1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
|
/* makers.c */
/*
Copyright (C) 2005 Bill Paxton
Copyright (C) 2007 Taro Sato
This file is part of Tioga.
Tioga is free software; you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Tioga is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with Tioga; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "figures.h"
#include "generic.h"
/* Lines */
/*
* this is copied from dvector so that makers.c won't depend on dvectors.
*/
static void
create_spline_interpolant(int n_pts_data, double *Xs, double *Ys,
bool start_clamped, double start_slope,
bool end_clamped, double end_slope,
double *As, double *Bs, double *Cs)
{
double *Hs = ALLOC_N_double(n_pts_data);
double *alphas = ALLOC_N_double(n_pts_data);
double *Ls = ALLOC_N_double(n_pts_data);
double *mu_s = ALLOC_N_double(n_pts_data);
double *Zs = ALLOC_N_double(n_pts_data);
int n = n_pts_data-1, i, j;
for (i = 0; i < n; i++)
Hs[i] = Xs[i+1] - Xs[i];
if (start_clamped) alphas[0] = 3.0*(Ys[1]-Ys[0])/Hs[0] - 3.0*start_slope;
if (end_clamped) alphas[n] = 3.0*end_slope - 3.0*(Ys[n]-Ys[n-1])/Hs[n-1];
for (i = 1; i < n; i++)
alphas[i] = (3.0 * (Ys[i+1]*Hs[i-1] - Ys[i]*(Xs[i+1]-Xs[i-1])
+ Ys[i-1]*Hs[i]) / (Hs[i-1]*Hs[i]));
if (start_clamped) {
Ls[0] = 2.0*Hs[0]; mu_s[0] = 0.5; Zs[0] = alphas[0]/Ls[0];
}
else {
Ls[0] = 1.0; mu_s[0] = 0.0; Zs[0] = 0.0;
}
for (i = 1; i < n; i++) {
Ls[i] = 2.0*(Xs[i+1]-Xs[i-1]) - Hs[i-1]*mu_s[i-1];
mu_s[i] = Hs[i]/Ls[i];
Zs[i] = (alphas[i] - Hs[i-1]*Zs[i-1])/Ls[i];
}
if (end_clamped) {
Ls[n] = Hs[n-1]*(2.0-mu_s[n-1]);
Bs[n] = Zs[n] = (alphas[n]-Hs[n-1]*Zs[n-1])/Ls[n];
}
else {
Ls[n] = 1.0; Zs[n] = 0.0; Bs[n] = 0.0;
}
for (j = n-1; j >= 0; j--) {
Bs[j] = Zs[j] - mu_s[j]*Bs[j+1];
Cs[j] = (Ys[j+1]-Ys[j])/Hs[j] - Hs[j]*(Bs[j+1]+2.0*Bs[j])/3.0;
As[j] = (Bs[j+1]-Bs[j])/(3.0*Hs[j]);
}
free(Zs); free(mu_s); free(Ls); free(alphas); free(Hs);
}
/*
* this is copied from dvector so that makers.c won't depend on dvectors.
*/
static double
spline_interpolate(double x, int n_pts_data,
double *Xs, double *Ys, double *As, double *Bs, double *Cs)
{
int j;
for (j = 0; j < n_pts_data && x >= Xs[j]; j++);
if (j == n_pts_data) return Ys[j-1];
if (j == 0) return Ys[0];
j--;
double dx = x - Xs[j];
return Ys[j] + dx*(Cs[j] + dx*(Bs[j] + dx*As[j]));
}
OBJ_PTR
c_private_make_spline_interpolated_points(OBJ_PTR fmkr, FM *p, OBJ_PTR Xvec,
OBJ_PTR Xvec_data, OBJ_PTR Yvec_data,
OBJ_PTR start_slope,
OBJ_PTR end_slope, int *ierr)
{
bool start_clamped = (start_slope != OBJ_NIL);
bool end_clamped = (end_slope != OBJ_NIL);
long xlen;
double start=0, end=0, *Ys;
double *Xs = Vector_Data_for_Read(Xvec, &xlen, ierr);
if (*ierr != 0) RETURN_NIL;
OBJ_PTR Yvec;
if (start_clamped) start = Number_to_double(start_slope, ierr);
if (end_clamped) end = Number_to_double(end_slope, ierr);
if (*ierr != 0) RETURN_NIL;
Ys = ALLOC_N_double(xlen); // Ys are same length as Xs
int i, n_pts_data;
double *As, *Bs, *Cs, *Ds;
long xdlen, ydlen;
double *X_data = Vector_Data_for_Read(Xvec_data, &xdlen, ierr);
if (*ierr != 0) RETURN_NIL;
double *Y_data = Vector_Data_for_Read(Yvec_data, &ydlen, ierr);
if (*ierr != 0) RETURN_NIL;
if (Xs == NULL || Ys == NULL || X_data == NULL || Y_data == NULL
|| xdlen != ydlen) {
RAISE_ERROR("Sorry: bad args",ierr);
RETURN_NIL;
}
if (xlen == 0) RETURN_NIL;
n_pts_data = xdlen;
As = Y_data;
Bs = ALLOC_N_double(n_pts_data);
Cs = ALLOC_N_double(n_pts_data);
Ds = ALLOC_N_double(n_pts_data);
create_spline_interpolant(n_pts_data, X_data, Y_data,
start_clamped, start, end_clamped, end,
Bs, Cs, Ds);
for (i = 0; i < xlen; i++)
Ys[i] = spline_interpolate(Xs[i], n_pts_data, X_data, As, Bs, Cs, Ds);
free(Ds); free(Cs); free(Bs);
Yvec = Vector_New(xlen, Ys);
free(Ys);
return Yvec;
}
/*
* Make points xs and ys to define a step function. x_data and y_data
* are arrays from which the step functions are generated. (xfirst,
* yfirst) and (xlast, ylast) are extra data points to fix the first
* and last steps. The x_data plus xfirst and xlast determine the
* widths of the steps. The y_data plus yfirst and ylast determine
* the height of the steps. For CENTERED justification, the steps
* occur at locations midway between the given x locations. For
* LEFT_JUSTIFIED, (x_data[i], y_data[i]) and (x_data[i], y_data[i+1])
* specifies where steps occurs. For RIGHT_JUSTIFIED, (x_data[i],
* y_data[i]) and (x_data[i], y_data[i-1]) specifies where steps
* occurs.
