ID idSize;
static ID idSetDirty;
static ID idDirty;
static ID idSort;
static ID idNew;
/* a few macros to work with Dvectors */
#define IS_A_DVECTOR(x) RTEST(rb_obj_is_kind_of(x, cDvector))
/* returns the size of a Dvector object */
#define DVECTOR_SIZE(x) (NUM2LONG(rb_funcall(x, idSize,0)))
#define DVECTOR_IS_DIRTY(x) (RTEST(rb_funcall(x, idDirty,0)))
#define DVECTOR_CLEAR(x) (rb_funcall(x, idSetDirty,1, Qfalse))
#define NUMERIC(x) (rb_type(x) == T_FIXNUM || \
rb_type(x) == T_BIGNUM)
#define X_VAL "@x_val"
#define Y_VAL "@y_val"
#define SPLINE_CACHE "@spline_cache"
/* basic functions for accessing the objects */
inline
/*
The X vector.
*/
static VALUE get_x_vector(VALUE self)
{
return rb_iv_get(self, X_VAL);
}
inline
static void set_x_vector(VALUE self, VALUE vector)
{
rb_iv_set(self, X_VAL, vector);
}
inline
/*
The Y vector.
*/
static VALUE get_y_vector(VALUE self)
{
return rb_iv_get(self, Y_VAL);
}
inline
static void set_y_vector(VALUE self, VALUE vector)
{
rb_iv_set(self, Y_VAL, vector);
}
inline static VALUE get_spline_vector(VALUE self)
{
return rb_iv_get(self, SPLINE_CACHE);
}
inline static void set_spline_vector(VALUE self, VALUE vector)
{
rb_iv_set(self, SPLINE_CACHE, vector);
}
/*
Checks that self is a Function, that it has X and Y Dvectors and that
they both have the same size. In that case, the size is returned.
*/
static long function_sanity_check(VALUE self)
{
if(RTEST(rb_obj_is_kind_of(self, cFunction)))
{
VALUE x = get_x_vector(self);
VALUE y = get_y_vector(self);
if(IS_A_DVECTOR(x)
&& IS_A_DVECTOR(y))
{
long size = DVECTOR_SIZE(x);
if( size== DVECTOR_SIZE(y))
return size;
else
{
rb_raise(rb_eRuntimeError, "X and Y vectors must have the"
" same size");
return -1;
}
}
else
{
rb_raise(rb_eRuntimeError, "X and Y must be vectors");
return -1;
}
}
else
{
rb_raise(rb_eRuntimeError, "self is no Function");
return -1;
}
}
/*
call-seq:
Function.new(x,y)
Creates a Function object with given +x+ and +y+ values.
*/
static VALUE function_initialize(VALUE self, VALUE x, VALUE y)
{
if(IS_A_DVECTOR(x) && IS_A_DVECTOR(y))
{
if(DVECTOR_SIZE(x) == DVECTOR_SIZE(y)) {
set_x_vector(self, x);
set_y_vector(self, y);
/* fine, this could have been written in pure Ruby...*/
set_spline_vector(self,Qnil);
/* We initialize the @spline_cache var */
}
else
rb_raise(rb_eArgError,"both vectors must have the same size");
}
else
rb_raise(rb_eArgError,"both arguments must be Dvector");
return self;
}
static VALUE Function_Create(VALUE x, VALUE y)
{
return rb_funcall(cFunction, idNew, 2, x, y);
}
static int dvector_is_sorted(VALUE dvector)
{
long size;
const double * x_data;
double prev;
if(! IS_A_DVECTOR(dvector))
rb_raise(rb_eArgError, "should take a Dvector as argument");
else
{
x_data = Dvector_Data_for_Read(dvector, &size);
prev = x_data[0];
while((--size) && prev <= *(++x_data))
prev = *x_data;
return (size == 0);
}
return 0;
}
/*
Checks if the X values of the Function are sorted.
