File: TM.pm

package info (click to toggle)
libtm-perl 1.56-7
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 3,692 kB
  • ctags: 1,084
  • sloc: perl: 35,266; makefile: 48
file content (3554 lines) | stat: -rw-r--r-- 120,458 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
package TM;

use strict;
use warnings;

require Exporter;
use base qw(Exporter);

our $VERSION  = '1.56';

use Data::Dumper;
# !!! HACK to suppress an annoying warning about Data::Dumper's VERSION not being numerical
$Data::Dumper::VERSION = '2.12108';
# !!! END of HACK

use Class::Struct;
use Time::HiRes;
use TM::PSI;

use Log::Log4perl;
Log::Log4perl::init( \ q(

log4perl.rootLogger=DEBUG, Screen

log4perl.appender.Screen=Log::Log4perl::Appender::Screen
log4perl.appender.Screen.layout=Log::Log4perl::Layout::PatternLayout
log4perl.appender.Screen.layout.ConversionPattern=[%r] %F %L %c - %m%n

#log4perl.rootLogger=DEBUG, LOGFILE

#log4perl.appender.LOGFILE=Log::Log4perl::Appender::File
#log4perl.appender.LOGFILE.filename=/tmp/tm.log
#log4perl.appender.LOGFILE.mode=append

#log4perl.appender.LOGFILE.layout=PatternLayout
#log4perl.appender.LOGFILE.layout.ConversionPattern=[%r] %F %L %c - %m%n
		       ) );

our $log = Log::Log4perl->get_logger("TM");

our $infrastructure;                                                                    # default set = core + topicmaps_inc + astma_inc

=pod

=head1 NAME

TM - Topic Maps, Base Class

=head1 SYNOPSIS

    my $tm = new TM (baseuri => 'tm://whatever/');   # empty map

    # add a toplet (= minimal topic, only identification, no characteristics)
    # by specifying an internal ID
    $tm->internalize ('aaa');                        # only internal identifier
    $tm->internalize ('bbb' =>   'http://bbb/');     # with a subject address
    $tm->internalize ('ccc' => \ 'http://ccc/');     # with a subject indicator

    # without specifying an internal ID (will be auto-generated)
    $tm->internalize (undef =>   'http://ccc/');     # with a subject address
    $tm->internalize (undef => \ 'http://ccc/');     # with a subject indicator

    # get rid of toplet(s)
    $tm->externalize ('tm://whatever/aaa', ...);

    # find full URI of a toplet
    my $tid  = $tm->tids ('person');                     # returns tm://whatever/person
    my @tids = $tm->tids ('person', ...)                 # for a whole list

    my $tid  = $tm->tids (  'http://bbb/');              # with subject address
    my $tid  = $tm->tids (\ 'http://ccc/');              # with subject indicator

    my @ts   = $tm->toplets;                             # get all toplets
    my @ts   = $tm->toplets (\ '+all -infrastructure');  # only those you added

    my @as   = $tm->asserts (\ '+all -infrastructure');  # only those you added

    my @as   = $tm->retrieve;                            # all assertions
    my $a    = $tm->retrieve ('23ac4637....345');        # returns only that one assertion
    my @as   = $tm->retrieve ('23ac4637....345', '...'); # returns all these assertions

    # create standalone assertion
    my $a = Assertion->new (type    => 'is-subclass-of',
                            roles   => [ 'subclass', 'superclass' ],
                            players => [ 'rumsti', 'ramsti' ]);
    $tm->assert ($a);                                    # add that to map

    # create a name
    my $n = Assertion->new (kind    => TM->NAME,
                            type    => 'name',
                            scope   => 'us', 
                            roles   => [ 'thing', 'value' ],
                            players => [ 'rumsti', new TM::Literal ('AAA') ])
    # create an occurrence
    my $o = Assertion->new (kind    => TM->OCC,
                            type    => 'occurrence',
                            scope   => 'us',
                            roles   => [ 'thing', 'value' ],
                            players => [ 'rumsti', new TM::Literal ('http://whatever/') ])

    $tm->assert ($n, $o);                                # throw them in

    $tm->retract ($a->[TM->LID], ...);                   # get rid of assertion(s)

    my @as = $tm->retrieve ('id..of...assertion');       # extract particular assertions

    # find particular assertions
    # generic search patterns
    my @as = $tm->match_forall (scope   => 'tm://whatever/sss');

    my @bs = $tm->match_forall (type    => 'tm://whatever/ttt',
                                roles   => [ 'tm://whatever/aaa', 'tm://whatever/bbb' ]);

    # specialized search patterns (see TM::Axes)
    my @cs = $tm->match_forall (type    => 'is-subclass-of', 
			        arole   => 'superclass', 
			        aplayer => 'tm://whatever/rumsti', 
			        brole   => 'subclass');

    my @ds = $tm->match_forall (type    => 'isa',
                                class   => 'tm://whatever/person');

    # perform merging, cleanup, etc.
    $tm->consolidate;

    # check internal consistency of the data structure
    die "panic" if $tm->insane;

    # taxonomy stuff
    warn "what a subtle joke" if $tm->is_a ($tm->tids ('gw_bush', 'moron'));

    die "what a subtle joke"
        unless $tm->is_subclass ($tm->tids ('politician', 'moron'));

    # returns Mr. Spock if Volcans are subclassing Aliens
    warn "my best friends: ". Dumper [ $tm->instancesT ($tm->tids ('alien')) ];


=head1 ABSTRACT

This class provides read/write access to a data structure according to the Topic Maps paradigm. As
it stands, this class implements directly so-called I<materialized> maps, i.e. those maps which
completely reside in memory. Implementations for non-materialized maps can be derived from it.

=head1 DESCRIPTION

This class implements directly so-called I<materialized> topic maps, i.e. those maps which
completely reside in memory. Non-materialized and non-materializable maps can be implemented by
deriving from this class by overloading one or all of the sub-interfaces. If this is done cleverly,
then any application, even a TMQL query processor can operate on non-materialized (virtual) maps in
the same way as on materialized ones.

=head2 Data Structures

The Topic Maps paradigm knows two abstractions

=over

=item I<TMDM>, Topic Maps Data Model 

L<http://www.isotopicmaps.org/sam/sam-model/>

=item I<TMRM>, Topic Maps Reference Model 

L<http://www.isotopicmaps.org/tmrm/>

=back

For historical reasons, this package adopts an abstraction which is in between these
two. Accordingly, there are only following types of data structures

=over

=item Toplets:

These are like TMDM topics, but only contain addressing information (subject identifiers and subject
addresses) along with an internal identifier.

=item Assertions:

These are like TMDM associations, but are generalized to host also occurrences and names. Also
associations using predefined association types, such as C<isa> (I<instance-class>) and C<iko>
(I<subtype-supertype>) are represented as assertions.

=item Variants:

No idea what they are good for. They can be probably safely ignored.

=back

The data manipulation interface is very low-level and B<directly> exposes internal data structures.
As long as you do not mess with the information you get and you follow the API rules, this can
provide a convenient, fast, albeit not overly comfortable interface. If you prefer more a TMDM-like
style of accessing a map then have a look at L<TM::DM>.


=head2 Identifiers

Of course, L<TM> supports the subject locator and the subject indicator mechanism as mandated
by the Topic Maps standards.

Additionally, this package also uses I<internal> identifiers to address everything which looks and
smells like a topic, also associations, names and occurrences. For topics the application (or
author) of the topic map will most likely provide these internal identifiers. For the others the
identifiers are generated.

Since v1.31 this package distinguishes between 3 kinds of internal identifiers:

=over

=item I<canonicalized> toplet identifiers

These identifiers are always interpreted local to a map, in that the C<baseuri> of the map is used
as prefix. So, a local identifier

  chinese-working-conditions

will become

  tm://nirvana/chinese-working-conditions

if the base URI of the map were

  tm://nirvana/

So if you want to use identifiers such as these, then you should either use the absolut version
(including the base URI) or use the method C<tids> to find the absolute version.

=item I<sacrosanct> toplet identifiers

All toplets from the infrastructure are declared I<sacrosanct>, i.e. untouchable. Examples are
C<isa>, C<class> or C<us> (universal scope).

These identifiers are always the same in all maps this package system manages. That implies that if
you use such an identifier, then you cannot attach a local meaning to it. And it implies that at
merging time, toplets with these identifiers will merge. Even if there were no subject indicators or
addresses involved.

It is probably a good idea to leave such toplets alone as the software is relying on the stability
of the sacrosanct identifiers.

=item assertion identifiers

Each assertion also has an (internal) identifier. It is a function from the content, so it
is characteristic for the assertion.

=back

=head2 Consistency

An application using a map may expect that a map is I<consolidated>, i.e. that the following
consistency conditions are met:

=over

=item B<A1> (fixed on)

Every identifier appearing in some assertion as type, scope, role or player is also registered as
toplet.

=item B<Indicator_based_Merging> (default: on)

Two (or more) toplets sharing the same I<subject identifier> are treated as one toplet.

=item B<Subject_based_Merging> (default: on)

Two (or more) toplets sharing the same I<subject locator> are treated as one toplet.

=item B<TNC_based_Merging> (default: off)

Two (or more) toplet sharing the same name in the same scope are treated as one toplet.

=back

=cut

use constant {
    Subject_based_Merging   => 1,
    Indicator_based_Merging => 2,
    TNC_based_Merging       => 3,
};

=pod

While A1 is related with the internal consistency of the data structure (see C<insane>), the others
are a choice the application can make (see C<consistency>).

I<Consistency> is not automatically provided when a map is modified by the application. It is the
applications responsibility to trigger the process to consolidate the map. As that may be
potentially expensive, the control remains at the application.

When an IO driver is consuming a map from a resource, say, loading from an XTM file, then that
driver will ensure that the map is consolidated according to the current settings before it hands it
to the application. The application is then in full control of the map as it can change, add and
delete toplets and assertions. The map can become unconsolidated in this process. The method
C<consolidate> reinstates consistency again.

You can change these defaults by (a) providing an additional option to the constructor

   new TM (....,
           consistency => [ TM->Subject_based_Merging,
                            TM->Indicator_based_Merging ]);

or (b) by later using the accessor C<consistency> (see below).

=head1 MAP INTERFACE

=head2 Constructor

I<$tm> = new TM (...)

The constructor will create an empty map, or, to be more exact, it will fill the map with the
taxonomy from L<TM::PSI> which covers basic Topic Maps concepts such as I<topic> or I<associations>.

The constructor understands a number of key/value pair parameters:

=over

=item C<baseuri> (default: C<tm://nirvana/>)

Every toplet in the map has an unique local identifier (e.g. C<shoesize>). The C<baseuri> parameter
controls how an absolute URI is built from this identifier.

=item C<consistency> (default: [ Subject_based_Merging, Indicator_based_Merging ])

This controls the consistency settings. They can be changed later with the C<consistency> method.

=back

=cut

sub new {
  my $class = shift;
  my %self  = @_;

  $self{consistency} ||= [ Subject_based_Merging, Indicator_based_Merging ];
  $self{baseuri}     ||= 'tm://nirvana/';
  $self{baseuri}      .= '#' unless $self{baseuri} =~ m|[/\#:]$|;

  my $self = bless \%self, $class;

  unless ($self->{mid2iid}) {                                                          # we need to do fast cloning of basic vocabulary
      %{ $self->{mid2iid} }    = %{ $infrastructure->{mid2iid} };                      # shallow clone
      %{ $self->{assertions} } = %{ $infrastructure->{assertions} };                   # shallow clone
  }
  $self->{last_mod} = 0;                                                               # book keeping
  $self->{created}  = Time::HiRes::time;

  return $self;
}

sub DESTROY {}                                                                    # not much to do here

=pod

=head2 Methods

=over

=item B<baseuri>

I<$bu> = I<$tm>->baseuri

This methods retrieves the base URI component of the map. This is a read-only method. The base URI
is B<always> defined.

