1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
require 'Dobjects/Function'
require 'test/unit'
class TestFunction < Test::Unit::TestCase
include Dobjects
def test_sorted
x_1 = Dvector[1,2,3]
x_2 = Dvector[1,3,2]
f_1 = Function.new(x_1, x_2)
f_2 = Function.new(x_2, x_1)
assert(f_1.sorted?)
assert(! f_2.sorted?)
end
NUMBER = 20
def test_joint_sort
x_1 = Dvector.new(NUMBER)
x_1.collect! { |x|
rand
}
x_2 = x_1.dup
Function.joint_sort(x_1,x_2)
NUMBER.times do |i|
assert_equal(x_1[i],x_2[i])
end
f = Function.new(x_1,x_2)
assert(f.sorted?)
end
def test_point
x = Dvector[1,3,2]
y = Dvector[2,3,4]
f = Function.new(x,y)
p = f.point(2)
assert_equal(p[0],2.0)
assert_equal(p[1],4.0)
f.sort
p = f.point(2)
assert_equal(p[0],3.0)
assert_equal(p[1],3.0)
end
def test_bounds
x_1 = Dvector[1,2,3,4]
x_2 = Dvector[1,9,2,0.1]
f = Function.new(x_1, x_2)
assert_equal(f.bounds, [1,0.1,4,9])
end
def test_strip
x = Dvector[1,3,2,4]
y = Dvector[2,3,4,5]
x[1] = 0.0/0.0
y[2] = 0.0/0.0
f = Function.new(x,y)
assert_equal(f.strip_nan, 2)
assert_equal(f.x, Dvector[1,4])
assert_equal(f.y, Dvector[2,5])
end
def test_monotonic
x = Dvector[1,3,2,4,5,6]
y = x.dup
f = Function.new(x,y)
ary = f.split_monotonic
assert_equal(ary.size, 3)
x = Dvector[1,3]
assert_equal(ary[0].x, x)
x = Dvector[3,2]
assert_equal(ary[1].x, x)
x = Dvector[2,4,5,6]
assert_equal(ary[2].x, x)
end
def test_integrate
x = Dvector[1,2,4]
y = Dvector[0,1,2]
f = Function.new(x,y)
# integral should be 0.5 + 1.5 * 2
assert_equal(f.integrate, 3.5)
assert_equal(f.integrate(0,1), 0.5)
assert_equal(f.integrate(1,2), 3)
g = f.primitive
assert_equal(f.x, g.x)
end
def test_length
x = Dvector[1,2,4]
y = Dvector[0,1,2]
f = Function.new(x,y)
assert_equal(f.size, 3)
assert_equal(f.length, 3)
end
def test_distance
f = Function.new(Dvector[0],Dvector[0])
assert_equal(f.distance(3,4), 5.0)
f = Function.new(Dvector[0,1],Dvector[0,1])
assert_equal(f.distance(1,1), 0.0)
assert_equal(f.distance(0,1), 1.0)
assert_equal(f.distance(1,0), 1.0)
assert_equal(f.distance(1,0), 1.0)
end
def test_fuzzy_ops
f = Function.new(Dvector[1,2,3,4],Dvector[1,2,3,4])
g = Function.new(Dvector[1,2,4],Dvector[1,2,3])
a = g.fuzzy_sub!(f)
assert_equal(a,0.0)
assert_equal(g.y, Dvector[0,0,-1])
end
def test_bounds
x = Dvector[1,2,3,4,5]
y = Dvector[0,4,3,4,2]
f = Function.new(x,y)
# First, big boundaries
g = f.bound_values(0, 10, 0, 10)
assert_equal(f.x, g.x)
assert_equal(f.y, g.y)
# Too small boundaries
g = f.bound_values(0,0,0,0)
assert_equal(0, g.size)
# Real boundaries, but taking the sides make so
# that we have the same in the end that at the beginning
g = f.bound_values(2,4,0,10)
assert_equal(f.x, g.x)
assert_equal(f.y, g.y)
# It really should be fine.
end
# There is unfortunately no simple way to test the interpolations...
end
|