*
* Aug 24, 2007:
*
* TS added 'justification' to control the justification of steps.
* The use of [xy]first and [xy]last might need improvement.
*/
static void
c_make_steps(FM *p,
long *xsteps_len_ptr, double **xs_ptr,
long *ysteps_len_ptr, double **ys_ptr,
OBJ_PTR xvec_data, OBJ_PTR yvec_data,
double xfirst, double yfirst, double xlast, double ylast,
int justification, int *ierr)
{
double xnext, xprev, x;
long i, j, length, xdlen, ydlen;
double *xs = NULL, *ys = NULL;
double *x_data = Vector_Data_for_Read(xvec_data, &xdlen, ierr);
if (*ierr != 0) return;
double *y_data = Vector_Data_for_Read(yvec_data, &ydlen, ierr);
if (*ierr != 0) return;
if (x_data == NULL || y_data == NULL || xdlen != ydlen) {
RAISE_ERROR("Sorry: bad args for make_steps", ierr);
return;
}
// allocate memory for arrays to be returned
length = 2 * (xdlen + 1) + ((justification != CENTERED) ? 1 : 0);
*xsteps_len_ptr = length;
xs = ALLOC_N_double(length);
*xs_ptr = xs;
*ysteps_len_ptr = length;
ys = ALLOC_N_double(length);
*ys_ptr = ys;
// fill the arrays
switch (justification) {
case CENTERED:
for (i = 0, j = 0; i <= xdlen; ++i, j += 2) {
xprev = (i == 0) ? xfirst : x_data[i - 1];
xnext = (i == xdlen) ? xlast : x_data[i];
x = 0.5 * (xprev + xnext);
xs[j] = xs[j + 1] = x;
}
ys[0] = yfirst;
for (i = 0, j = 1; i < xdlen; ++i, j += 2) {
ys[j] = ys[j + 1] = y_data[i];
}
ys[length - 1] = ylast;
break;
case LEFT_JUSTIFIED:
xs[0] = xfirst;
for (i = 0, j = 1; i <= xdlen; ++i, j += 2) {
xs[j] = xs[j + 1] = (i == xdlen) ? xlast : x_data[i];
}
ys[0] = ys[1] = yfirst;
for (i = 0, j = 2; i < xdlen; ++i, j += 2) {
ys[j] = ys[j + 1] = y_data[i];
}
ys[length - 1] = ylast;
break;
case RIGHT_JUSTIFIED:
for (i = 0, j = 0; i <= xdlen; ++i, j += 2) {
xs[j] = xs[j + 1] = (i == 0) ? xfirst : x_data[i - 1];
}
xs[length - 1] = xlast;
ys[0] = yfirst;
for (i = 0, j = 1; i <= xdlen; ++i, j += 2) {
ys[j] = ys[j + 1] = (i == xdlen) ? ylast : y_data[i];
}
break;
default:
RAISE_ERROR_i("Sorry: unsupported justification specified (%d)",
justification, ierr);
return;
}
/* TS: I don't understand the use of the macro USE_P here, which
translates to p = NULL; For now, I'll comment out. */
//USE_P
}
OBJ_PTR
c_private_make_steps(OBJ_PTR fmkr, FM *p, OBJ_PTR xvec_data, OBJ_PTR yvec_data,
double xfirst, double yfirst, double xlast, double ylast,
int justification, int *ierr)
{
OBJ_PTR xvec;
OBJ_PTR yvec;
OBJ_PTR pts_array;
long xsteps_len = 0, ysteps_len = 0;
double *xsteps_data = NULL, *ysteps_data = NULL;
c_make_steps(p, &xsteps_len, &xsteps_data, &ysteps_len, &ysteps_data,
xvec_data, yvec_data, xfirst, yfirst, xlast, ylast,
justification, ierr);
if (*ierr != 0) RETURN_NIL;
xvec = Vector_New(xsteps_len, xsteps_data);
yvec = Vector_New(ysteps_len, ysteps_data);
free(xsteps_data);
free(ysteps_data);
pts_array = Array_New(2);
Array_Store(pts_array, 0, xvec, ierr);
if (*ierr != 0) RETURN_NIL;
Array_Store(pts_array, 1, yvec, ierr);
if (*ierr != 0) RETURN_NIL;
return pts_array;
}
/*
CONREC: A Contouring Subroutine
written by Paul Bourke
see: http://astronomy.swin.edu.au/~pbourke/projection/conrec/
Copyright (c) 1996-1997 Nicholas Yue
This software is copyrighted by Nicholas Yue. This code is base on the work of
Paul D. Bourke CONREC.F routine
The authors hereby grant permission to use, copy, and distribute this
software and its documentation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is included
verbatim in any distributions. Additionally, the authors grant permission to
modify this software and its documentation for any purpose, provided that
such modifications are not distributed without the explicit consent of the
authors and that existing copyright notices are retained in all copies. Some
of the algorithms implemented by this software are patented, observe all
applicable patent law.
IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF,
EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN
"AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
//=============================================================================
//
// CONREC is a contouring subroutine for rectangularily spaced data.
//
// It emits calls to a line drawing subroutine supplied by the user
// which draws a contour map corresponding to real*4data on a randomly
// spaced rectangular grid. The coordinates emitted are in the same
// units given in the x() and y() arrays.
//
// Any number of contour levels may be specified but they must be
// in order of increasing value.
//
// As this code is ported from FORTRAN-77, please be very careful of the
// various indices like ilb,iub,jlb and jub, remeber that C/C++ indices
// starts from zero (0)
//
//=============================================================================
#include <stdio.h>
#include <math.h>
#define xsect(p1,p2) (h[p2]*xh[p1]-h[p1]*xh[p2])/(h[p2]-h[p1])
#define ysect(p1,p2) (h[p2]*yh[p1]-h[p1]*yh[p2])/(h[p2]-h[p1])
#define min(x,y) (x<y?x:y)
#define max(x,y) (x>y?x:y)
#define PUSH_POINT(x,y) { \
if (*dest_len_ptr >= *dest_sz_ptr) { \
*dest_sz_ptr += *dest_sz_ptr + 100; \
REALLOC_double(dest_xs_ptr,*dest_sz_ptr); \
REALLOC_double(dest_ys_ptr,*dest_sz_ptr); \
} \
(*dest_xs_ptr)[*dest_len_ptr] = x; \
(*dest_ys_ptr)[*dest_len_ptr] = y; \
(*dest_len_ptr)++; \
}
static int conrec(double **d,
int ilb,
int iub,
int jlb,
int jub,
double *x,
double *y,
int nc,
double *z,
long *dest_len_ptr,
double **dest_xs_ptr,
double **dest_ys_ptr,
long *dest_sz_ptr,
OBJ_PTR gaps,
double x_limit,
double y_limit,
int *ierr)
// d ! matrix of data to contour
// ilb,iub,jlb,jub ! index bounds of data matrix
// x ! data matrix column coordinates
// y ! data matrix row coordinates
// nc ! number of contour levels
// z ! contour levels in increasing order
{
int num_pts = 0;
double x_prev=0.0, y_prev=0.0;
int m1,m2,m3,case_value;
double dmin,dmax,x1=0.0,x2=0.0,y1=0.0,y2=0.0;
register int i,j,k,m;
double h[5];
int sh[5];
double xh[5],yh[5];
//==========================================================================
// The indexing of im and jm should be noted as it has to start from zero
// unlike the fortran counter part
//===========================================================================
int im[4] = {0,1,1,0},jm[4]={0,0,1,1};
//===========================================================================
// Note that castab is arranged differently from the FORTRAN code because
// Fortran and C/C++ arrays are transposes of each other, in this case
// it is more tricky as castab is in 3 dimension
//===========================================================================
int castab[3][3][3] =
{
{
{0,0,8},{0,2,5},{7,6,9}
},
{
{0,3,4},{1,3,1},{4,3,0}
},
{
{9,6,7},{5,2,0},{8,0,0}
}
};
for (j=(jub-1);j>=jlb;j--) {
for (i=ilb;i<=iub-1;i++) {
double temp1,temp2;
temp1 = min(d[i][j],d[i][j+1]);
temp2 = min(d[i+1][j],d[i+1][j+1]);
dmin = min(temp1,temp2);
temp1 = max(d[i][j],d[i][j+1]);
temp2 = max(d[i+1][j],d[i+1][j+1]);
dmax = max(temp1,temp2);
if (dmax>=z[0]&&dmin<=z[nc-1]) {
for (k=0;k<nc;k++) {
if (z[k]>=dmin&&z[k]<=dmax) {
for (m=4;m>=0;m--) {
if (m>0) {
//=============================================================
// The indexing of im and jm should be noted as it has to
// start from zero
//=============================================================
h[m] = d[i+im[m-1]][j+jm[m-1]]-z[k];
xh[m] = x[i+im[m-1]];
yh[m] = y[j+jm[m-1]];
} else {
h[0] = 0.25*(h[1]+h[2]+h[3]+h[4]);
xh[0]=0.5*(x[i]+x[i+1]);
yh[0]=0.5*(y[j]+y[j+1]);
}
if (h[m]>0.0) {
sh[m] = 1;
} else if (h[m]<0.0) {
sh[m] = -1;
} else
sh[m] = 0;
}
//=================================================================
//
// Note: at this stage the relative heights of the corners and the
// centre are in the h array, and the corresponding coordinates are
// in the xh and yh arrays. The centre of the box is indexed by 0
// and the 4 corners by 1 to 4 as shown below.
// Each triangle is then indexed by the parameter m, and the 3
// vertices of each triangle are indexed by parameters m1,m2,and
// m3.
// It is assumed that the centre of the box is always vertex 2
// though this isimportant only when all 3 vertices lie exactly on
// the same contour level, in which case only the side of the box
// is drawn.