=cut

sub baseuri {
    my $self = shift;
    return $self->{baseuri};
}

=pod

=item B<consistency>

I<@merging_constraints> = I<$tm>->consistency

I<$tm>->consistency (I<@list_of_consistency_constants>)

This method provides read/write access to the consistency settings.

If no parameters are provided, then the current list of consistency settings is returned. If
parameters are provided, that list must consist of the constants defined under L</Consistency>.

B<NOTE>: Changing the consistency does B<NOT> automatically trigger C<consolidate>.

=cut

sub consistency {
  my $self   = shift;
  my @params = @_;

  $self->{consistency} = [ @params ] if @params;
  return @{$self->{consistency}};
}

=pod

=item B<last_mod>

Returns the L<Time::HiRes> date of last time the map has been modified (content-wise).

=cut

sub last_mod {
    my $self = shift;
    return $self->{last_mod};
}

=pod

=item B<consolidate>

I<$tm>->consolidate

I<$tm>->consolidate (I<@list_of_consistency_constants>)

This method I<consolidates> a map by performing the following actions:

=over

=item * 

perform merging based on subject address (see TMDM section 5.3.2)

=item * 

perform merging based on subject indicators (see TMDM section 5.3.2)

=item * 

remove all superfluous toplets (those which do not take part in any assertion)

B<NOTE>: Not implemented yet!

=back

This method will normally use the map's consistency settings. These settings can be overridden by
adding consistency settings as parameters (see L</Consistency>). In that case the map's settings are
B<not> modified, so use this carefully.

B<NOTE>: In all cases the map will be modified.

B<NOTE>: After merging some of the I<lids> might not be reliably point to a topic.

=cut

# NOTE: Below there much is done regarding speed. First the toplets are swept detecting which have
# to be merged. This is not done immediately (as this is an expensive operation), instead a 'merger' hash
# is built. Note how merging information A -> B and A -> C is morphed into A -> B and B -> C using
# the _find_free function.

# That merger hash is then consolidated by following edges until their end, so that there are no
# cycles.

sub consolidate {
  my $self = shift;
  my $cons = @_ ? [ @_ ] : $self->{consistency};                           # override
  my $indi = grep ($_ == Indicator_based_Merging, @{$self->{consistency}});
  my $subj = grep ($_ == Subject_based_Merging,   @{$self->{consistency}});
  my $tnc  = grep ($_ == TNC_based_Merging,       @{$self->{consistency}});

#warn "cond indi $indi subj $subj tnc $tnc";

  my %SIDs; # holds subject addresses found
  my %SINs; # holds subject indicators found
  my %BNs;  # holds basename + scope found

#warn Dumper $cons;

#== find merging points and memorize this in mergers =======================================================================
  my %mergers;                                                             # will contain the merging edges
  my $mid2iid = $self->{mid2iid};                                          # shortcut
  my $asserts = $self->{assertions};                                       # shortcut
  my $baseuri = $self->{baseuri};                                          # shortcut

MERGE:
  foreach my $this (keys %{$mid2iid}) {
#warn "looking at $this";
      my $thism = $mid2iid->{$this};
#warn "SIDs: ". Dumper \%SIDs;
#warn "SINs: ". Dumper \%SINs;
#-- based on subject indication ------------------------------------------------------------------------------------------
      if ($indi) {
	  foreach my $sin (@{$thism->[TM->INDICATORS]}) {                  # walk over the subject indicators
	      if (my $that  = $SINs{$sin}) {                               # $that is now a key pointing to a merging partner
#warn "merging (IND) $this >> $that"; #. Dumper $thism, $thatm;
		  _add_merge (\%mergers, $baseuri, $this, $that);

              } else {                                                     # no merging, so enter the sins
                  $SINs{$sin} = $this;
	      }
	  }
      }

sub _add_merge {
    my $mergers = shift;
    my $bu      = shift;
    my $this    = shift;
    my $that    = shift;

    ($this, $that) = ($that, $this) if $this =~ /^$bu/;                    # we swap them to favor that which resembles the baseURI
    $mergers->{_find_free ($this, $mergers)} = $that;                      # find a free place to make that mapping
}

sub _find_free {
    my $this = shift;
    my $mergers = shift;
    
    my $this2 = $this;
    my $this3;
    while ($this3 = $mergers->{$this2}) {
	if ($this3 eq $this || $this3 eq $this2) {       # loop, we do not need it
	    return $this3;
	} else {
	    $this2 = $this3;                             # we follow the trail
	}
    }
    return $this2;                                       # this2 was the end of the trail
}

#-- based on subject address ---------------------------------------------------------------------------------------------
      if ($subj) {
	  if (my $sid = $thism->[TM->ADDRESS]) {
	      if (my $that = $SIDs{$sid}) {                                # found partner => should be merged
#warn "merging (ADDR) $this >> $that";
		  _add_merge (\%mergers, $baseuri, $this, $that);
###### old		  $mergers{_find_free ($this, \%mergers)} = $that;
		  # must obviously both have the same subject address, so, no reason to touch this
	      } else {                                                     # there is no partner, first one with this subject address
		  $SIDs{$sid} = $this;
	      }
	  }
      }
#warn "after 1 on '$this' ";#.Dumper $mid2iid;
  }
#-- based on TNC ---------------------------------------------------------------------------------------------
   if ($tnc) {
      my ($THING, $VALUE) = ('thing', 'value');
      foreach my $a (values %$asserts) {
	  next unless $a->[TM->KIND] == TM->NAME;                          # we are only interested in basenames
#warn "checking assertion ".Dumper $a;
	  my ($v) = get_x_players ($self, $a, $VALUE);                     # if we get back a longer list, bad luck
	  my $bn_plus_scope = $v->[0] .                                    # the basename is a string reference
                              $a->[TM->SCOPE];                             # relative to the scope
	  my ($this) = get_x_players ($self, $a, $THING);                  # thing which plays 'topic'
#warn "    --> player is $this";
	  if (my $that = $BNs{$bn_plus_scope}) {                           # if we have seen it before
#warn "  -> SEEN";
	      _add_merge (\%mergers, $baseuri, $this, $that);
#### old      $mergers{_find_free ($this, \%mergers)} = $that;
	  } else {                                                         # it is new to use, we store it into %BNs
#warn "  -> NOT SEEN";
	      $BNs{$bn_plus_scope} = $this;
#warn "BNs ".Dumper \%BNs;
	  }
      }
  }
#== consolidate mergers: no cycles, trail followed through ======================================================
#warn "mergers ".Dumper \%mergers;

  for (2..2) { # at most 2, theoretical only one should be sufficient
      my $changes = 0;
      foreach my $h (keys %mergers) {
#warn "working on $h";
	  if ($mergers{$h} eq $h) { # micro loop
	      delete $mergers{$h};
	  } elsif (defined $mergers{$mergers{$h}} && $mergers{$mergers{$h}} eq $h) {
	      delete $mergers{$h};
	  } else {
	      my $h2 = $mergers{$h};
	      my %seen = ($h => 1,  $h2 => 1); # loop avoidance
#warn "seeen start".Dumper \%seen;
	      while ($mergers{$h2} and !$seen{$mergers{$h2}}++) { $h2 = $mergers{$h} = $mergers{$h2}; $changes++;}
#warn "half consolidated (chagens $changes)" .Dumper $H;
	  }
      }
#      warn "consoli loop $_: changes: $changes";
#      warn "early finish" if $_ == 1 and $changes == 0;
      last if $changes == 0;
#      die "not clean" if $_ == 2 and $changes > 0;
  }

#warn "consolidated mergers ".Dumper \%mergers;


#== actual merging ========================================================================================

  # recanonicalize affected assertions
  {
      my $changed = _relabel (\%mergers, $self->baseuri, values %$asserts );
      while (my ($k, $a) = each %$changed) {
	  delete $asserts->{ $k };
#	  delete $mid2iid->{ $k };
#	  $mid2iid->{ $a->[TM->LID] } = [ $a->[TM->LID], undef, [] ];
	  $asserts->{ $a->[TM->LID] } = $a;
      }
  }

  foreach my $that (keys %mergers) {
      my $this  = $mergers{$that};
      my $thism = $mid2iid->{$this};
      my $thatm = $mid2iid->{$that};                           # shorthand
      next if $thatm == $thism;                  # we already have merged

      $log->logdie ("two different subject addresses for two topics to be merged ($this, $that)")
	  if $thism->[TM->ADDRESS] and $thatm->[TM->ADDRESS] and 
	     $thism->[TM->ADDRESS] ne  $thatm->[TM->ADDRESS];

#warn "merge now $that > $this";
             $thism->[TM->ADDRESS]  ||=   $thatm->[TM->ADDRESS];                 # first subject address
      {                                                                          # then indicators
	  my $Is = $thism->[TM->INDICATORS];                                     # reference to thism indicators
	  push @$Is, @{$thatm->[TM->INDICATORS]};                                # add the others to it
	  { my %X; map { $X{$_}++ } @$Is; @$Is = keys %X; }                      # make that unique
      }
      $mid2iid->{$that} = $thism;                                                # finally
  }
#warn "after post-merger ". Dumper $mid2iid;

  $self->{mid2iid}  = $mid2iid;                                                  # this makes tie happy, in the case the map is tied
  $self->{last_mod} = Time::HiRes::time;
}

=pod

=item B<clear>

I<$tm>->clear

This method removes all toplets and assertions (except the infrastructure). Everything else remains.

=cut

sub clear {
    my $self    = shift;

    my %mid2iid    = %{ $infrastructure->{mid2iid} };                            # shallow clone
    my %assertions = %{ $infrastructure->{assertions} };                         # shallow clone

    $self->{mid2iid}    = \%mid2iid;                                             # making it explicit keeps MLDBM happy
    $self->{assertions} = \%assertions;                                          # ditto
    $self->{last_mod}   = Time::HiRes::time;                                     # book keeping
    return $self;                                                                # convenience for chaining
}

=pod

=item B<add>

I<$tm>->add (I<$tm2>, ...)

This method accepts a list of L<TM> objects and adds all content from these maps to the current
object.

B<NOTE>: There is B<NO> merging done for user-supplied toplets. Use explicitly method C<consolidate>
for it. Merging is done for all sacrosanct toplets, i.e. those from the infrastructure.

From v1.31 onwards this method tries to favour the I<internal> identifiers (LIDs) of B<this> map
over LIDs of the added maps. This means, firstly, that internal identifiers of B<this> map are
B<not> touched (or re-generated) in any way and that any shorthands (without a baseuri prefix) will
remain valid when using C<tids>. Secondly, LIDs in the added map will be attempted to blend into
B<this> map by changing simply their prefix. If that newly generated LID is already taken by
something in B<this> map, then the original LID will be used. That allows many added LIDs be used
together with C<tids> without (much) change in code. Of course, the only reliable way to reach a
topic is a subject locator or an indicator. This is all about convenience.

B<NOTE>: This procedure implies that some assertions are recomputed, so that also their LID will
change!