*/
static VALUE function_is_sorted(VALUE self)
{
if(dvector_is_sorted(get_x_vector(self)))
return Qtrue;
else
return Qfalse;
}
static VALUE function_sort(VALUE self);
/* small macros to make the code a little more clear */
#define FIXED_BOUNDARY(n, slope) (3.0/(x_vals[n+1] - x_vals[n])) *\
((y_vals[n+1] - y_vals[n])/(x_vals[n+1] - x_vals[n]) - slope)
/* This code is greatly inspired by what can be found in the book
Numerical Recipes in C. It fills the y2_vals values with computed
second derivatives. left_der and right_der are boundary conditions.
If not finite, use natural spline.
*/
static void function_fill_second_derivatives(long nb_points,
const double *x_vals,
const double *y_vals,
double * y2_vals,
double left_slope,
double right_slope)
{
if(nb_points < 1)
return;
double *tmp = (double *)ALLOC_N(double, nb_points);
long i;
double piv;
double ratio;
if(is_okay_number(left_slope)) /* slope is defined */
{
y2_vals[0] = -0.5;
tmp[0] = FIXED_BOUNDARY(0,left_slope);
}
else
y2_vals[0] = tmp[0] = 0; /* natural spline */
/* forward decomposition */
for(i = 1; i < nb_points - 1; i++)
{
ratio = (x_vals[i] - x_vals[i-1])/(x_vals[i+1] - x_vals[i-1]);
piv = 1/(ratio * y2_vals[i-1] + 2.0);
y2_vals[i] = (ratio - 1.0) * piv;
tmp[i] = (6.0 *
((y_vals[i+1] - y_vals[i] )/
(x_vals[i+1] - x_vals[i] ) -
(y_vals[i] - y_vals[i-1])/
(x_vals[i] - x_vals[i-1])
)/
(x_vals[i+1] - x_vals[i-1])
- ratio * tmp[i-1]) * piv;
}
/* then, the right boundary condition */
if(is_okay_number(right_slope)) /* slope is defined */
{
y2_vals[nb_points - 1] = 0.5;
tmp[nb_points - 1] = - FIXED_BOUNDARY(nb_points - 2,right_slope);
}
else
y2_vals[nb_points - 1] = tmp[nb_points - 1] = 0; /* natural spline */
/* then, backward substitution */
y2_vals[nb_points - 1] = (tmp[nb_points - 1] -
y2_vals[nb_points - 1] * tmp[nb_points - 2])/
(y2_vals[nb_points - 1] * y2_vals[nb_points - 2] + 1.0);
for(i = nb_points - 2; i >= 0; i--)
y2_vals[i] = y2_vals[i]*y2_vals[i+1] + tmp[i];
/* done, we free the allocated buffer */
xfree(tmp);
}
/*
Computes spline data and caches it inside the object. Both X and Y vectors
are cleared (see Dvector#clear) to make sure the cache is kept up-to-date.
If the function is not sorted, sorts it.
*/
static VALUE function_compute_spline_data(VALUE self)
{
VALUE x_vec = get_x_vector(self);
VALUE y_vec = get_y_vector(self);
VALUE cache = get_spline_vector(self);
long size = DVECTOR_SIZE(x_vec);
if(DVECTOR_SIZE(y_vec) != size)
rb_raise(rb_eRuntimeError,
"x and y should have the same size !");
if(! IS_A_DVECTOR(cache)) /* create it -- and silently ignores
its previous values */
cache = rb_funcall(cDvector, idNew,
1, LONG2NUM(size));
if(DVECTOR_SIZE(cache) != size) /* switch to the required size for cache */
Dvector_Data_Resize(cache, size);
/* we make sure that the X values are sorted */
if(! RTEST(function_is_sorted(self)))
function_sort(self);
double * x, *y, *spline;
x = Dvector_Data_for_Read(x_vec, NULL);
y = Dvector_Data_for_Read(y_vec, NULL);
spline = Dvector_Data_for_Write(cache, NULL);
function_fill_second_derivatives(size, x, y, spline,1.0/0.0, 1.0/0.0);
set_spline_vector(self, cache);
/* now, we clear both X and Y */
DVECTOR_CLEAR(x_vec);
DVECTOR_CLEAR(y_vec);
return self;
}
/* Computes the results of spline interpolation for the given set
of x points. It assumes that x points are sorted and within range ...