//
//
// vertex 4 +-------------------+ vertex 3
// | \ / |
// | \ m-3 / |
// | \ / |
// | \ / |
// | m=2 X m=2 | the centre is vertex 0
// | / \ |
// | / \ |
// | / m=1 \ |
// | / \ |
// vertex 1 +-------------------+ vertex 2
//
//
//
// Scan each triangle in the box
//
//=================================================================
for (m=1;m<=4;m++) {
m1 = m;
m2 = 0;
if (m!=4)
m3 = m+1;
else
m3 = 1;
case_value = castab[sh[m1]+1][sh[m2]+1][sh[m3]+1];
if (case_value!=0) {
switch (case_value) {
//===========================================================
// Case 1 - Line between vertices 1 and 2
//===========================================================
case 1:
x1=xh[m1];
y1=yh[m1];
x2=xh[m2];
y2=yh[m2];
break;
//===========================================================
// Case 2 - Line between vertices 2 and 3
//===========================================================
case 2:
x1=xh[m2];
y1=yh[m2];
x2=xh[m3];
y2=yh[m3];
break;
//===========================================================
// Case 3 - Line between vertices 3 and 1
//===========================================================
case 3:
x1=xh[m3];
y1=yh[m3];
x2=xh[m1];
y2=yh[m1];
break;
//===========================================================
// Case 4 - Line between vertex 1 and side 2-3
//===========================================================
case 4:
x1=xh[m1];
y1=yh[m1];
x2=xsect(m2,m3);
y2=ysect(m2,m3);
break;
//===========================================================
// Case 5 - Line between vertex 2 and side 3-1
//===========================================================
case 5:
x1=xh[m2];
y1=yh[m2];
x2=xsect(m3,m1);
y2=ysect(m3,m1);
break;
//===========================================================
// Case 6 - Line between vertex 3 and side 1-2
//===========================================================
case 6:
x1=xh[m3];
y1=yh[m3];
x2=xsect(m1,m2);
y2=ysect(m1,m2);
break;
//===========================================================
// Case 7 - Line between sides 1-2 and 2-3
//===========================================================
case 7:
x1=xsect(m1,m2);
y1=ysect(m1,m2);
x2=xsect(m2,m3);
y2=ysect(m2,m3);
break;
//===========================================================
// Case 8 - Line between sides 2-3 and 3-1
//===========================================================
case 8:
x1=xsect(m2,m3);
y1=ysect(m2,m3);
x2=xsect(m3,m1);
y2=ysect(m3,m1);
break;
//===========================================================
// Case 9 - Line between sides 3-1 and 1-2
//===========================================================
case 9:
x1=xsect(m3,m1);
y1=ysect(m3,m1);
x2=xsect(m1,m2);
y2=ysect(m1,m2);
break;
default:
break;
}
double dx = x1 - x_prev, dy = y1 - y_prev;
if (dx < 0) dx = -dx; if (dy < 0) dy = -dy;
if (num_pts == 0 || dx > x_limit || dy > y_limit) {
if (num_pts > 0) {
Array_Push(gaps, Integer_New(num_pts), ierr);
if (*ierr != 0) return 0;
}
PUSH_POINT(x1,y1); num_pts++;
}
PUSH_POINT(x2,y2); num_pts++;
x_prev = x2; y_prev = y2;
}
}
}
}
}
}
}
return 0;
}
/* end of conrec */
/*
* the following code is from Gri
*/
#include <math.h>
#include <stdio.h>
#include <string.h>
// globals to this file
static int nx_1, ny_1, iGT, jGT, iLE, jLE;
static void free_space_for_curve(void);
static void get_space_for_curve(int *ierr);
static void draw_the_contour(long *dest_len_ptr,
double **dest_xs_ptr,
double **dest_ys_ptr,
long *dest_sz_ptr,
OBJ_PTR gaps,
int *ierr);
static bool trace_contour(double z0,
double *x,
double *y,
double **z,
double **legit,
long *dest_len_ptr,
double **dest_xs_ptr,
double **dest_ys_ptr,
long *dest_sz_ptr,
OBJ_PTR gaps,
int *iterr);
static int FLAG(int ni, int nj, int ind, int *ierr);
static int append_segment(double xr, double yr, double zr, double OKr,
double xs, double ys, double zs, double OKs,
double z0, int *ierr);
// Space for curve, shared by several routines
static double *xcurve, *ycurve;
static bool *legitcurve;
#define INITIAL_CURVE_SIZE 100
static int num_in_curve, max_in_curve, num_in_path;
static bool curve_storage_exists = false;
static void
free_space_for_curve(void)
{
if (curve_storage_exists) {
free(xcurve);
free(ycurve);
free(legitcurve);
curve_storage_exists = false;
}
num_in_curve = 0;
num_in_path = 0;
}
static void
get_space_for_curve(int *ierr)
{
max_in_curve = INITIAL_CURVE_SIZE;
if(curve_storage_exists) {
RAISE_ERROR("storage is messed up (internal error)", ierr);
return;
}
xcurve = ALLOC_N_double(max_in_curve);
ycurve = ALLOC_N_double(max_in_curve);
legitcurve = ALLOC_N_bool(max_in_curve);
curve_storage_exists = true;
num_in_curve = 0;
num_in_path = 0;
}
/*
* gr_contour() -- draw contour line for gridded data
*
* DESCRIPTION: Draws a contour for the value z0, through data z[i][j]
* defined on the rectangular grid x[i] and y[j] (where 0<=i<nx and
* 0<=j<ny). That the grid is rectangular but needn't be square or
* regular. Contours are drawn only in triangular regions surrounded
* by 3 good points (ie, 3 points with legit[i][j] != 0.0).
*
* The contour is labelled, with the string lab, at intervals of
* contour_space_later centimeters, starting with a space of
* contour_space_first from the beginning of the trace.