=cut

sub add {
    my $self    = shift;
    my $baseuri = $self->{baseuri};
    my $mid2iid = $self->{mid2iid};                                            # shorthand
    my $asserts = $self->{assertions};

    foreach (@_) {                                                             # deal with one store after the other
	my $baseuri2 = $_->{baseuri};

	my %changes;                                                           # will contain old -> new internal identifier mappings
	while (my ($k, $v) = each %{$_->{mid2iid}}) {

	    if ($infrastructure->{mid2iid}->{$k}) {                            # infrastructure toplets are sacrosanct
	    } else {
		(my $k2 = $k) =~ s/^$baseuri2/$baseuri/;                       # replace baseuri2 prefix

		$k2  = $k if $mid2iid->{$k2};                                  # if there is a collision, bounce back to original
		$k2 .= '1' while $mid2iid->{$k2};                              # while there is still a collision ... (this only in case of same baseuris)
#		$k2 = $baseuri.sprintf ("uuid-%010d", $TM::toplet_ctr++)
#		    if $mid2iid->{$k2};                                        # if there is a collision, create generic one

		$changes{$k}    = $k2;
		$v->[TM->LID]   = $k2;                                         # use that key as canonical one
		$mid2iid->{$k2} = $v;                                          # ...add what the other has
	    }
	}
#warn Dumper \%changes;
	my $changed = _relabel (\%changes, $baseuri, values %{ $_->{assertions} } );
#warn Dumper $changed;
	while (my ($k, $a) = each %$changed) {
#	    delete $mid2iid->{ $k };
#	    $mid2iid->{ $a->[TM->LID] } = [ $a->[TM->LID], undef, [] ]; # put the new one in here
	    $asserts->{ $a->[TM->LID] } = $a;                                  # and also in the assertions part
	}
    }
    $self->{mid2iid}    = $mid2iid;                                            # make MLDBM happy
    $self->{assertions} = $asserts;                                            # ditto
    $self->{last_mod}   = Time::HiRes::time;
}


sub _relabel {
    my $changes = shift;
    my $baseuri = shift;

    my %changed;                                                                          # we record here old LID -> newly relabelled assertion
    foreach my $a (@_) {
	my ($this, $that);
#warn "working on ".Dumper $a;
        $a->[TM->SCOPE]  = $that if $that = $changes->{ $a->[TM->SCOPE] }; $this ||= $that;
	$a->[TM->TYPE]   = $that if $that = $changes->{ $a->[TM->TYPE]  }; $this ||= $that;
	
	map { $_ = $this = $that if $that = $changes->{ $_ } } @{ $a->[TM->ROLES]   };
	map { $_ = $this = $that if $that = $changes->{ $_ } } @{ $a->[TM->PLAYERS] };
#warn "$this for ".Dumper $a;
	$changed{ $a->[TM->LID] } = $a if $this;                                          # something has changed

	$a->[TM->CANON] = 0; canonicalize (undef, $a);
	$a->[TM->LID]   = mklabel ($a);
	
    }
    return \%changed;
}

=pod

=item B<diff>

I<$diff> = I<$new_tm>->diff (I<$old_tm>)

I<$diff> = TM::diff (I<$new_tm>, I<$old_tm>)

I<$diff> = TM::diff (I<$new_tm>, I<$old_tm>, 
                     {consistency => \ @list_of_consistency_consts,
                      include_changes => 1})

C<diff> compares two topic maps and returns their differences as a hash reference. While it works on
any two maps, it is most useful after one map (the I<old map>) is modified into a I<new map>.

If C<diff> is used in OO-style, the current map is interpreted as the I<new> map and the map in the
arguments as I<the old one>.

By default, the toplet and assertion identifiers for any changes are returned; the option
C<include_changes> causes the return of the actual toplets and assertions themselves. This option
makes C<diff>'s output more self-contained: enabled, one can fully (re)create the new map from the
old one using the diff (or vice versa).

The C<consistency> option uses the same format as the TM constructor (see L</Constructor>) and
describes how corresponding toplets in the two maps are to be identified.  Toplets with the same
internal ids are always considered equal. If I<subject based consistency> is active, toplets with
the same I<subject locator> are considered equal (overriding the topic identities).  If I<indicator
based consistency> is active, toplets with a matching I<subject indicator> are considered equal
(overriding the previous identities).

B<NOTE>: This overriding of previous conditions for identity is necessary to keep the equality
relationship unique and one-to-one.  As an example, consider the following scenario: a toplet I<a>
in the old map is split into multiple new toplets I<a> and I<b> in the new map. If I<a> had a
locator or identifier that is moved to I<b> (and if consistency options were active), then the
identity detector will consider I<b> to be equal to I<a>, and B<not> I<a> in the new map to
correspond to I<a> in the old map.  However, this will never lead to loss of information: I<a> in
the new map is flagged as completely new toplet.

The differences between old and new map are returned underneath the keys I<plus>, I<minus>,
I<identities> and I<modified>. If C<include_changes> is on, the extra keys I<plus_midlets>,
I<minus_midlets> and I<assertions> are populated. The values of all these keys are hash references
themselves.

=over

=item I<plus>, I<minus>

The C<plus> and C<minus> hashes list new or removed toplets, respectively (with their identifiers as
keys).  For each toplet, the value of the hash is an array of associated assertion ids. The array is
empty but defined if there are no associated assertions.

For toplets the attached assertions are the usual ones (names, occurrences) and class-instance
relationships (attached to the instance toplet).

For associations, the assertions are attached to the I<type> toplet.

=item I<identities>

This hash consists of the non-trivial toplet identities that were found. If neither Subject- nor
Indicator-based merging is active and if neither map object was created with a TM version before 1.31, 
then this hash is empty. Otherwise, the keys are toplet identifiers in the old map, with the 
corresponding topic identifier in the new map as value. This includes standalone topics as well 
as assertions and associations that were renamed due to changed player or role identities.

For diff operations between maps where one map was created with a TM version before 1.31 (which can happen 
with frozen/thawed or MLDBM-based maps) extra identifying steps are performed (because the identifier 
format for assertions and infrastructure toplets and the stored format of toplets have changed). This situation 
is detected automatically, and if so the identities hash will also include all map elements that were identical but 
have different names due to the version incompatibility.

=item I<modified>

The I<modified> hash contains the changes for matched toplets. The key is the toplet identifier in
the old map (which is potentially different from the one in the new map; see the note about
identities above). The value is a hash with three keys: I<plus>, I<minus> and I<identities>.  The
value for the C<identities> key is defined if and only if the toplet associated with this toplet has
changed (i.e. Subject Locator or Indicators have changed).  The values for the C<plus> and C<minus>
keys are arrays with the new or removed assertions that are attached to this toplet. These arrays are
defined but empty where no applicable information is present.

=item I<plus_midlets>, I<minus_midlets>

These hashes hold the actual new or removed toplets if the option C<include_changes> is active.
Keys are the toplet ids, values are references to the actual toplet data structures.

=item I<assertions>

This hash holds the actual assertions where the maps differ; it exists only if the option
C<include_changes> is active. Keys are the assertion identifiers, values the references to the
actual assertion data structure. Note that assertion ids uniquely identify the assertion contents,
therefore this hash can hold assertions from both new and old map.

=back

=cut 

sub diff {
    my ($newmap,$oldmap,$options)=@_;
    return undef if (!$oldmap || !$newmap);

    my ($base)=$oldmap->baseuri;
    $log->logdie ("comparison of maps with different bases not supported yet!")
	if ($newmap->baseuri ne $base);

    my (%plus,%minus,%modified);
    # a lot of comparison/translation can be skipped if tids are the only identity
    my $xlatneeded= grep($_==TM->Subject_based_Merging || 
			 $_==TM->Indicator_based_Merging,@{$options->{consistency}});

    # first walk the maps to match old and new items
    my (%seen,%locators,%indicators);
    for my $map ($oldmap,$newmap) {
	my $key   = ($map eq $oldmap ? "old":"new");
	my $value = ($map eq $oldmap ? 1:2);

	# if either is older than tm 1.31, then we need to deal with base-prefixed toplets (called midlets then)
	# which are no longer prefixed (for all infrastructure topics)
	$xlatneeded||=1
	    if (exists($map->{usual_suspects})); # this key is no longer present in newer maps

	for my $m (keys %{$map->{mid2iid}})
	{
	    # get the topic-aspects (tid, locators and identifiers)
	    # for finding unchanged/new/old topics
	    my $midlet=$map->toplet($m);

	    # fudging time is here :-(
	    # if this is an old map with address and indicators but no lid, we frob one in.
	    if (@{$midlet}==2)
	    {
		$midlet=[$m,@{$midlet}];
	    }
	    $locators{$key}->{$midlet->[TM->ADDRESS]}=$m
		if ($midlet->[TM->ADDRESS]);
	    map { $indicators{$key}->{$_}=$m } (@{$midlet->[TM->INDICATORS]});
	    $seen{$m}|=$value;
	}
	for my $a (map { $_->[TM->LID] } $map->asserts (\ '+all')) {
	    $seen{$a}|=$value;
	}
    }

    # identify same topics
    # first identity: same topic ids 
    my %old2new = map { ($_,$_) } grep { $seen{$_} == 3 } keys %seen;
    my $foundxlat;
    # almost-first identity: infrastructure topics which were base-prefixed but are no longer
    if (exists($oldmap->{usual_suspects}) ^ exists($newmap->{usual_suspects}))
    {
	for my $short (grep { $seen{$_} != 3 && $_!~/^$base/ } keys %seen)
	{
	    my $long=$base.$short;
	    if ($infrastructure->{mid2iid}->{$short} && $seen{$long} == 3-$seen{$short})
	    {
		if ($seen{$long} == 2) # saw long in new map
		{
		    $old2new{$short}=$long;
		}
		else
		{
		    $old2new{$long}=$short;
		}
		$foundxlat||=1;
	    }
	}
    }		

    if (grep($_==TM->Subject_based_Merging,@{$options->{consistency}}))
    {
	# second: same locators
	# note that this overwrites topic identitites!
	# scenario: old has topica/loc x; new has topica/no loc and topicb/loc x
	map { $foundxlat||=($locators{old}->{$_} ne $locators{new}->{$_});
	      $old2new{$locators{old}->{$_}}=$locators{new}->{$_}; 
              } 
	(grep(exists $locators{new}->{$_}, keys %{$locators{old}}));
    }
    if (grep($_==TM->Indicator_based_Merging,@{$options->{consistency}}))
    {
	# final: matching indicators
	# note that this overwrites topic and locator identitites, similar scenario as above
	map { $foundxlat||=($indicators{old}->{$_} ne $indicators{new}->{$_});
	      $old2new{$indicators{old}->{$_}}=$indicators{new}->{$_}; } 
	(grep(exists $indicators{new}->{$_}, keys %{$indicators{old}}));
    }
    # no need to bother with translating assertions if there are no changed-tid identities
    $xlatneeded=0 if ($xlatneeded && !$foundxlat); 

    # produce list of missing/new topics
    my %new2old=($xlatneeded?(reverse %old2new):%old2new);
    my (%checkmidlet,%plusass,%minusass);
    for my $t (keys %seen)
    {
	if ($seen{$t}==2 && !$new2old{$t})
	{
	    # identical assertions with new lids are not detected here
	    # but later (via minusass)
	    # new assertion-lids happen with identified renamed players (lid is computed over values!)
	    $newmap->retrieve($t)?($plusass{$t}=1):($plus{$t}=[]);
	}
	elsif ($seen{$t}==1 && !$old2new{$t}) 
	{
	    $oldmap->retrieve($t)?($minusass{$t}=1):($minus{$t}=[]);
	}
	else
	{
	    # we work along the old tids (when not the same)
	    $checkmidlet{$seen{$t}==2?$new2old{$t}:$t}=1;
	}
    }
    undef %seen; undef %locators; undef %indicators;

#warn "check midlets ".Dumper \ %checkmidlet;

    # weed out the topics/midlets that are unchanged
    # and all the identical assertions
    my @checkassertion;
    for my $t (keys %checkmidlet) 
    {
	if (my $oa=$oldmap->retrieve($t)) { 
	    my $on=$newmap->retrieve($old2new{$t});
	    
	    if ($oa && $on && $oa->[TM->LID] ne $on->[TM->LID]) {
		push @checkassertion,$t;
	    }
	} else {
	    my $ot = $oldmap->toplet($t);
	    my $nt = $newmap->toplet($old2new{$t});

	    unless (_toplets_eq ($ot, $nt)) {
		$modified{$t}->{identities}=1;
		$modified{$t}->{plus}||=[];
		$modified{$t}->{minus}||=[];
	    }

	    # note: new toplet() returns internal id as well, which we DON'T want to check on here!
	    sub _toplets_eq 
	    {
		my ($a,$b)=@_;
		