*/
static void function_compute_spline_interpolation(long dat_size,
const double * x_dat,
const double * y_dat,
const double * y2_dat,
long dest_size,
const double * x,
double * y)
{
long low,hi,mid;
double h;
double a,b;
low = 0;
hi = dat_size - 1;
if(dest_size <= 1) /* nothing interesting to be done here...*/
return;
if(x[0] < x_dat[0] || x[dest_size - 1] > x_dat[dat_size - 1])
rb_raise(rb_eRuntimeError, "x range should be within x_dat range");
/* first, we seek the first point by bisection */
while(low - hi > 1)
{
mid = (low + hi) >> 1;
if(x[0] > x_dat[mid])
low = mid;
else
hi = mid;
}
for(hi = 0; hi < dest_size; hi++)
{
while(x_dat[low + 1] < x[hi] && low < dat_size - 1)
low++; /* seek forward - shouldn't be too long ? */
if(hi && x[hi] < x[hi - 1])
rb_raise(rb_eArgError,
"X values should be sorted");
h = x_dat[low + 1] - x_dat[low];
/* should hopefully not be zero */
if(h <= 0.0)
rb_raise(rb_eRuntimeError,
"x_dat must be strictly growing");
a = (x_dat[low + 1] - x[hi])/h;
b = - (x_dat[low] - x[hi])/h;
/* spline evaluation */
y[hi] = a * y_dat[low] +
b * y_dat[low + 1] +
( (a*a*a - a) * y2_dat[low] +
(b*b*b - b) * y2_dat[low + 1]
) * (h * h)/6.0;
}
}
/* makes sure that the spline data is present and up-to-date, refreshing
it if necessary
*/
static void function_ensure_spline_data_present(VALUE self)
{
VALUE x_vec = get_x_vector(self);
VALUE y_vec = get_y_vector(self);
VALUE cache = get_spline_vector(self);
long dat_size = function_sanity_check(self);
if(! IS_A_DVECTOR(cache) ||
DVECTOR_IS_DIRTY(x_vec) ||
DVECTOR_IS_DIRTY(y_vec) ||
DVECTOR_SIZE(cache) == dat_size
)
function_compute_spline_data(self);
}
/* Interpolates the value of the function at the points given.
Returns a brand new Dvector. The X values must be sorted !
*/
static VALUE function_compute_spline(VALUE self, VALUE x_values)
{
VALUE x_vec = get_x_vector(self);
VALUE y_vec = get_y_vector(self);
VALUE cache;
VALUE ret_val;
long dat_size = function_sanity_check(self);
long size = DVECTOR_SIZE(x_values);
function_ensure_spline_data_present(self);
cache = get_spline_vector(self);
ret_val = rb_funcall(cDvector, rb_intern("new"),
1, LONG2NUM(size));
double * x_dat = Dvector_Data_for_Read(x_vec,NULL);
double * y_dat = Dvector_Data_for_Read(y_vec,NULL);
double * spline = Dvector_Data_for_Read(cache,NULL);
double * x = Dvector_Data_for_Read(x_values,NULL);
double * y = Dvector_Data_for_Write(ret_val,NULL);
function_compute_spline_interpolation(dat_size, x_dat,
y_dat, spline,
size, x, y);
return ret_val;
}
/*
Returns an interpolant that can be fed to
Special_Paths#append_interpolant_to_path
to make nice splines.