*/
static void
gr_contour(double *x,
double *y,
double **z,
double **legit,
int nx,
int ny,
double z0,
long *dest_len_ptr,
double **dest_xs_ptr,
double **dest_ys_ptr,
long *dest_sz_ptr,
OBJ_PTR gaps,
int *ierr)
{
register int i, j;
// Test for errors
if (nx <= 0) { RAISE_ERROR("nx<=0 (internal error)", ierr); return; }
if (ny <= 0) { RAISE_ERROR("ny<=0 (internal error)", ierr); return; }
// Save some globals
nx_1 = nx - 1;
ny_1 = ny - 1;
// Clear all switches.
FLAG(nx, ny, -1, ierr);
// Get space for the curve.
get_space_for_curve(ierr);
if (*ierr != 0) return;
// Search for a contour intersecting various places on the grid. Whenever
// a contour is found to be between two grid points, call trace_contour()
// after defining the global variables iLE,jLE,iGT,jGT so that
// z[iLE]jLE] <= z0 < z[iGT][jGT], where legit[iLE][jLE] != 0
// and legit[iGT][jGT] != 0.
//
// NOTE: always start a contour running upwards (to greater j), between
// two sideways neighboring points (same j). Later, in trace_contour(),
// test 'locate' for value 5. If it's 5, it means that the same geometry
// obtains, so set a flag and check whether already set. If already
// set, it means we've traced this contour before, so trace_contour()
// knows to stop then.
// Search bottom
for (i = 1; i < nx; i++) {
j = 0;
while (j < ny_1) {
// move north to first legit point
while (j < ny_1
&& (legit == NULL || !(legit[i][j] != 0.0
&& legit[i - 1][j] != 0.0))
) {
j++;
}
// trace a contour if it hits here
if (j < ny_1 && z[i][j] > z0 && z[i - 1][j] <= z0) {
iLE = i - 1;
jLE = j;
iGT = i;
jGT = j;
trace_contour(z0, x, y, z, legit, dest_len_ptr, dest_xs_ptr,
dest_ys_ptr, dest_sz_ptr, gaps, ierr);
if (*ierr != 0) return;
}
// Space through legit points, that is, skipping through good
// data looking for another island of bad data which will
// thus be a new 'bottom edge'.
while (j < ny_1 && (legit == NULL || (legit[i][j] != 0.0
&& legit[i - 1][j] != 0.0)))
j++;
}
}
// search right edge
for (j = 1; j < ny; j++) {
i = nx_1;
while (i > 0) {
// move west to first legit point
while (i > 0 && (legit == NULL || !(legit[i][j] != 0.0
&& legit[i][ j - 1] != 0.0)))
i--;
// trace a contour if it hits here
if (i > 0 && z[i][j] > z0 && z[i][j - 1] <= z0) {
iLE = i;
jLE = j - 1;
iGT = i;
jGT = j;
trace_contour(z0, x, y, z, legit, dest_len_ptr, dest_xs_ptr,
dest_ys_ptr, dest_sz_ptr, gaps, ierr);
if (*ierr != 0) return;
}
// space through legit points
while (i > 0 && (legit == NULL || (legit[i][j] != 0.0
&& legit[i][ j - 1] != 0.0)))
i--;
}
}
// search top edge
for (i = nx_1 - 1; i > -1; i--) {
j = ny_1;
while (j > 0) {
while (j > 0 && (legit == NULL || !(legit[i][j] != 0.0
&& legit[i + 1][ j] != 0.0)))
j--;
// trace a contour if it hits here
if (j > 0 && z[i][j] > z0 && z[i + 1][ j] <= z0) {
iLE = i + 1;
jLE = j;
iGT = i;
jGT = j;
trace_contour(z0, x, y, z, legit, dest_len_ptr, dest_xs_ptr,
dest_ys_ptr, dest_sz_ptr, gaps, ierr);
if (*ierr != 0) return;
}
// space through legit points
while (j > 0 && (legit == NULL || (legit[i][j] != 0.0
&& legit[i + 1][ j] != 0.0)))
j--;
}
}
// search left edge
for (j = ny_1 - 1; j > -1; j--) {
i = 0;
while (i < nx_1) {
while (i < nx_1 && (legit == NULL || !(legit[i][j] != 0.0
&& legit[i][ j + 1] != 0.0)))
i++;
// trace a contour if it hits here
if (i < nx_1 && z[i][j] > z0 && z[i][j + 1] <= z0) {
iLE = i;
jLE = j + 1;
iGT = i;
jGT = j;
trace_contour(z0, x, y, z, legit, dest_len_ptr, dest_xs_ptr,
dest_ys_ptr, dest_sz_ptr, gaps, ierr);
if (*ierr != 0) return;
}
// space through legit points
while (i < nx_1 && (legit == NULL || (legit[i][j] != 0.0
&& legit[i][ j + 1] != 0.0)))
i++;
}
}
// Search interior. Pass up from bottom (starting at left), through all
// interior points. Look for contours which enter, with high to right,
// between iLE on left and iGT on right.
for (j = 1; j < ny_1; j++) {
int flag_is_set;
for (i = 1; i < nx; i++) {
// trace a contour if it hits here
flag_is_set = FLAG(i, j, 0, ierr);
if (*ierr != 0) return;
if (flag_is_set < 0) {
RAISE_ERROR("ran out of storage (internal error)", ierr);
return;
}
if (!flag_is_set
&& (legit == NULL || legit[i][j] != 0.0)
&& z[i][j] > z0
&& (legit == NULL || legit[i - 1][j] != 0.0)
&& z[i - 1][j] <= z0) {
iLE = i - 1;
jLE = j;
iGT = i;
jGT = j;
trace_contour(z0, x, y, z, legit, dest_len_ptr, dest_xs_ptr,
dest_ys_ptr, dest_sz_ptr, gaps, ierr);
if (*ierr != 0) return;
}
}
}
// Free up space.
free_space_for_curve();
FLAG(nx, ny, 2, ierr);
}
/*
* trace_contour() -- trace_contour a contour line with high values of
* z to it's right. Stores points in (*xcurve, *ycurve) and the legit
* flag is stored in *legitcurve; initially these must be empty; you
* must also free them after this call, so that the next call will
* work OK.