		$a=["",@{$a}] if (@{$a}==2); # fudge in blank LID for old maps
		$b=["",@{$b}] if (@{$b}==2); # fudge in blank LID for old maps
		
		my ($A, $B) = ($a->[TM->ADDRESS] ||'', $b->[TM->ADDRESS] ||'');       # just convert undef into ''
		return 0 unless $A eq $B;                                             # different subject address?
		my %SIDS;
		map { ++$SIDS{$_} } @{$a->[TM->INDICATORS]}, @{$b->[TM->INDICATORS]};   # we KNOW that the lists are UNIQUE, do we?
		return 0 if grep { $_ != 2 } values %SIDS;                            # if it is not exactly 2 (one from a, one from b), then not equal
		return 1; # we're happy: different LIDs don't interest us here
	    }
	}
    }


    my %old2newid;    
    my %identities; 
    if ($xlatneeded)
    {
	# now do the translation for assertions: rebuild old assertions
	# into new namespace and compute the id
	# don't waste time: do this only on the assertions that may be required
	# minusass (or plusass) must be checked to find assertions with renamed-but-identical players
	
	# once more fudging time: if the "new" map object uses the long lid-format (ie. made with older api),
	# we need to append the base ourselves because mklabel does not do that anymore.
	my $maybebase=(($newmap->asserts)[0]->[TM->LID]=~/^$base/ )?$base:"";
	for my $t (@checkassertion,keys %minusass)
	{
	    my $m=$oldmap->retrieve($t);
	    my ($lid,$scope,$kind,$type,$roles,$players)=
		@{$m}[TM->LID,TM->SCOPE,TM->KIND,TM->TYPE,TM->ROLES,TM->PLAYERS];

	    # if any of the topics is untranslatable, then skip the remaining work
	    # as it can't successfully compare anyway...
	    $scope=$old2new{$scope} || next;
	    $type=$old2new{$type} || next;
	    my @newroles = map { ref($_)?$_:$old2new{$_} || next; } (@{$roles});
	    my @newplayers = map { ref($_)?$_:$old2new{$_} || next; } (@{$players});

	    my $n=Assertion->new(scope=>$scope,
				 kind=>$kind,
				 type=>$type,
				 roles=>\@newroles,players=>\@newplayers);
	    $newmap->canonicalize($n);
	    my $newid=$maybebase.TM::mklabel($n); 
	    $old2newid{$t}=$newid;

	    if ($plusass{$newid}) # we found a matching assertion, wohee!
	    {
		delete $plusass{$newid};
		delete $minusass{$t};
		# remember that this assertion was re-id'd (directly or indirectly via players)
		# this is done for standalone assocs just the same as for bn/oc characteristics
		$identities{$t}=$newid;
	    }
	}
    }

    # finally, find and attach the modified assertions to their topics
    # attributes: to the topic
    # associations: to the type-topic

    for my $key ("plus","minus")
    {
	my ($unmodified,$map,$candidates);
	if ($key eq "plus")
	{
	    $unmodified=\%plus; $map=$newmap; $candidates=\%plusass;
	}
	else
	{
	    $unmodified=\%minus; $map=$oldmap; $candidates=\%minusass;
	}

	# working with potentially old maps we may need to base-prefix or not...
	my $maybebase=(($map->asserts)[0]->[TM->LID]=~/^$base/ )?$base:"";
	
	for my $t (keys %{$candidates})
	{
	    my $m=$map->retrieve($t);
	    my ($oldwho,$who,$what);
	    if ($m->[TM->KIND] ne TM->ASSOC)
	    {
		# bn or oc: attach to referenced topic
		$who=($map->get_x_players($m,$maybebase."thing"))[0];
		$what=$t;
	    }
	    elsif ($m->[TM->TYPE] eq $maybebase."isa")
	    {
		# isa associations get attached to the instance topic
		$who=($map->get_x_players($m,$maybebase."instance"))[0];
		$what=$t;
	    }
	    else 
	    {			
		# general assoc: gets attached to type topic
		$who=$m->[TM->TYPE];
		$what=$t;
	    }

	    # if this assertion belongs to a topic that is marked gone/new, we save it with that topic
	    if (defined $unmodified->{$who})
	    {
		push @{$unmodified->{$who}},$what;
	    }
	    else # if this belongs to a modified topic: more details please (new/old ass)
	    {
		# we access things along the old id axis...
		if ($key eq "plus")
		{
		    $who=$new2old{$who};
		}
		$modified{$who}->{$key}||=[];
		push @{$modified{$who}->{$key}},$what;
	    }
	}
    }

    map { $identities{$_}=$old2new{$_} if ($_ ne $old2new{$_}); } (keys %old2new);

    my $returnvalue={
	    'identities'=>\%identities,
	    'plus'=>\%plus,
	    'minus'=>\%minus,
	    'modified'=>\%modified,
	};

    # pull in the midlets and assertions that have been affected,
    # so that the resulting datastructure can be frozen and used together with oldmap
    # to (re)create newmap
    if ($options->{include_changes})
    {
	# one problem, though is naming: midlets can have changed but their name doesn't
	# reflect that: we need two midlet datastructures here.
	# (assertions are fine, their names always reflect their content uniquely)

	my (%plusm,%minusm,%ass,$a);
	map { $plusm{$_} = $newmap->toplet($_) } keys %plus;
	map { $ass{ $_->[TM->LID] } = $_ }
  	   map { $newmap->retrieve($_) }
           map { @$_ }
           values %plus;
	map { $minusm{$_} = $oldmap->toplet($_) } keys %minus;
	map { $ass{ $_->[TM->LID] } = $_ }
  	   map { $oldmap->retrieve($_) }
           map { @$_ }
           values %minus;

	for my $k (keys %modified)
	{
	    # these are corresponding topics with differing midlet (contents)
	    if ($modified{$k}->{identities})
	    {
		$plusm{$k}  = $newmap->toplet($old2new{$k});
		$minusm{$k} = $oldmap->toplet($k);
	    }
	    map { $plusm{$_} =$newmap->toplet($_); $a=$newmap->retrieve($_) and $ass{$_}=$a; } (@{$modified{$k}->{plus}}); 
	    map { $minusm{$_}=$oldmap->toplet($_); $a=$oldmap->retrieve($_) and $ass{$_}=$a; } (@{$modified{$k}->{minus}}); 
	}

	$returnvalue->{plus_midlets}  =\%plusm;
	$returnvalue->{minus_midlets} =\%minusm;
	$returnvalue->{assertions}    =\%ass;
    }

    return $returnvalue;
}

=pod

=item B<melt> (DEPRECATED)

I<$tm>->melt (I<$tm2>)

This - probably more auxiliary - function copies relevant aspect of a second map into the object.

=cut

our @ESSENTIALS = qw(mid2iid assertions baseuri variants);

sub melt {
    my $self = shift;
    my $tm2  = shift;

    @{$self}{@ESSENTIALS} = @{$tm2}{@ESSENTIALS};
    $self->{last_mod} = Time::HiRes::time;
}

=pod

=item B<insane>

warn "topic map broken" if I<$tm>->insane

This method tests invariant conditions inside the TM structure of that map. Specifically,

=over

=item *

each toplet has a LID which points to a toplet with the same address

=back

It returns a string with a message or C<undef> if everything seems fine.

TODO: add test whether all variant entries have a proper LID (and toplet)


=cut

sub insane {
    my $self = shift;

    my $mid2iid = $self->{mid2iid};
    my $asserts = $self->{assertions};

# Test 1: all toplet LIDs point to something in mid2iid which refers to themselves
    foreach my $k (keys %$mid2iid) {
	my $t = $mid2iid->{$k};
	return "toplet LID $k not in mid2iid" 
	    unless $mid2iid->{ $t->[TM->LID] };
	return "LID $k inconsistent with toplet LID"
	    unless $mid2iid->{ $t->[TM->LID] } == $t;
	return "key $k looks like assertion, but has not assertions entry" 
	    if $k =~ /[[:xdigit:]]{16}/ and !$asserts->{$k};
    }
## Test 2: all assertions are toplets
#    foreach my $k (keys %$asserts) {
#	return "assertion $k has no toplet entry"
#	    unless $mid2iid->{ $asserts->{$k}->[TM->LID] };
#	return "assertion $k toplet entry has a different LID"
#	    unless $mid2iid->{ $asserts->{$k}->[TM->LID] }->[TM->LID] eq $k;
#    }
    return undef; # pass all tests
}

=pod

=back

=head1 TOPLET INTERFACE

I<Toplets> are light-weight versions of TMDM topics. They only carry addressing information and are
represented by an array (struct) with the following fields:

=cut

struct 'Toplet' => [
    lid         => '$',
    saddr       => '$',
    sinds       => '$',
];

=pod

=over

=item C<lid> (index: C<LID>)

The internal identifier. Mostly it repeats the key in the toplet hash, but also aliased identifiers
may exist.

=item C<saddr> (index: C<ADDRESS>)

It contains the B<subject locator> (address) URI, if known. Otherwise C<undef>.

=item C<sinds> (index: C<INDICATORS>)

This is a reference to a list containing B<subject identifiers> (indicators). The list can be empty,
no duplicate removal is attempted at this stage.

=back

You can create this structure manually, but mostly you would leave it to C<internalize> to do the
work.

Example:

   # dogmatic way to produce it
   my $to = Toplet->new (lid   => $baseuri . 'my-lovely-cat',
                         saddr => 'http://subject-address.com/',
                         sinds => []);

   # also good and well
   my $to = [ $baseuri . 'my-lovely-cat', 
              'http://subject-address.com/',
               [] ];

   # better
   my $to = $tm->internalize ('my-lovely-cat' => 'http://subject-address.com/');

To access the individual fields, you can either use the struct accessors C<saddr> and C<sinds>, or
use the constants defined above for indices into the array:

=cut

use constant {
#   LID        => 0,
    ADDRESS    => 1,
    INDICATORS => 2
};

=pod

Example:

   warn "indicators: ", join (", ", @{$to->sinds});

   warn "locator:    ", $to->[TM->ADDRESS];

=head2 Methods

=over

=item B<internalize>

I<$iid>  = I<$tm>->internalize (I<$some_id>)

I<$iid>  = I<$tm>->internalize (I<$some_id> => I<$some_id>)

I<@iids> = I<$tm>->internalize (I<$some_id> => I<$some_id>, ...)

This method does some trickery when a new toplet should be added to the map, depending on how
parameters are passed into it. The general scheme is that pairs of identifiers are passed in.  The
first is usually the internal identifier, the second a subject identifier or the subject
locator. The convention is that subject identifier URIs are passed in as string references, whereas
subject locator URIs are passed in as strings.

The following cases are covered:

=over

=item C<ID =E<gt> undef>

If the ID is already an absolute URI and contains the C<baseuri> of the map as prefix, then this URI
is used as internal toplet identifier. If the ID is some other URI, then a toplet with that URI as
subject locator is searched in the map. If such a toplet already exists, then nothing special needs
to happen.  If no such toplet existed, a new URI, based on the C<baseuri> and a random number will
be created for the internal identifier and the original URI is used as subject address.

B<NOTE>: Using C<URI =E<gt> URI> implies that you use two different URIs as subject addresses. This
will result in an error.

=item C<ID =E<gt> URI>

Like above, only that the URI is directly interpreted as subject address.

=item C<ID =E<gt> \ URI> (reference to string)

Like above, only that the URI is interpreted as another subject identifier. If the toplet already existed,
then this subject identifier is simply added. Duplicates are suppressed (since v1.31).

=item C<undef =E<gt> URI>

Like above, only that the internal identifier is auto-created if there is no toplet with the URI
as subject address.

Attention: If you call internalize like this

  $tm->internalize(undef => $whatever) 

then perl will (un)helpfully replace the required undef with the string "undef" and wreck the operation. 
Using either a variable to hold the undef or replacing the (syntactic sugar) arrow with a comma works around this issue.