Can be used this way:
f = Function.new(x,y)
t.append_interpolant_to_path(f.make_interpolant)
t.stroke
*/
static VALUE function_make_interpolant(VALUE self)
{
VALUE x_vec = get_x_vector(self);
VALUE y_vec = get_y_vector(self);
VALUE cache;
VALUE a_vec,b_vec,c_vec;
VALUE ret_val;
double *x, *y, *a, *b, *c, *y2;
double delta_x;
long size = function_sanity_check(self);
long i;
function_ensure_spline_data_present(self);
cache = get_spline_vector(self);
x = Dvector_Data_for_Read(x_vec,NULL);
y = Dvector_Data_for_Read(y_vec,NULL);
y2 = Dvector_Data_for_Read(cache,NULL);
a_vec = rb_funcall(cDvector, idNew, 1, LONG2NUM(size));
a = Dvector_Data_for_Write(a_vec, NULL);
b_vec = rb_funcall(cDvector, idNew, 1, LONG2NUM(size));
b = Dvector_Data_for_Write(b_vec, NULL);
c_vec = rb_funcall(cDvector, idNew, 1, LONG2NUM(size));
c = Dvector_Data_for_Write(c_vec, NULL);
/* from my computations, the formula is the following:
A = (y_2n+1 - y_2n)/(6 * delta_x)
B = 0.5 * y_2n
C = (y_n+1 - y_n)/delta_x - (2 * y_2n + y_2n+1) * delta_x/6
*/
for(i = 0; i < size - 1; i++)
{
delta_x = x[i+1] - x[i];
a[i] = (y2[i+1] - y2[i]) / (6.0 * delta_x);
b[i] = 0.5 * y2[i];
c[i] = (y[i+1] - y[i])/delta_x -
(2 * y2[i] + y2[i+1]) * (delta_x / 6.0);
}
a[i] = b[i] = c[i] = 0.0;
ret_val = rb_ary_new();
rb_ary_push(ret_val, x_vec);
rb_ary_push(ret_val, y_vec);
rb_ary_push(ret_val, a_vec);
rb_ary_push(ret_val, b_vec);
rb_ary_push(ret_val, c_vec);
return ret_val;
}
/* the function fort joint sorting...*/
INTERN void joint_quicksort(double *const x_values, double * const y_values,
size_t total_elems);
/* Dvector's lock */
#define DVEC_TMPLOCK FL_USER1
/* call-seq:
Function.joint_sort(x,y)
Sorts +x+, while ensuring that the corresponding +y+ values
keep matching. Should be pretty fast, as it is derived from
glibc's quicksort.
a = Dvector[3,2,1]
b = a * 2 -> [6,4,2]
Function.joint_sort(a,b) -> [[1,2,3], [2,4,6]]
*/
static VALUE function_joint_sort(VALUE self, VALUE x, VALUE y)
{
long x_len, y_len;
double * x_values = Dvector_Data_for_Write(x, &x_len);
double * y_values = Dvector_Data_for_Write(y, &y_len);
if(x_len != y_len)
rb_raise(rb_eArgError,"both vectors must have the same size");
else
{
/* we temporarily freeze both Dvectors before sorting */
FL_SET(x, DVEC_TMPLOCK);
FL_SET(y, DVEC_TMPLOCK);
joint_quicksort(x_values, y_values, (size_t) x_len);
/* and unfreeze them */
FL_UNSET(x, DVEC_TMPLOCK);
FL_UNSET(y, DVEC_TMPLOCK);
}
/* we return the array of both Dvectors */
return rb_ary_new3(2,x,y);
}
/* call-seq:
f.each do |x,y| _code_ end
Iterates over all the points in the Function, yielding X and Y for
each point.
*/
static VALUE function_each(VALUE self) /* :yields: x,y */
{
long x_len, y_len;
VALUE x = get_x_vector(self);
VALUE y = get_y_vector(self);
double * x_values = Dvector_Data_for_Write(x, &x_len);
double * y_values = Dvector_Data_for_Write(y, &y_len);
if(x_len != y_len)
rb_raise(rb_eRuntimeError,"X and Y must have the same size");
else
{
/* we temporarily freeze both Dvectors during iteration */
FL_SET(x, DVEC_TMPLOCK);
FL_SET(y, DVEC_TMPLOCK);
while(x_len--)
{
VALUE flt_x = rb_float_new(*x_values++);
VALUE flt_y = rb_float_new(*y_values++);
rb_yield_values(2, flt_x, flt_y);
}
/* and unfreeze them */
FL_UNSET(x, DVEC_TMPLOCK);
FL_UNSET(y, DVEC_TMPLOCK);
}
return self; /* nothing interesting */
}
/*
Makes sure the function is sorted.
*/
static VALUE function_ensure_sorted(VALUE self)
{
if(!RTEST(function_is_sorted(self)))
function_sort(self);
return self;
}
/*
call-seq:
interpolate(x_values)
interpolate(a_number)
Computes interpolated values of the data contained in +f+ and
returns a Function object holding both +x_values+ and the computed
Y values. +x_values+ will be sorted if necessary.