*/
static bool
trace_contour(double z0,
double *x,
double *y,
double **z,
double **legit,
long *dest_len_ptr,
double **dest_xs_ptr,
double **dest_ys_ptr,
long *dest_sz_ptr,
OBJ_PTR gaps,
int *ierr)
{
int i, ii, j, jj;
double zp, vx, vy, zcentre;
int locate;
// locate tells where delta-grid point is. It codes as follows to
// i_test[] and j_test[] 6 7 8 3 4 5 0 1 2
static int i_test[9] =
{
0, 1, 1, // 6 7 8
0, 9, 0, // 3 4 5
-1, -1, 0 // 0 1 2
};
static int j_test[9] =
{
-1, 0, 0, // 6 7 8
-1, 9, 1, // 3 4 5
0, 0, 1 // 0 1 2
};
static int dtest[9] =
{
0, 1, 0, // 6 7 8
1, 0, 1, // 3 4 5
0, 1, 0 // 0 1 2
};
// Trace the curve, storing results with append_segment() into *xcurve,
// *ycurve, *legitcurve. When done, call draw_the_contour(), which draws
// the contour stored in these arrays.
while (true) {
append_segment(x[iLE], y[jLE], z[iLE][jLE],
(legit == NULL)? 1.0: legit[iLE][jLE],
x[iGT], y[jGT], z[iGT][jGT],
(legit == NULL)? 1.0: legit[iGT][jGT],
z0, ierr);
if (*ierr != 0) return false;
// Find the next point to check through a table lookup.
locate = 3 * (jGT - jLE) + (iGT - iLE) + 4;
i = iLE + i_test[locate];
j = jLE + j_test[locate];
// Did it hit an edge?
if (i > nx_1 || i < 0 || j > ny_1 || j < 0) {
draw_the_contour(dest_len_ptr, dest_xs_ptr, dest_ys_ptr, dest_sz_ptr,
gaps, ierr);
if (*ierr != 0) return false;
return true; // all done
}
// Test if retracing an existing contour. See explanation
// above, in grcntour(), just before search starts.
if (locate == 5) {
int already_set = FLAG(iGT, jGT, 1, ierr);
if (*ierr != 0) return false;
if (already_set < 0) {
RAISE_ERROR("ran out of storage (internal error)", ierr);
return false;
}
if (already_set) {
draw_the_contour(dest_len_ptr, dest_xs_ptr, dest_ys_ptr, dest_sz_ptr,
gaps, ierr);
if (*ierr != 0) return false;
return true; // all done
}
}
// Following new for 2.1.13
if (legit != NULL && legit[i][j] == 0.0) {
draw_the_contour(dest_len_ptr, dest_xs_ptr, dest_ys_ptr, dest_sz_ptr,
gaps, ierr);
if (*ierr != 0) return false;
return true; // all done
}
if (!dtest[locate]) {
zp = z[i][j];
if (zp > z0)
iGT = i, jGT = j;
else
iLE = i, jLE = j;
continue;
}
vx = (x[iGT] + x[i]) * 0.5;
vy = (y[jGT] + y[j]) * 0.5;
locate = 3 * (jGT - j) + iGT - i + 4;
// Fourth point in rectangular boundary
ii = i + i_test[locate];
jj = j + j_test[locate];
bool legit_diag =
(legit == NULL || (legit[iLE][jLE] != 0.0
&& legit[iGT][jGT] != 0.0
&& legit[i][j] != 0.0
&& legit[ii][jj] != 0.0)) ? true : false;
zcentre = 0.25 * (z[iLE][jLE] + z[iGT][jGT] + z[i][j] + z[ii][jj]);
if (zcentre <= z0) {
append_segment(x[iGT], y[jGT], z[iGT][jGT],
(legit == NULL)? 1.0: legit[iGT][jGT],
vx, vy, zcentre, legit_diag,
z0, ierr);
if (*ierr != 0) return false;
if (z[ii][jj] <= z0) {
iLE = ii, jLE = jj;
continue;
}
append_segment(x[ii], y[jj], z[ii][jj],
(legit == NULL)? 1.0: legit[ii][jj],
vx, vy, zcentre, legit_diag,
z0, ierr);
if (*ierr != 0) return false;
if (z[i][j] <= z0) {
iGT = ii, jGT = jj;
iLE = i, jLE = j;
continue;
}
append_segment(x[i], y[j], z[i][j], (legit == NULL)? 1.0: legit[i][j],
vx, vy, zcentre, legit_diag,
z0, ierr);
if (*ierr != 0) return false;
iGT = i, jGT = j;
continue;
}
append_segment(vx, vy, zcentre, legit_diag,
x[iLE], y[jLE], z[iLE][jLE],
(legit == NULL)? 1.0: legit[iLE][jLE],
z0, ierr);
if (*ierr != 0) return false;
if (z[i][j] > z0) {
iGT = i, jGT = j;
continue;
}
append_segment(vx, vy, zcentre, legit_diag,
x[i], y[j], z[i][j], (legit == NULL)? 1.0: legit[i][j],
z0, ierr);
if (*ierr != 0) return false;
if (z[ii][jj] <= z0) {
append_segment(vx, vy, zcentre, legit_diag,
x[ii], y[jj], z[ii][jj],
(legit == NULL)? 1.0: legit[ii][jj],
z0, ierr);
if (*ierr != 0) return false;
iLE = ii;
jLE = jj;
continue;
}
iLE = i;
jLE = j;
iGT = ii;
jGT = jj;
}
}
/*
* append_segment() -- append a line segment on the contour
*/
static double xplot_last, yplot_last;
static int
append_segment(double xr, double yr, double zr, double OKr,
double xs, double ys, double zs, double OKs,
double z0, int *ierr)
{
if (zr == zs) {