Attention: If you call internalize like this

  $tm->internalize(undef => $whatever) 

then perl will (un)helpfully replace the required undef with the string "undef" and wreck the operation. 
Using either a variable to hold the undef or replacing the (syntactic sugar) arrow with a comma works around this issue.

=item C<undef =E<gt> \ URI>

Like above, only that the URI us used as subject identifier.

=item C<undef =E<gt> undef>

A toplet with an auto-generated ID will be inserted.

=back

In any case, the internal identifier(s) of all inserted (or existing) toplets are returned for
convenience.

=cut

our $toplet_ctr = 0;

sub internalize {
    my $self    = shift;
    my $baseuri = $self->{baseuri};

#warn "internalize base: $baseuri";

    my @mids;
    my $mid2iid = $self->{mid2iid};
    while (@_) {
	my ($k, $v) = (shift, shift);                              # assume to get here undef => URI   or   ID => URI   or ID => \ URI   or ID => undef
#warn "internalize $k, $v"; # if ! defined $k;
	# make sure that $k contains a mid

	$k = undef if defined $k && $k eq 'undef';                 # perl 5.10 will stringify undef => ....

	if (defined $k) {
	    if ($mid2iid->{$k}) {                                  # this identifier is already in the map
                # null
	    } elsif ($k =~ /^$baseuri/) {                          # ha, perfect, another identifier already in form
		# null                                             # keep it as it is
	    } elsif ($k =~ /^\w+:/) {                              # some other absURL
		if (my $k2 = $self->tids ($k)) {                   # we already had it
		    ($k, $v) = ($k2, $k);
		} else {                                           # it is unknown so far
		    ($k, $v) = ($baseuri.sprintf ("uuid-%010d", $toplet_ctr++), $k);
		}
	    } elsif (my $k2 = $self->tids ($k)) {
		$k = $k2;                                          # then we already have it, maybe under a different mid, take that

	    } else {                                               # this means we have a relURI and it is not from that map
		$k = $baseuri.$k;                                  # but now it is
	    }

	} elsif (ref ($v) eq 'Assertion') {                        # k is not defined, lets look at v, but if that is an assertion
	    $k = $baseuri.sprintf ("uuid-%010d", $toplet_ctr++);   # generate a new one
	} elsif (my $k2 = $self->tids ($v)) {                      # k is not defined, lets look at v; we already had it
	    $k = $k2;                                              # this will be k then
	} else {                                                   # it is unknown so far
	    $k = $baseuri.sprintf ("uuid-%010d", $toplet_ctr++);   # generate a new one
	}

#warn "really internalizing '$k' '$v'";
	push @mids, $k;

	$v = $v->[TM->LID] if ref ($v) eq 'Assertion';             # for internal reification we use the assertion's LID

	$mid2iid->{$k} ||= [ $k, undef, [] ];                      # now see that we have an entry in the mid2iid table
	my $kentry = $mid2iid->{$k};                               # keep this as a shortcut

	if ($v) {
	    if (ref($v)) {                                         # being a reference means that we have a subject indication
		push @{$kentry->[TM->INDICATORS]}, $$v             # append it to the list
		    unless grep {$$v eq $_} @{$kentry->[TM->INDICATORS]};   # if not yet there
	    } elsif ($kentry->[TM->ADDRESS]) {                     # this is a subject address and, oh, there is already a subject address, not good
		$log->logdie ("duplicate subject address '$v' for '$k'") unless $v eq $kentry->[TM->ADDRESS];
	    } else {                                               # everything is fine, we can set it
		$kentry->[TM->ADDRESS] = $v;                 
	    }
	}
	$mid2iid->{$k} = $kentry;                                  # necessary if mid2iid is tied itself
    }
    $self->{mid2iid}  = $mid2iid;                                  #!! needed for Berkeley DBM recognize changes on deeper levels
    $self->{last_mod} = Time::HiRes::time;
    return wantarray ? @mids : $mids[0];
}

=pod

=item B<toplet> (old name B<midlet>)

I<$t>  = I<$tm>->toplet (I<$mid>)

I<@ts> = I<$tm>->toplet (I<$mid>, ....)

This function returns a reference to a toplet structure. It can be used in scalar and list context.

=cut

sub midlet {
    return toplet (@_);
}

sub toplet {
    my $self = shift;
    my $mid2iid = $self->{mid2iid};

    if (wantarray) {
	return (map { defined $_ ? $mid2iid->{$_} : $_ } @_);
    } else {
	return $mid2iid->{$_[0]};
    }
}

=pod

=item B<toplets> (old name B<midlets>)

I<@mids> = I<$tm>->toplets

I<@mids> = I<$tm>->toplets (I<@list_of_ids>)

I<@mids> = I<$tm>->toplets (I<$selection_spec>)

This function returns toplet structures from the map. B<NOTE>: This has changed from v 1.13. Before
you got ids.

If no parameter is provided, all toplets are returned. This includes really everything also
infrastructure toplets. If an explicit list is provided as parameter, then all toplets with these
identifiers are returned.

If a search specification is used, it has to be passed in as string reference. That string contains
the selection specification using the following simple language (curly brackets mean repetition,
round bracket grouping, vertical bar alternatives):

    specification -> { ( '+' | '-' ) group }

whereby I<group> is one of the following:

=over

=item C<all>

refers to B<all> toplets in the map. This includes those supplied by the application. The list also
includes all infrastructure topics which the software maintains for completeness.

=item C<infrastructure>

refers to all toplets the infrastructure has provided. This implies that

   all - infrastructure

is everything the user (application) has supplied.

=back

Examples:

     # all toplets except those from TM::PSI
     $tm->toplets (\ '+all -infrastructure')

B<NOTE>: No attempt is made to make this list unique.

B<NOTE>: The specifications are not commutative, but are interpreted from left-to-right. So C<all
-infrastructure +infrastructure> is not the same as C<all +infrastructure -infrastructure>. In the
latter case the infrastructure toplets have been added twice, and are then deducted completely with
C<-infrastructure>.

=cut

sub midlets {
    return toplets (@_);
}

sub toplets {
    my $self = shift;
    my $mid2iid = $self->{mid2iid};

    if ($_[0]) {                                                # if there is some parameter
	if (ref ($_[0]) ) {                                     # whoohie, a search spec
            my $spec = ${$_[0]};
            my $l = []; # will be list
            while ($spec =~ s/([+-])(\w+)//) {
                if ($2 eq 'all') {
                    $l = _mod_list ($1 eq '+', $l, keys %$mid2iid);
                } elsif ($2 eq 'infrastructure') {
                    $l = _mod_list ($1 eq '+', $l, keys %{$infrastructure->{mid2iid}});
                } else {
                    $log->logdie (scalar __PACKAGE__ .": specification '$2' unknown");
                }
            }
            $log->logdie (scalar __PACKAGE__ .": unhandled specification '$spec' left") if $spec =~ /\S/;
            return map { $mid2iid->{$_} } @$l;
	} else {
	    my $m = $mid2iid;
	    return @$m{$self->tids (@_)};                        # make all these fu**ing identifiers map-absolute
	}
    } else {                                                     # if the list was empty, we assume every thing in the map
	return values %$mid2iid;
    }

sub _mod_list {
    my $pm = shift; # non-zero for +
    my $l  = shift;
    if ($pm) {
	return [ @$l, @_ ];
    } else {
	my %minus;
	@minus{ @_ } = (1) x @_;
        return [ grep { !$minus{$_} } @$l ];
    }
}
sub _mk_uniq {
    my %uniq;
    @uniq {@_} = (1) x @_;
    return keys %uniq;
}

}

=pod

=item B<tids> (old name B<mids>)

I<$mid>  = I<$tm>->tids (I<$some_id>)

I<@mids> = I<$tm>->tids (I<$some_id>, ...)

This function tries to build absolute versions of the identifiers passed in. C<undef> will be
returned if no such can be constructed. Can be used in scalar and list context.

=over

=item *

If the passed-in identifier is a relative URI, so it is made absolute by prefixing it with the map
C<baseuri> and then we look for a toplet with that internal identifier.

=item *

If the passed-in identifier is an absolute URI, where the C<baseuri> is a prefix, then that URI will
be used as internal identifier to look for a toplet.

=item *

If the passed-in identifier is an absolute URI, where the C<baseuri> is B<NOT> a prefix, then that
URI will be used as subject locator and such a toplet will be looked for.

=item *

If the passed-in identifier is a reference to an absolute URI, then that URI will be used as subject
identifier and such a toplet will be looked for.

=back

=cut

sub mids {
    return tids (@_);
}

sub tids {
    my $self    = shift;
    my $mid2iid = $self->{mid2iid};                                    # shorthand

    my @ks;
  MID:
    foreach my $k (@_) {
	if (! defined $k) {                                            # someone put in undef
	    push @ks, undef;

	} elsif (ref ($k)) {                                           # would be subject indicator ref
	    my $kk = $$k;
	    foreach my $k2 (keys %{$mid2iid}) {
		if (grep ($_ eq $kk, 
			  @{$mid2iid->{$k2}->[TM->INDICATORS]}
			  )) {
		    push @ks, $mid2iid->{$k2}->[TM->LID];              # LID points to 'canonical' internal identifier
		    next MID;
		}
	    }
	    push @ks, undef;

	} elsif (my $kk = $mid2iid->{$k}) {                            # we already have something which looks like a tid
	    push @ks, $kk->[TM->LID];                                  # give back the 'canonical' one

	} elsif ($k =~ /(^\w+:)|(^[A-F0-9]{32}$)/i) {                  # must be some other uri or assoc id, must be subject address
	    no warnings;
	    my @k2 = grep ($mid2iid->{$_}->[TM->ADDRESS] eq $k, keys %{$mid2iid});
	    push @ks,  @k2 ? $mid2iid->{$k2[0]}->[TM->LID] : undef;    # we take the first we find

	} else {                                                       # only a string, like 'aaa'
	    my $k2 = $self->{baseuri}.$k;                              # make it absolute, and...
	    push @ks, $mid2iid->{$k2}                                  # see whether there is something
                        ? $mid2iid->{$k2}->[TM->LID] : undef;          # and then take canonical LID
	}
    }
#warn "mids ".Dumper (\@_)." returning ".Dumper (\@ks);
    return wantarray ? @ks : $ks[0];
}

=pod

=item B<externalize>

I<$tm>->externalize (I<$some_id>, ...)

This function simply deletes the toplet entry for the given internal identifier(s). The function
returns all deleted toplet entries.

B<NOTE>: Assertions in which this topic is involved will B<not> be removed. Use C<consolidate> to
clean up all assertion where non-existing toplets still exist.

=cut

sub externalize {
    my $self = shift;

    my $mid2iid = $self->{mid2iid};
    my @doomed = map { delete $mid2iid->{$_} } @_;
    $self->{mid2iid} = $mid2iid; ## !! needed for Berkeley DBM recognize changes on deeper levels
    $self->{last_mod} = Time::HiRes::time;
    return @doomed;
}

=pod

=back

=head1 ASSERTIONS INTERFACE

One assertion is a record containing its own identifier, the scope, the type of the assocation, an
field whether this is an association, an occurrence or a name and then all roles and all players,
both in separate lists.

=cut

struct 'Assertion' => [
    lid         => '$',
    scope       => '$',
    type        => '$',
    kind        => '$', # redundant, but very useful
    roles       => '$',
    players     => '$',
    canon       => '$',
];

use constant {
    LID     => 0,
    SCOPE   => 1,
    TYPE    => 2,
    KIND    => 3,
    ROLES   => 4,
    PLAYERS => 5,
    CANON   => 6
};

=pod

Assertions consist of the following components:

=over

=item I<lid> (index C<LID>):

Every assertion has an identifier. It is a unique identifier generated from a canonicalized form of
the assertion itself.

=item I<scope> (index: C<SCOPE>)

This component holds the scope of the assertion.

=item I<kind> (index: C<KIND>, redundant information):

For technical reasons (read: it is faster) we distinguish between full associations (C<ASSOC>),
names (C<NAME>) and occurrences (C<OCC>).