With the second form, specify only the number of points, and
the function will construct the appropriate vector with equally spaced
points within the function range.
*/
static VALUE function_interpolate(VALUE self, VALUE x_values)
{
if(NUMERIC(x_values))
{
/* we're in the second case, although I sincerely doubt it would
come useful
*/
long size,i;
/* we make sure the function is sorted */
function_ensure_sorted(self);
double * data;
double x_min;
double x_max;
data = Dvector_Data_for_Read(get_x_vector(self), &size);
x_min = *data;
x_max = *(data + size -1);
x_values = rb_funcall(cDvector, idNew, 1, x_values);
data = Dvector_Data_for_Write(x_values, &size);
for(i = 0;i < size; i++)
data[i] = x_min + ((x_max - x_min)/((double) (size-1))) * i;
}
if(! IS_A_DVECTOR(x_values))
rb_raise(rb_eArgError, "x_values should be a Dvector or a number");
else
{
/* sort x_values */
if(! dvector_is_sorted(x_values))
rb_funcall(x_values, idSort,0);
VALUE y_values = function_compute_spline(self, x_values);
return rb_funcall(cFunction, idNew, 2, x_values, y_values);
}
return Qnil;
}
/*
Strips all the points containing NaN values from the function, and
returns the number of points stripped.
*/
static VALUE function_strip_nan(VALUE self)
{
long size = function_sanity_check(self);
long nb_stripped = 0;
long i;
double *x = Dvector_Data_for_Write(get_x_vector(self),NULL);
double *y = Dvector_Data_for_Write(get_y_vector(self),NULL);
for( i = 0; i < size; i++)
{
if(isnan(x[i]) || isnan(y[i]))
nb_stripped ++;
else
{
x[i - nb_stripped] = x[i];
y[i - nb_stripped] = y[i];
}
}
if(nb_stripped)
{
Dvector_Data_Resize(get_x_vector(self), size - nb_stripped);
Dvector_Data_Resize(get_y_vector(self), size - nb_stripped);
}
return INT2NUM(nb_stripped);
}
/*
Splits the function into strictly monotonic sub-functions.
Returns the array of the subfunctions. The returned values are
necessarily new values.
*/
static VALUE function_split_monotonic(VALUE self)
{
VALUE ret = rb_ary_new();
VALUE cur_x = Dvector_Create();
VALUE cur_y = Dvector_Create();
long size = function_sanity_check(self);
long i;
if(size < 2)
rb_raise(rb_eRuntimeError, "Function needs to have at least 2 points");
double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
double last_x;
double direction; /* -1 if down, +1 if up, so that the product of
(x - last_x) with direction should always be positive
*/
VALUE f;
/* bootstrap */
if(x[1] > x[0])
direction = 1;
else
direction = -1;
last_x = x[1];
for(i = 0; i < 2; i++)
{
Dvector_Push_Double(cur_x, x[i]);
Dvector_Push_Double(cur_y, y[i]);
}
for(i = 2; i < size; i++)
{
if(direction * (x[i] - last_x) <= 0)
{
/* we need to add a new set of Dvectors */
f = Function_Create(cur_x, cur_y);
rb_ary_push(ret, f);
cur_x = Dvector_Create();
cur_y = Dvector_Create();
/* We don't store the previous point if
the X value is the same*/
if(x[i] != last_x)
{
Dvector_Push_Double(cur_x, x[i-1]);
Dvector_Push_Double(cur_y, y[i-1]);
}
direction *= -1;
}
/* store the current point */
Dvector_Push_Double(cur_x, x[i]);
Dvector_Push_Double(cur_y, y[i]);
last_x = x[i];
}
f = Function_Create(cur_x, cur_y);
rb_ary_push(ret, f);
return ret;
}
/*
Sorts the X values while keeping the matching Y values.
*/
static VALUE function_sort(VALUE self)
{
return function_joint_sort(self,get_x_vector(self), get_y_vector(self));
}
/*
Returns a Dvector with two elements: the X and Y values of the
point at the given index.