RAISE_ERROR("Contouring problem: zr = zs, which is illegal", ierr);
return 0;
}
double frac = (zr - z0) / (zr - zs);
if (frac < 0.0) {
RAISE_ERROR("Contouring problem: frac < 0", ierr);
return 0;
}
if (frac > 1.0) {
RAISE_ERROR("Contouring problem: frac > 1", ierr);
return 0;
}
double xplot = xr - frac * (xr - xs);
double yplot = yr - frac * (yr - ys);
// Avoid replot, which I suppose must be possible, given this code
if (num_in_curve > 0 && xplot == xplot_last && yplot == yplot_last)
return 1;
if (num_in_curve > max_in_curve - 1) {
// Get new storage if running on empty. Better to
// do this with an STL vector class
max_in_curve *= 2;
int i;
double *tmp = ALLOC_N_double(num_in_curve);
for (i = 0; i < num_in_curve; i++) tmp[i] = xcurve[i];
free(xcurve); xcurve = ALLOC_N_double(max_in_curve);
for (i = 0; i < num_in_curve; i++) xcurve[i] = tmp[i];
for (i = 0; i < num_in_curve; i++) tmp[i] = ycurve[i];
free(ycurve); ycurve = ALLOC_N_double(max_in_curve);
for (i = 0; i < num_in_curve; i++) ycurve[i] = tmp[i];
free(tmp);
bool *tmpl = ALLOC_N_bool(num_in_curve);
for (i = 0; i < num_in_curve; i++) tmpl[i] = legitcurve[i];
free(legitcurve); legitcurve = ALLOC_N_bool(max_in_curve);
for (i = 0; i < num_in_curve; i++) legitcurve[i] = tmpl[i];
free(tmpl);
}
// A segment is appended only if both the present point and the last
// point came by interpolating between OK points.
xcurve[num_in_curve] = xplot;
ycurve[num_in_curve] = yplot;
if (OKr != 0.0 && OKs != 0.0)
legitcurve[num_in_curve] = true;
else
legitcurve[num_in_curve] = false;
num_in_curve++;
xplot_last = xplot;
yplot_last = yplot;
return 1;
}
/*
* Draw contour stored in (xcurve[],ycurve[],legitcurve[]), possibly
* with labels (depending on global Label_contours).
*/
#define FACTOR 3.0 // contour must be FACTOR*len long to be labelled
static void
draw_the_contour(long *dest_len_ptr,
double **dest_xs_ptr,
double **dest_ys_ptr,
long *dest_sz_ptr,
OBJ_PTR gaps,
int *ierr)
{
if (num_in_curve == 1) {
num_in_curve = 0;
return;
}
int i, k;
for (i = 0, k = 0; i < num_in_curve; i++) {
if (legitcurve[i] == true) {
// PUSH_POINT does num_in_path++
PUSH_POINT(xcurve[i],ycurve[i]); num_in_path++;
}
else {
if (num_in_path > 0 && num_in_path != k) {
Array_Push(gaps, Integer_New(num_in_path), ierr);
if (*ierr != 0) return;
}
k = num_in_path;
}
}
Array_Push(gaps, Integer_New(num_in_path), ierr);
num_in_curve = 0;
}
/*
* FLAG() -- check flag for gr_contour() and trace_contour()
* ni = row (or, if ind==-1, number of rows)
* nj = col (or, if ind==-1, number of cols)
* if (ind == -1), get flag storage space; initialize flags to 0
* if (ind == 1), check flag and then set it
* if (ind == 2), clear the flag storage space
* if (ind == 0), check flag, return value
* RETURN value: Normally, the flag value (0 or 1). If the storage is
* exhausted, return a number <0.
*/
#define NBITS 32
static int
FLAG(int ni, int nj, int ind, int *ierr)
{
static bool flag_storage_exists = false;
static unsigned long *flag, mask[NBITS];
static int size;
static int ni_max; // x-dimension is saved
int i, ipos, iword, ibit, return_value;
switch (ind) {
case -1:
// Allocate storage for flag array
if (flag_storage_exists) {
RAISE_ERROR("storage is messed up (internal error)", ierr);
return 0;
}
size = 1 + ni * nj / NBITS; // total storage array length
flag = ALLOC_N_unsigned_long(size);
// Create mask
mask[0] = 1;
for (i = 1; i < NBITS; i++)
mask[i] = 2 * mask[i - 1];
for (i = 0; i < size; i++) // Zero out flag
flag[i] = 0;
ni_max = ni; // Save for later
flag_storage_exists = true;
return 0;
case 2:
if (!flag_storage_exists) {
RAISE_ERROR("No flag storage exists", ierr);
return 0;
}
free(flag);
flag_storage_exists = false;
return 0;
default:
if (!flag_storage_exists) {
RAISE_ERROR("No flag storage exists", ierr);
return 0;
}
break;
}
// ind was not -1 or 2
// Find location of bit.
ipos = nj * ni_max + ni;
iword = ipos / NBITS;
ibit = ipos - iword * NBITS;
// Check for something being broken here, causing to run out of space.