=cut

# values for 'kind'
use constant {
    ASSOC    => 0,
    NAME     => 1,
    OCC      => 2,
};

=pod

=item I<type> (index: C<TYPE>):

The toplet id of the type of this assertion.

=item I<roles> (index: C<ROLES>):

A list reference which holds a list of toplet ids for the roles.

=item I<players> (index: C<PLAYERS>):

A list reference which holds a list of toplet IDs for the players.

=item I<canon> (index: C<CANON>):

Either C<1> or C<undef> to signal whether this assertion has been (already) canonicalized (see
L</canonicalize>). If an assertion is canonicalized, then the players and roles lists are sorted
(somehow), so that assertions can be easily compared.

=back

Obviously the lists for roles and players B<always> have the same length, so that every player
corresponds to exactly one role. If one role is played by several players, the role appears multiple
times.

As a special case, names and occurrences are mapped into assertions, by

=over

=item *

setting the I<roles> to C<thing> and C<value>,

=item *

setting the I<players> to the toplet id in question and using a L<TM::Literal> as the player for
C<value>,

=item *

using the I<type> component to store the name/occurrence type,

=item *

using as I<kind> either C<NAME> or C<OCC>

=back

Example:

   # general association
   $a = Assertion->new (type => 'is-subclass-of', 
                        roles   => [ 'subclass', 'superclass' ], 
                        players => [ 'rumsti',   'ramsti' ])


   warn $a->scope . " is the same as " . $a->[TM->SCOPE];

   # create a name
   use TM::Literal;
   $n = Assertion->new (kind    => TM->NAME,
                        type    => 'name',
                        scope   => 'us', 
                        roles   => [ 'thing', 'value' ],
                        players => [ 'rumsti', 
                                     new TM::Literal ('AAA') ]);

   # create an occurrence
   use TM::Literal;
   $n = Assertion->new (kind    => TM->OCC,
                        type    => 'occurrence',
                        scope   => 'us',
                        roles   => [ 'thing', 'value' ],
                        players => [ 'rumsti', 
                                     new TM::Literal ('http://whatever/') ]);

=head2 Special Assertions

This package adopts the following conventions to store certain assertions:

=over

=item C<is-subclass-of>

Associations of this type should have one role C<subclass> and another C<superclass>. The scope
should always be C<us>.

=item C<isa>

Associations of this type should have one role C<instance> and another C<class>. The scope should
always be C<us>.

=item C<NAME>

Assertions for names should have the C<KIND> component set to it and use the C<TYPE> component to
store the name type. The two roles to use are C<value> for the value and C<thing> for the toplet
carrying the name.

=item C<OCC>

Assertions for occurrences should have the C<KIND> component set to it and use the C<TYPE> component
to store the occurrence type. The two roles to use are C<value> for the value and C<thing> for the
toplet carrying the name.

=back

=head2 Methods

=over

=item B<assert>

I<@as> = I<$tm>->assert (I<@list-of-assertions>)

This method takes a list of assertions, canonicalizes them and then injects them into the map. If
one of the newly added assertions already existed in the map, it will be ignored.

In this process, all assertions will be completed (if fields are missing). 

=over

=item If an assertion does not have a type, it will default to C<$TM::PSI::THING>.

=item If an assertion does not have a scope, it defaults to C<$TM::PSI::US>.

=back

Then the assertion will be canonicalized (unless it already was). This implies that
non-canonicalized assertions will be modified, in that the role/player lists change.  Any assertion
not having an LID will get one.

The method returns a list of all asserted assertions.

Example:

  my $a = Assertion->new (type => 'rumsti');
  $tm->assert ($a);

B<NOTE>: Maybe the type will default to I<association> in the future.

=cut

sub assert {
    my $self = shift;
    my ($THING, $US) = ('thing', 'us');

#warn "sub $THING assert $self".ref ($self);

    my @tids;                                                  # first collect all emerging tids from the assertions
    foreach (@_) {
	unless ($_->[CANON]) {
	    push @tids, $_->[TYPE]  || $THING;
	    push @tids, $_->[SCOPE] || $US;
	    push @tids, @{$_->[ROLES]};
	    push @tids, grep { ! ref ($_) } @{$_->[PLAYERS]};
	}
    }
    @tids = $self->internalize ( map { $_ => undef } @tids);   # then convert them into proper usable tids

    my $asserts = $self->{assertions};                         # load (MLDBM kicker)
    foreach (@_) {                                             # only now use all the information to complete the assertions
	unless ($_->[CANON]) {
	    $_->[KIND]  ||= ASSOC;
	    $_->[TYPE]    = shift @tids;
	    $_->[SCOPE]   = shift @tids;
	    $_->[ROLES]   = [ map { shift @tids } @{$_->[ROLES]} ];
	    $_->[PLAYERS] = [ map { $_ = ref ($_) ? $_ : shift @tids } @{$_->[PLAYERS]}  ];

	    canonicalize (undef, $_);

	    $_->[LID]   ||= mklabel ($_);
	}
	$asserts->{$_->[LID]} = $_;
    }
    $self->{assertions} = $asserts;                            ### HACK ALERT: needed for Berkeley DBM recognize changes on deeper levels
    $self->{last_mod} = Time::HiRes::time;
    return @_;
}

=pod

=item B<retrieve>

I<$assertion>  = I<$tm>->retrieve (I<$some_assertion_id>)

I<@assertions> = I<$tm>->retrieve (I<$some_assertion_id>, ...)

This method takes a list of assertion IDs and returns the assertion(s) with the given (subject)
ID(s). If the assertion is not identifiable, C<undef> will be returned in its place. Called in list
context, it will return a list of assertion references.

=cut

sub retrieve {
    my $self    = shift;
    my $asserts = $self->{assertions};

    if (wantarray()) {
	return map { $asserts->{$_} } @_;
    } else {
	return $asserts->{$_[0]};
    }
}

=pod

=item B<asserts>

I<@assertions> = I<$tm>->asserts (I<$selection_spec>)

If a search specification is used, it has to be passed in as string reference. That string contains
the selection specification using the following simple language (curly brackets mean repetition,
round bracket grouping, vertical bar alternatives):

    specification -> { ( '+' | '-' ) group }

whereby I<group> is one of the following:

=over

=item C<all>

refers to B<all> assertions in the map. This includes those supplied by the application, but also
all predefined associations, names and occurrences.

=item C<associations>

refers to all assertions which are actually associations

=item C<names>

refers to all assertions which are actually name characteristics

=item C<occurrences>

refers to all assertions which are actually occurrences

=item C<infrastructure>

refers to all assertions the infrastructure has provided. This implies that

   all - infrastructure

is everything the user (application) has supplied.

=back

Examples:

     # all toplets except those from TM::PSI
     $tm->asserts (\ '+all -infrastructure')

     # like above, without assocs, so with names and occurrences
     $tm->asserts (\ '+all -associations')

B<NOTE>: No attempt is made to make this list unique.

B<NOTE>: The specifications are not commutative, but are interpreted from left-to-right. So C<all
-associations +associations> is not the same as C<all +associations -associations>.
C<-infrastructure>.

=cut

sub asserts {
    my $self = shift;
    my $asserts = $self->{assertions};

    if ($_[0]) {
	if (ref ($_[0])) {
	    my $spec = ${$_[0]};
	    my $l = []; # will be list
	    while ($spec =~ s/([+-])(\w+)//) {
		if ($2 eq 'all') {
		    $l = _mod_list ($1 eq '+', $l,                                      keys %$asserts);

		} elsif ($2 eq 'associations') {
		    $l = _mod_list ($1 eq '+', $l, map  { $_->[TM->LID] } 
                                                   grep { $_->[TM->KIND] == TM->ASSOC } values %$asserts);
		} elsif ($2 eq 'names') {
		    $l = _mod_list ($1 eq '+', $l, map  { $_->[TM->LID] }
                                                   grep { $_->[TM->KIND] == TM->NAME }  values %$asserts);
		} elsif ($2 eq 'occurrences') {
		    $l = _mod_list ($1 eq '+', $l, map  { $_->[TM->LID] }
                                                   grep { $_->[TM->KIND] == TM->OCC }   values %$asserts);
		} elsif ($2 eq 'infrastructure') {
		    $l = _mod_list ($1 eq '+', $l,                                      keys %{$TM::infrastructure->{assertions}} );
		} else {
		    $log->logdie (scalar __PACKAGE__ .": specification '$2' unknown");
		}
	    }
	    $log->logdie (scalar __PACKAGE__ .": unhandled specification '$spec' left") if $spec =~ /\S/;
	    return map { $asserts->{$_} } @$l;
	} else {
	    return $asserts->{@_};
	}
    } else {
	return values %$asserts;
    }
}

=pod

=item B<is_asserted>

I<$bool> = I<$tm>->is_asserted (I<$a>)

This method will return C<1> if the passed-in assertion exists in the store. The assertion will be
canonicalized before checking, but no defaults will be added if parts are missing.

=cut

sub is_asserted {
    my $self  = shift;
    my $a     = shift;

    unless ($a->[CANON]) {
	absolutize   ($self, $a);
	canonicalize (undef, $a);
	$a->[TM->LID] = mklabel ($a);
    }
    return $self->{assertions}->{ $a->[TM->LID] };
}

=pod

=item B<retract>

I<$tm>->retract (I<@list_of_assertion_ids>)

This methods expects a list of assertion IDs and will remove the assertions from the map. If an ID
is bogus, it will be ignored.

B<NOTE>: Only these particular assertions will be deleted. Any toplets mentioned in these assertions
will remain. Use C<consolidate> to remove unnecessary toplets.

=cut

sub retract {
  my $self = shift;

# TODO: does delete $self->{assertions}->{@_} work?
  my $assertions = $self->{assertions};
  map { 
      delete $assertions->{$_} # delete them from the primary store
  } @_; 
  $self->{assertions} = $assertions; ##!! needed for Berkeley DBM recognize changes on deeper levels
  $self->{last_mod} = Time::HiRes::time;
}

=pod

=item B<match>, B<match_forall>, B<match_exists>

I<@assertions> = I<$tm>->match (TM->FORALL [ , I<search-spec> ] );

I<@assertions> = I<$tm>->match (TM->EXISTS [ , I<search-spec> ] );

I<@assertions> = I<$tm>->match_forall ( [ I<search-spec> ] );

I<@assertions> = I<$tm>->match_exists ( [ I<search-spec> ] );

These methods take a search specification and return matching assertions. The result list contains
references to the assertions themselves, not to copies. You can change the assertions themselves on
your own risk (read: better not do it).

For C<match>, if the constant C<FORALL> is used as first parameter, this method returns a list of
B<all> assertions in the store following the search specification. If the constant C<EXISTS> is
used, the method will return a non-empty value if B<at least one> can be found. Calling the more
specific C<match_forall> is the same as calling C<match> with C<FORALL>. Similar for
C<match_exists>.

B<NOTE>: C<EXISTS> is not yet implemented.

For I<search specifications> there are two alternatives:

=over

=item Generic Search

Here the search specification is a hash with the same fields as for the constructor of an assertion:

Example:

   $tm->match (TM->FORALL, type    => '...',
                           scope   => '...,
                           roles   => [ ...., ....],
                           players => [ ...., ....]);

Any combination of assertion components can be used, all are optional, with the only constraint that
the number of roles must match that for the players. All involved IDs should be absolutized before
matching. If you use C<undef> for a role or a player, then this is interpreted as I<dont-care>
(wildcard). 

=item Specialized Search

The implementation also understands a number of specialized search specifications. These are
listed in L<TM::Axes>.

=back

B<NOTE>: Some combinations will be very fast, while others quite slow. If you experience
problems, then it might be time to think about indexing (see L<TM::Index>).

B<NOTE>: For the assertion type and the role subclassing is honored.