*/
static VALUE function_point(VALUE self, VALUE index)
{
if(! NUMERIC(index))
rb_raise(rb_eArgError, "index has to be numeric");
else
{
long i = NUM2LONG(index);
long size = function_sanity_check(self);
if(size > 0 && i < size)
{
VALUE point = rb_funcall(cDvector, idNew, 1, INT2NUM(2));
double * dat = Dvector_Data_for_Write(point, NULL);
double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
dat[0] = x[i];
dat[1] = y[i];
return point;
}
else
return Qnil;
}
return Qnil;
}
static void init_IDs()
{
idSize = rb_intern("size");
idSetDirty = rb_intern("dirty=");
idDirty = rb_intern("dirty?");
idSort = rb_intern("sort");
idNew = rb_intern("new");
}
/* a smaller helper for the following function */
#define DISTANCE(x,y) (((x) - xpoint) * ((x) - xpoint) /xscale/xscale \
+ ((y) - ypoint) * ((y) - ypoint) /yscale/yscale)
/*
Returns the distance of a point to the function, computed by the minimum
of ((x - xpoint)/xscale)**2 + ((y - ypoint)/yscale)**2. If index
is not NULL, it receives the index of the point of minimum distance.
*/
static double private_function_distance(VALUE self,
double xpoint, double ypoint,
double xscale, double yscale,
long * dest_index)
{
long size = function_sanity_check(self);
const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
double min = DISTANCE(x[0],y[0]);
double cur;
long index = 0;
long i;
for(i = 1; i < size; i++)
{
cur = DISTANCE(x[i], y[i]);
if(cur < min)
{
index = i;
min = cur;
}
}
if(dest_index)
*dest_index = index;
return sqrt(min);
}
/*
call-seq:
f.distance(x,y) -> a_number
f.distance(x,y, xscale, yscale) -> a_number
Returns the distance of the function to the given point. Optionnal
xscale and yscale says by how much we should divide the x and y
coordinates before computing the distance. Use it if the distance is not
homogeneous.
*/
static VALUE function_distance(int argc, VALUE *argv, VALUE self)
{
switch(argc)
{
case 2:
return rb_float_new(private_function_distance(self,
NUM2DBL(argv[0]),
NUM2DBL(argv[1]),
1.0,1.0,NULL));
case 4:
return rb_float_new(private_function_distance(self,
NUM2DBL(argv[0]),
NUM2DBL(argv[1]),
NUM2DBL(argv[2]),
NUM2DBL(argv[3]),
NULL));
default:
rb_raise(rb_eArgError, "distance should have 2 or 4 parameters");
}
return Qnil;
}
/*
Code for integration.
*/
static double private_function_integrate(VALUE self, long start, long end)
{
long size = function_sanity_check(self);
const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
long i = start;
double val = 0;
if(end >= size)
end = size - 1;
if(start < 0)
start = 0;
while(i < (end))
{
val += (y[i] + y[i+1]) * (x[i+1] - x[i]) * 0.5;
i++;
}
return val;
}
/*
:call-seq:
f.integrate() -> value
f.integrate(start_index, end_index) -> value
Returns the value of the integral of the function between the
two indexes given, or over the whole function if no indexes are
specified.
*/
static VALUE function_integrate(int argc, VALUE *argv, VALUE self)
{
long start,end;
switch(argc)
{
case 0:
start = 0;
end = function_sanity_check(self) - 1;
break;
case 2:
start = NUM2LONG(argv[0]);
end = NUM2LONG(argv[1]);
break;
default:
rb_raise(rb_eArgError, "integrate should have 0 or 2 parameters");
}
return rb_float_new(private_function_integrate(self,start,end));
}
/*
Computes the primitive of the Function (whose value for the first point is 0)
and returns it as a new Function.
The newly created function shares the X vector with the previous one.
*/
static VALUE function_primitive(VALUE self)
{
long size = function_sanity_check(self);
const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
VALUE primitive = Dvector_Create();
long i = 0;
double val = 0;
while(i < (size - 1))
{
Dvector_Push_Double(primitive, val);
val += (y[i] + y[i+1]) * (x[i+1] - x[i]) * 0.5;
i++;
}
Dvector_Push_Double(primitive, val);
return Function_Create(get_x_vector(self), primitive);
}
/*
Computes the derivative of the Function and returns it as a new Function.