// This should never happen, but may as well check.
if (iword >= size)
return (-99); // no space
// Get flag.
return_value = (0 != (*(flag + iword) & mask[ibit]));
// If ind=1 and flag wasn't set, set the flag
if (ind == 1 && !return_value)
flag[iword] |= mask[ibit];
// Return the flag value
return return_value;
}
#undef NBITS
/*
* end of contour code from Gri
*/
static void
c_make_contour(FM *p,
long *dest_len_ptr,
double **dest_xs_ptr,
double **dest_ys_ptr,
long *dest_sz_ptr,
OBJ_PTR gaps,
OBJ_PTR xs, OBJ_PTR ys,
OBJ_PTR zs_data, double z_level,
OBJ_PTR legit_data, int use_conrec, int *ierr)
{
long xlen, ylen, num_zcolumns, num_zrows, num_columns, num_rows;
double *x_coords = Vector_Data_for_Read(xs, &xlen, ierr);
if (*ierr != 0) return;
double *y_coords = Vector_Data_for_Read(ys, &ylen, ierr);
if (*ierr != 0) return;
double **zs = Table_Data_for_Read(zs_data, &num_zcolumns, &num_zrows, ierr);
if (*ierr != 0) return;
double **legit = Table_Data_for_Read(legit_data, &num_columns, &num_rows,
ierr);
if (*ierr != 0) return;
double x_limit, y_limit;
if (x_coords == NULL || gaps == OBJ_NIL || zs == NULL || y_coords == NULL) {
RAISE_ERROR("Sorry: bad args for make_contour. Need to provide xs, ys, "
"gaps, and zs.", ierr);
return;
}
if (xlen != num_columns || ylen != num_rows) {
RAISE_ERROR("Sorry: bad args for make_contour. Needs xs.size == "
"num columns and ys.size == num rows.", ierr);
return;
}
if (num_zcolumns != num_columns || num_zrows != num_rows) {
RAISE_ERROR("Sorry: bad args for make_contour. Needs same dimension zs "
"and legit flags.", ierr);
return;
}
// NOTE: contour data is TRANSPOSE of tioga data, so we switch x's
// and y's in the call
if (use_conrec == 1) {
x_limit = 0.001*(x_coords[xlen-1] - x_coords[0])/xlen;
if (x_limit < 0) x_limit = -x_limit;
y_limit = 0.001*(y_coords[ylen-1] - y_coords[0])/ylen;
if (y_limit < 0) y_limit = -y_limit;
conrec(zs, 0, num_rows-1, 0, num_columns-1, y_coords, x_coords, 1,
&z_level, dest_len_ptr, dest_ys_ptr, dest_xs_ptr, dest_sz_ptr,
gaps, y_limit, x_limit, ierr);
}
else {
gr_contour(y_coords, x_coords, zs, legit, num_rows, num_columns, z_level,
dest_len_ptr, dest_ys_ptr, dest_xs_ptr, dest_sz_ptr, gaps,
ierr);
}
}
/*
* uses Xvec_data and Yvec_data to create a cubic spline interpolant.
*
* once the spline interpolant is created, it is sampled at the
* n_pts_to_add in Xs.
*
* Xvec entry i is set to the value of the spline at Yvec entry i.
* Both the X_data and the Xs should be stored in ascending order.
* There is a boundary condition choice to be made for each end concerning the slope.
* If clamped is true, the corresponding slope argument value sets the slope.
* If clamped is false (known as a "free" or "natural" spline),
* the 2nd derivative is set to 0 and the slope is determined by the fit.
* In this case, the corresponding slope argument is ignored.
*/
OBJ_PTR c_private_make_contour(OBJ_PTR fmkr, FM *p,
OBJ_PTR gaps,
// these vectors get the results
OBJ_PTR xs, OBJ_PTR ys,
// data x coordinates and y coordinates
OBJ_PTR zs, double z_level,
// the table of values and the desired
// contour level
OBJ_PTR legit,
// the table of flags (nonzero means
// okay)
int method,
// int == 1 means CONREC
int *ierr)
{
long dest_len, dest_sz;
double *dest_xs_data;
double *dest_ys_data;
OBJ_PTR Xvec;
OBJ_PTR Yvec;
OBJ_PTR pts_array;
dest_len = 0; dest_sz = 3000;
dest_xs_data = ALLOC_N_double(dest_sz);
dest_ys_data = ALLOC_N_double(dest_sz);
c_make_contour(p, &dest_len, &dest_xs_data, &dest_ys_data, &dest_sz,
gaps, xs, ys, zs, z_level, legit, method, ierr);
if (*ierr != 0) RETURN_NIL;
Xvec = Vector_New(dest_len, dest_xs_data);
Yvec = Vector_New(dest_len, dest_ys_data);
free(dest_xs_data);
free(dest_ys_data);
pts_array = Array_New(2);
Array_Store(pts_array,0,Xvec,ierr);
if (*ierr != 0) RETURN_NIL;
Array_Store(pts_array,1,Yvec,ierr);
if (*ierr != 0) RETURN_NIL;
return pts_array;
}
|