=cut

use constant {
    EXISTS => 1,
    FORALL => 0
    };

our %exists_handlers = (); # they should be written at some point

our %forall_handlers = (
			'' => {
			    code => sub { # no params => want all of them
				my $self   = shift;
				return values %{$self->{assertions}};
			    },
			    desc => 'returns all assertions',
			    params => {},
			},

			'nochar' => {
			    code => sub {
				my $self   = shift;
				return
				    grep ($_->[KIND] <= ASSOC,
					  values %{$self->{assertions}});
			    },
			    desc   => 'returns all associations (so no names or occurrences)',
			    params => { 'nochar' => '1'}
			},
#-- taxos ---------------------------------------------------------------------------------------------
			'subclass.type' => {
			    code => sub {
				my $self   = shift;
				my $st     = shift;
				my ($ISSC, $SUBCLASS) = ('is-subclass-of', 'subclass');
				return () unless shift eq $ISSC;
				return
				    grep ( $self->is_x_player   ($_, $st, $SUBCLASS),
 				    grep ( $_->[TYPE] eq $ISSC,
				    values %{$self->{assertions}}));
			    },
			    desc => 'returns all assertions where there are subclasses of a given toplet',
			    params => { 'type' => 'is-subclass-of', subclass => 'which toplet should be the superclass'},
			    key => sub {
				my $self = shift;
				my $a    = shift;
				my ($ISSC, $SUBCLASS) = ('is-subclass-of', 'subclass');
				return "subclass.type:". ($self->get_x_players   ($a, $SUBCLASS))[0] . '.' . $ISSC;
			    },
			    enum => sub {
				my $self = shift;
				my ($ISSC) = ('is-subclass-of');
				return
 				    grep { $_->[TYPE] eq $ISSC }
				    values %{$self->{assertions}};
			    }
			},
			
			'superclass.type' => {
			    code => sub {
				my $self   = shift;
				my $st     = shift;
				my ($ISSC, $SUPERCLASS) = ('is-subclass-of', 'superclass');
				return () unless shift eq $ISSC;
				return
				    grep ( $self->is_x_player   ($_, $st, $SUPERCLASS),
				    grep ( $_->[TYPE] eq $ISSC,
				    values %{$self->{assertions}}));
			    },
			    desc => 'returns all assertions where there are superclasses of a given toplet',
			    params => { 'type' => 'is-subclass-of', superclass => 'which toplet should be the subclass'},
			    key => sub {
				my $self = shift;
				my $a    = shift;
				my ($ISSC, $SUPERCLASS) = ('is-subclass-of', 'superclass');
				return "superclass.type:". ($self->get_x_players   ($a, $SUPERCLASS))[0] . '.' . $ISSC;
			    },
			    enum => sub {
				my $self = shift;
				my ($ISSC) = ('is-subclass-of');
				return
 				    grep { $_->[TYPE] eq $ISSC }
				    values %{$self->{assertions}};
			    }
			},

			'class.type' => {
			    code => sub {
				my $self   = shift;
				my $t      = shift;
				my ($ISA, $CLASS) = ('isa', 'class');
				return () unless shift eq $ISA;
				return
				    grep ( $self->is_x_player   ($_, $t, $CLASS),
				    grep ( $_->[TYPE] eq $ISA,
				    values %{$self->{assertions}}));
			    },
			    desc => 'returns all assertions where there are instances of a given toplet',
			    params => { type => 'isa', class => 'which toplet should be the class'},
			    key => sub {
				my $self = shift;
				my $a    = shift;
				my ($ISA, $CLASS) = ('isa', 'class');
				return "class.type:". ($self->get_x_players   ($a, $CLASS))[0] . '.' . $ISA;
			    },
			    enum => sub {
				my $self = shift;
				my ($ISA) = ('isa');
				return
 				    grep { $_->[TYPE] eq $ISA }
				    values %{$self->{assertions}};
			    }
			},

			'instance.type' => {
			    code => sub {
				my $self   = shift;
				my $i      = shift;
				my ($ISA, $INSTANCE) = ('isa', 'instance');
				return () unless shift eq $ISA;
				return
				    grep ( $self->is_x_player   ($_, $i, $INSTANCE),
				    grep ( $_->[TYPE] eq $ISA,
				    values %{$self->{assertions}}));
			    },
			    desc => 'returns all assertions where there are classes of a given toplet',
			    params => { type => 'isa', instance => 'which toplet should be the instance'},
			    key => sub {
				my $self = shift;
				my $a    = shift;
				my ($ISA, $INSTANCE) = ('isa', 'instance');
				return "instance.type:". ($self->get_x_players   ($a, $INSTANCE))[0] . '.' . $ISA;
			    },
			    enum => sub {
				my $self = shift;
				my ($ISA) = ('isa');
				return
 				    grep { $_->[TYPE] eq $ISA }
				    values %{$self->{assertions}};
			    }
			},
#--
			'char.irole' => {
			    code => sub {
				warn "char.irole is deprecated. use char.topic instead";
				my $self   = shift;
				my $topic  = $_[1];
				return undef unless $topic;
				return
				    grep ($self->is_player ($_, $topic) &&                              # TODO: optimize this grep away (getting chars is expensive)
				          NAME <= $_->[KIND] && $_->[KIND] <= OCC,
				    values %{$self->{assertions}});
			    },
			    desc => 'deprecated: return all assertions which are characteristics for a given toplet',
			    params => { char => '1', irole => 'the toplet for which characteristics are sought'}
			},

			'char.topic' => {
			    code => sub {
				my $self   = shift;
				my $topic  = $_[1];
				return
				    grep (NAME <= $_->[KIND] && $_->[KIND] <= OCC &&
				          $_->[PLAYERS]->[0] eq $topic,                                   # first role is always the 'thing'
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions which are characteristics for a given toplet',
			    params => { char => '1', topic => 'the toplet for which characteristics are sought'},
			    key => sub {
				my $self = shift;
				my $a    = shift;
				return "char.topic:1.". $a->[PLAYERS]->[0];
			    },
			    enum => sub {
				my $self = shift;
				return
				    grep { $_->[KIND] != ASSOC }
				    values %{ $self->{assertions} };
			    }
			},

			'char.value' => {
			    code => sub {
				my $self   = shift;
				my $value  = $_[1];
				return
				    grep (NAME <= $_->[KIND] && $_->[KIND] <= OCC &&
					  $_->[PLAYERS]->[1]->[0] eq $value->[0] &&                       # second role is always the value
					  $_->[PLAYERS]->[1]->[1] eq $value->[1],                         # test value AND type
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions which are characteristics for some topic of a given value',
			    params => { char => '1', value => 'the value for which all characteristics are sought'},
			    key => sub {
                                my $self = shift;
                                my $a    = shift;
                                return "char.value:1.". $a->[PLAYERS]->[1]->[0] . '.' . $a->[PLAYERS]->[1]->[1];
                            },
                            enum => sub {
                                my $self = shift;
                                return
                                    grep { $_->[KIND] != ASSOC }
				    values %{ $self->{assertions} };
                            }
			},

			'char.type' => {
			    code => sub {
				my $self   = shift;
				my $type   = $_[1];
				return
				    grep { $self->is_subclass ($_->[TYPE], $type ) }
				    grep { $_->[KIND] != ASSOC }
				    values %{$self->{assertions}};
			    },
			    desc => 'return all assertions which are characteristics for some given type',
			    params => { char => '1', type => 'the characteristic type'},
			    key => sub {
                                my $self = shift;
                                my $a    = shift;
                                return "char.type:1.". $a->[TYPE];
                            },
                            enum => sub {
                                my $self = shift;
                                return
                                    grep { $_->[KIND] != ASSOC }
				    values %{ $self->{assertions} };
                            }
			},

			'char.type.value' => {
			    code => sub {
				my $self   = shift;
				my $type   = $_[1];
				my $value  = $_[2];
				return
				    grep { $self->is_subclass ($_->[TYPE], $type ) }
				    grep (NAME <= $_->[KIND] && $_->[KIND] <= OCC &&
					  $_->[PLAYERS]->[1]->[0] eq $value->[0] &&                       # second role is always the value
					  $_->[PLAYERS]->[1]->[1] eq $value->[1],                         # test value AND type
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions which are characteristics for some topic of a given value for some given type',
			    params => { char => '1', type => 'the characteristic type', value => 'the value for which all characteristics are sought'},
			    key => sub {
                                my $self = shift;
                                my $a    = shift;
                                return "char.type.value:1.". $a->[TYPE] . '.' . $a->[PLAYERS]->[1]->[0] . '.' . $a->[PLAYERS]->[1]->[1];
                            },
                            enum => sub {
                                my $self = shift;
                                return
                                    grep { $_->[KIND] != ASSOC }
				    values %{ $self->{assertions} };
                            }
			},

			'char.topic.type' => {
			    code => sub {
				my $self   = shift;
				my $topic  = $_[1];
				my $type   = $_[2];
				return
				    grep ($self->is_subclass ($_->[TYPE], $type),
				    grep ($_->[PLAYERS]->[0] eq $topic &&                         # first role is always the 'thing'
					  NAME <= $_->[KIND] && $_->[KIND] <= OCC,
				    values %{$self->{assertions}}));
			    },
			    desc => 'return all assertions which are a characteristic of a given type for a given topic',
			    params => { char => '1', topic => 'the toplet for which these characteristics are sought', type => 'type of characteristic' },
			    key => sub {
                                my $self = shift;
                                my $a    = shift;
                                return "char.topic.type:1.". $a->[PLAYERS]->[0] . '.' . $a->[TYPE] ;
                            },
                            enum => sub {
                                my $self = shift;
                                return
                                    grep { $_->[KIND] != ASSOC }
				    values %{ $self->{assertions} };
                            }
			},

			'lid' => {
			    code => sub {
				my $self   = shift;
				my $lid    = $_[1];
				return
				    $self->{assertions}->{$lid} || ();
			    },
			    desc => 'return one particular assertions with a given ID',
			    params => { lid => 'the ID of the assertion' }
			},

			'type' => {
			    code => sub {
				my $self   = shift;
				my $type   = $_[0];
				return 
				    grep ($self->is_subclass ($_->[TYPE], $type),
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions with a given type',
			    params => { type => 'the type of the assertion' }
			},
			
			'iplayer' => {
			    code => sub {
				my $self   = shift;
				my $ip     = $_[0];
				return 
				    grep ($self->is_player ($_, $ip), 
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions where a given toplet is a player',
			    params => { iplayer => 'the player toplet' }
			},

			'iplayer.type' => {
			    code => sub {
				my $self      = shift;
				my ($ip, $ty) = @_;
				return 
				    grep ($self->is_player ($_, $ip)          &&
					  $self->is_subclass ($_->[TYPE], $ty),
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions of a given type where a given toplet is a player',
			    params => { iplayer => 'the player toplet', type => 'the type of the assertion' }
			},

			'iplayer.irole' => {
			    code => sub {
				my $self      = shift;
				my ($ip, $ir) = @_;
				return 
				    grep ($self->is_player ($_, $ip, $ir), 
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions where a given toplet is a player of a given role',
			    params => { iplayer => 'the player toplet', irole => 'the role toplet (incl subclasses)' },
			},

			'iplayer.irole.type' => {
			    code => sub {
				my $self           = shift;
				my ($ip, $ir, $ty) = @_;
				return 
				    grep ($self->is_subclass ($_->[TYPE], $ty) && 
					  $self->is_player ($_, $ip, $ir), 
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions of a given type where a given toplet is a player of a given role',
			    params => { iplayer => 'the player toplet', 
					irole => 'the role toplet (incl subclasses)',
					type => 'the type of the assertion' }
			},

			'irole.type' => {
			    code => sub {
				my $self      = shift;
				my ($ir, $ty) = @_;
				return
				    grep ($self->is_role ($_, $ir)             &&
					  $self->is_subclass ($_->[TYPE], $ty),
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions of a given type where there is a given role',
			    params => { irole => 'the role toplet (incl subclasses)', type => 'the type of the assertion' }
			},