The newly created function shares the X vector with the previous one.
*/
static VALUE function_derivative(VALUE self)
{
long size = function_sanity_check(self);
const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
VALUE derivative = Dvector_Create();
long i = 0;
double val = 0;
/* First value */
Dvector_Push_Double(derivative, (y[i+1] - y[i]) /(x[i+1] - x[i]));
i++;
while(i < (size - 1))
{
Dvector_Push_Double(derivative,
.5 * (
(y[i+1] - y[i]) /(x[i+1] - x[i]) +
(y[i] - y[i-1]) /(x[i] - x[i-1])
));
i++;
}
Dvector_Push_Double(derivative, (y[i] - y[i-1]) /(x[i] - x[i-1]));
return Function_Create(get_x_vector(self), derivative);
}
/*
Returns the number of points inside the function.
*/
static VALUE function_size(VALUE self)
{
long size = function_sanity_check(self);
return LONG2NUM(size);
}
/*
Fuzzy substraction of two curves. Substracts the Y values of _op_ to
the current Function, by making sure that the Y value substracted to
a given point corresponds to the closest X_ value of the point in _op_.
This function somehow assumes that the data is reasonably organised,
and will never go backwards to find a matching X value in _op_.
In any case, you really should consider using split_monotonic on it first.
*/
static VALUE function_fuzzy_substract(VALUE self, VALUE op)
{
long ss = function_sanity_check(self);
const double *xs = Dvector_Data_for_Read(get_x_vector(self),NULL);
double *ys = Dvector_Data_for_Write(get_y_vector(self),NULL);
long so = function_sanity_check(op);
const double *xo = Dvector_Data_for_Read(get_x_vector(op),NULL);
const double *yo = Dvector_Data_for_Read(get_y_vector(op),NULL);
long i,j = 0;
double diff;
double fuzz = 0; /* The actual sum of the terms */
for(i = 0; i < ss; i++)
{
/* We first look for the closest point */
diff = fabs(xs[i] - xo[j]);
while((j < (so - 1)) && (fabs(xs[i] - xo[j+1]) < diff))
diff = fabs(xs[i] - xo[++j]);
fuzz += diff;
ys[i] -= yo[j];
}
return rb_float_new(fuzz);
}
/*
call-seq:
f.bound_values(xmin, xmax, ymin, ymax)
This function browses the points inside the Function and stores in
the resulting new function only points which are within boundaries,
and the points just next to them (so the general direction on the sides
looks fine).
Make sure _xmin_ < _xmax_ and _ymin_ < _ymax_, else you simply won't
get any output.
*/
static VALUE function_bound_values(VALUE self,
VALUE vxmin, VALUE vxmax,
VALUE vymin, VALUE vymax)
{
long ss = function_sanity_check(self);
const double *xs = Dvector_Data_for_Read(get_x_vector(self),NULL);
const double *ys = Dvector_Data_for_Read(get_y_vector(self),NULL);
double xmin = NUM2DBL(vxmin);
double xmax = NUM2DBL(vxmax);
double ymin = NUM2DBL(vymin);
double ymax = NUM2DBL(vymax);
/* Now, two dvectors for writing: */
VALUE x_out = rb_funcall(cDvector, idNew, 0);
VALUE y_out = rb_funcall(cDvector, idNew, 0);
/* No forward computation of the size of the targets, meaning
memory allocation penalty.
*/
int last_point_in = 0; /* Whether the last point was in */
long i;
for(i = 0; i < ss; i++) {
double x = xs[i];
double y = ys[i];
if( (xmin <= x) && (xmax >= x) && (ymin <= y) && (ymax >= y)) {
if(! last_point_in) {
last_point_in = 1;
if(i) { /* Not for the first element */
Dvector_Push_Double(x_out, xs[i-1]);
Dvector_Push_Double(y_out, ys[i-1]);
}
}
Dvector_Push_Double(x_out, x);
Dvector_Push_Double(y_out, y);
}
else { /* Outside boundaries */
if(last_point_in) {
last_point_in = 0;
Dvector_Push_Double(x_out, x);
Dvector_Push_Double(y_out, y);
}
}
}
return Function_Create(x_out, y_out);
}
/*
Document-class: Dobjects::Function
Function is a class that embeds two Dvectors, one for X data and one for Y
data. It provides
- facilities for sorting the X while keeping the Y matching, with #sort and
Function.joint_sort;
- to check if X data is sorted: #sorted?, #is_sorted;
- interpolation, with #compute_spline, #compute_spline_data and #interpolate;
- some functions for data access : #x, #y, #point;
- some utiliy functions: #split_monotonic, #strip_nan;
- data inspection: #min, #max;
- some computational functions: #integrate, #primitive, #derivative.
- utility for fuzzy operations, when the X values of two functions
differ, but only slightly, of when points are missing:
#fuzzy_sub!
And getting bigger everyday...
*/
void Init_Function()
{
init_IDs();
rb_require("Dobjects/Dvector");
VALUE mDobjects = rb_define_module("Dobjects");
cFunction = rb_define_class_under(mDobjects, "Function", rb_cObject);
/* get the Dvector class */
cDvector = rb_const_get(mDobjects, rb_intern("Dvector"));
rb_define_method(cFunction, "initialize", function_initialize, 2);
rb_define_method(cFunction, "sorted?", function_is_sorted, 0);
rb_define_alias(cFunction, "is_sorted", "sorted?");
rb_define_singleton_method(cFunction, "joint_sort", function_joint_sort, 2);
rb_define_method(cFunction, "sort", function_sort, 0);
/* spline stuff :*/
rb_define_method(cFunction, "compute_spline_data",
function_compute_spline_data, 0);
rb_define_method(cFunction, "compute_spline",
function_compute_spline, 1);
rb_define_method(cFunction, "interpolate",
function_interpolate, 1);
rb_define_method(cFunction, "make_interpolant",
function_make_interpolant, 0);
/* access to data */
rb_define_method(cFunction, "point", function_point, 1);
rb_define_method(cFunction, "x", get_x_vector, 0);
rb_define_method(cFunction, "y", get_y_vector, 0);
rb_define_method(cFunction, "size", function_size, 0);
rb_define_alias(cFunction, "length", "size");
/* iterator */
rb_define_method(cFunction, "each",
function_each, 0);
/* stripping of NaNs */
rb_define_method(cFunction, "strip_nan", function_strip_nan, 0);
/* split into monotonic subfunctions */
rb_define_method(cFunction, "split_monotonic", function_split_monotonic, 0);
/* integration between two integer boundaries */
rb_define_method(cFunction, "integrate", function_integrate, -1);
/* primitive */
rb_define_method(cFunction, "primitive", function_primitive, 0);
/* derivative */
rb_define_method(cFunction, "derivative", function_derivative, 0);
/* distance to a point */
rb_define_method(cFunction, "distance", function_distance, -1);
/* Fuzzy operations */
rb_define_method(cFunction, "fuzzy_sub!",
function_fuzzy_substract, 1); /* Substraction */
/* Boundary operations */
rb_define_method(cFunction, "bound_values",
function_bound_values, 4); /* Substraction */
/* a few more methods better written in pure Ruby */
rb_require("Dobjects/Function_extras.rb");
/* now, we import the necessary symbols from Dvector */
RB_IMPORT_SYMBOL(cDvector, Dvector_Data_for_Read);
RB_IMPORT_SYMBOL(cDvector, Dvector_Data_for_Write);
RB_IMPORT_SYMBOL(cDvector, Dvector_Data_Resize);
RB_IMPORT_SYMBOL(cDvector, Dvector_Create);
RB_IMPORT_SYMBOL(cDvector, Dvector_Push_Double);
}
IMPLEMENT_SYMBOL(Dvector_Data_for_Read);
IMPLEMENT_SYMBOL(Dvector_Data_for_Write);
IMPLEMENT_SYMBOL(Dvector_Data_Resize);
IMPLEMENT_SYMBOL(Dvector_Create);
IMPLEMENT_SYMBOL(Dvector_Push_Double);
|