			'irole' => {
			    code => sub {
				my $self      = shift;
				my ($ir)      = @_;
				return
				    grep ($self->is_role ($_, $ir),
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions where there is a given role',
			    params => { irole => 'the role toplet (incl subclasses)' }
			},

			'aplayer.arole.brole.type' => {
			    code => sub {
				my $self   = shift;
				my ($ap, $ar, $br, $ty) = @_;
				return
				    grep ( $self->is_role     ($_, $br),
				    grep ( $self->is_player   ($_, $ap, $ar),
				    grep ( $self->is_subclass ($_->[TYPE], $ty),
				    values %{$self->{assertions}})));
			    },
			    desc => 'return all assertions of a given type where a given toplet plays a given role and there exist another given role',
			    params => { aplayer => 'the player toplet for the arole', 
					arole => 'the role toplet (incl subclasses) for the aplayer',
					brole => 'the other role toplet (incl subclasses)',
					type => 'the type of the assertion'
					}
			},
			
			'aplayer.arole.bplayer.brole.type' => {
			    code => sub {
				my $self  = shift;
				my ($ap, $ar, $bp, $br, $ty) = @_;
				return
				    grep ( $self->is_player ($_, $bp, $br),
			            grep ( $self->is_player ($_, $ap, $ar),
			            grep ( $self->is_subclass ($_->[TYPE], $ty),
				    values %{$self->{assertions}})));
			    },
			    desc => 'return all assertions of a given type where a given toplet plays a given role and there exist another given role with another given toplet as player',
			    params => { aplayer => 'the player toplet for the arole', 
					arole => 'the role toplet (incl subclasses) for the aplayer',
					brole => 'the other role toplet (incl subclasses)',
					bplayer => 'the player for the brole',
					type => 'the type of the assertion'
					}
			},

			'anyid' => {
			    code => sub {
				my $self   = shift;
				my $lid    = shift;
				return
				    grep (
				     $self->is_subclass ($_->[TYPE], $lid) ||   # probably not a good idea
					  $_->[TYPE]  eq         $lid           ||   # this seems a bit safer
					  $_->[SCOPE] eq         $lid           ||
					  $self->is_player ($_, $lid)           ||
					  $self->is_role   ($_, $lid)           ,
				    values %{$self->{assertions}});
			    },
			    desc => 'return all assertions where a given toplet appears somehow',
			    params => { anyid => 'the toplet' }
			}
		    
			);

sub _allinone {
    my $self     = shift;
    my $exists   = shift;
    my $template = Assertion->new (@_);                              # we create an assertion on the fly
#warn "allinone ".Dumper $template;
    $self->absolutize   ($template);  
#warn "allinone2".Dumper $template;
    $self->canonicalize ($template);                                # of course, need to be canonicalized
#warn "allinone3".Dumper $template;

#warn "in store match template ".Dumper $template;
    my @mads;
  ASSERTION:
    foreach my $m (values %{$self->{assertions}}) {                 # arbitrary AsTMa! queries TBD, can be faster as well
	
	next if defined $template->[KIND]  &&                       # is kind defined
                $m->[KIND]  ne $template->[KIND];                   #    and does it match?
#warn "after kind";
	next if defined $template->[SCOPE] && 
                $m->[SCOPE] ne $self->tids ($template->[SCOPE]);    # does scope match?
#warn "after scope";
	next if defined $template->[TYPE]  &&                       
                !$self->is_subclass ($m->[TYPE], $self->tids ($template->[TYPE]));         # does type match (including subclassing)?
#warn "after type";
			       
	my ($rm, $rc) = ($m->[ROLES],   $template->[ROLES]);
	push @mads, $m and next ASSERTION             if ! @$rc;     # match ok, if we have no roles
#warn "after push roles";
	next ASSERTION if @$rm != @$rc;                              # quick check: roles must be of equal length
#warn "after roles";
	my ($pm, $pc) = ($m->[PLAYERS], $template->[PLAYERS]);
	push @mads, $m and next ASSERTION             if ! @$pc;     # match ok, if we have no players
	next if @$pm != @$pc;                                        # quick check: roles and players must be of equal length
#warn "after players equal length ".Dumper ($pm, $pc);

#######	$pm = [ $self->tids (@$pm) ];                                
	for (my $i = 0; $i < @{$rm}; $i++) {                         # order is canonicalized, would not want to test all permutations
#warn "before role tests : is $rm->[$i] subclass of $rc->[$i]?";
	    next ASSERTION if defined $rc->[$i] && !$self->is_subclass ($rm->[$i], $rc->[$i]);              # go to next assertion if that does not match
#warn "after role ok";
	    next ASSERTION if defined $pc->[$i] && $pm->[$i] ne $pc->[$i];
	}
#warn "after players  roles";
	return (1) if $exists;                                       # with exists that's it
	push @mads, $m;                                              # with forall we do continue to collect
    }
#warn "we return ".Dumper \@mads;
    return @mads;                                                    # and return what we got
}

#sub _fat_mama {
#    use Proc::ProcessTable;
#    my $t = new Proc::ProcessTable;
##warn Dumper [ $t->fields ]; exit;
#    my ($me) = grep {$_->pid == $$ }  @{ $t->table };
##warn "size: ".  $me->size;
#    return $me->size / 1024.0 / 1024.0;
#}



sub match_forall {
    my $self   = shift;
    my %query  = @_;
#warn "forall ".Dumper \%query;

    my @skeys = sort keys %query;                                                           # all fields make up the key
    my $skeys = join ('.', @skeys);
    my @svals = map { $query{$_} } @skeys;

    if (my $idxs = $self->{indices}) {                                                      # there are indices to help me
	my $key   = "$skeys:" . join ('.', @svals);
	foreach my $idx (@$idxs) {
	    if (my $lids  = $idx->is_cached ($key)) {                                       # if result was cached, lets take the list of lids
#		warn "using cached for $key". Dumper $lids;
		return map { $self->{assertions}->{$_} } @$lids;                            # and return fully fledged
	    }
	}
	# obviously we have not found it                                                    # not defined means not cache => recompute
	my @as = _dispatch_forall ($self, \%query, $skeys, @svals);                         # do it the hard way
	$idxs->[0]->do_cache ($key, [ map { $_->[LID] } @as ]);                             # save it for later, simply use the first [0]
	return @as;
    } else {                                                                                # no cache, let's do the ochsentour
	return _dispatch_forall ($self, \%query, $skeys, @svals);
    }

sub _dispatch_forall {
    my $self  = shift;
    my $query = shift;
    my $skeys = shift;

    if (my $handler = $forall_handlers{$skeys}) {                                           # there is a constraint and we have a handler
	return &{$handler->{code}} ($self, @_); 
    } else {                                                                                # otherwise
	return _allinone ($self, 0, %$query);                                               # we use a generic handler, slow but should do the trick
    }
}

}

sub match_exists {
    my $self   = shift;
    my %query  = @_;

#warn "exists ".Dumper $query;

    my @skeys = sort keys %query;                                                           # all fields make up the key
    my $skeys = join ('.', @skeys);

#warn "keys for this $skeys";
    if (my $handler = $exists_handlers{$skeys}) {                                           # there is a constraint and we have a handler
	return &{$handler->{code}} ($self, map { $query{$_} } @skeys); 
    } else {                                                                                # otherwise
	return _allinone ($self, 1, %query);                                                # we use a generic handler, slow but should do the trick
    }
}

sub match {
    my $self   = shift;
    my $exists = shift; # FORALL or EXIST, DOES NOT work yet

    return $exists ? match_exists ($self, @_) : match_forall ($self, @_);
}


=pod

=back

=head2 Role Retrieval

=over

=item B<is_player>, B<is_x_player>

I<$bool> = is_player   (I<$tm>, I<$assertion>, I<$player_id>, [ I<$role_id> ])

I<$bool> = is_x_player (I<$tm>, I<$assertion>, I<$player_id>, [ I<$role_id> ])

This function returns C<1> if the identifier specified by the C<player_id> parameter plays any role
in the assertion provided as C<assertion> parameter.

If the C<role_id> is provided as third parameter then it must be exactly this role (or any subclass
thereof) that is played. The 'x'-version is using equality instead of 'subclassing' ('x' for
"exact").

=cut

sub is_player {
    my $self = shift;
    my $m    = shift;

#    warn "is_player ".Dumper \@_;
#    warn "caller: ". Dumper [ caller ];
#    foreach (0..0) {
#	warn "  ".join (' ---- ', caller($_));
#    }

    my $p = shift;# or die "must specify valid player: ".Dumper ([ $m ])." and role is ".shift;
#
#    warn "after shifting player '$p'";
    my $r = shift; # may be undefined

    $log->logdie ("must specify a player '$p' for role '$r'") unless $p;

    if ($r) {
	my ($ps, $rs) = ($m->[PLAYERS], $m->[ROLES]);

	for (my $i = 0; $i < @$ps; $i++) {
	    next unless $ps->[$i] eq $p;
	    next unless $self->is_subclass ($rs->[$i], $r);
	    return 1;
	}
    } else {
	return 1 if grep ($_ eq $p, @{$m->[PLAYERS]});
    }
    return 0;
}

sub is_x_player {
    my $self = shift;
    my $m = shift;
    my $p = shift or $log->logdie ("must specify x-player: ".Dumper ([ $m ]));
    my $r = shift; # may be undefined

    if ($r) {
	my ($ps, $rs) = ($m->[PLAYERS], $m->[ROLES]);

	for (my $i = 0; $i < @$ps; $i++) {
	    next unless $ps->[$i] eq $p;
	    next unless $rs->[$i] eq $r;
	    return 1;
	}
    } else {
	return 1 if grep ($_ eq $p, @{$m->[PLAYERS]});
    }
    return 0;
}

=pod

=item B<get_players>, B<get_x_players>

I<@player_ids> = get_players   (I<$tm>, I<$assertion>, [ I<$role_id> ])

I<@player_ids> = get_x_players (I<$tm>, I<$assertion>, I<$role_id>)

This function returns the player(s) for the given role. If the role is not provided all players are
returned.

The "x" version does not honor subclassing.

=cut

sub get_players {
    my $self = shift;
    my $a = shift;
    my $r = shift;
    
    return @{ $a->[PLAYERS] } unless $r;
    my ($ps, $rs) = ($a->[PLAYERS], $a->[ROLES]);
    
    my @ps;
    for (my $i = 0; $i < @$ps; $i++) {
	next unless $self->is_subclass ($rs->[$i], $r);
	push @ps, $ps->[$i];
    }
    return @ps;
}

sub get_x_players {
    my $self = shift;
    my $a = shift;
    my $r = shift;

    my ($ps, $rs) = ($a->[PLAYERS], $a->[ROLES]);
    
    my @ps;
    for (my $i = 0; $i < @$ps; $i++) {
	next unless $rs->[$i] eq $r;
	push @ps, $ps->[$i];
    }
    return @ps;
}

=pod

=item B<is_role>, B<is_x_role>

I<$bool> = is_role   (I<$tm>, I<$assertion>, I<$role_id>)

I<$bool> = is_x_role (I<$tm>, I<$assertion>, I<$role_id>)

This function returns C<1> if the C<role_id> is a role in the assertion provided. The "x" version of
this function does not honor subclassing.

=cut

sub is_role {
    my $self = shift;
    my $m    = shift;
    my $r    = shift or $log->logdie ("must specify role: ".Dumper ([ $m ]));

    return 1 if grep ($self->is_subclass ($_, $r), @{$m->[ROLES]});
}

sub is_x_role {
    my $self = shift;
    my $m    = shift;
    my $r    = shift or $log->logdie ("must specify role: ".Dumper ([ $m ]));

    return 1 if grep ($_ eq $r, @{$m->[ROLES]});
}

=pod

=item B<get_roles>

I<@role_ids> = get_roles (I<$tm>, I<$assertion>, I<$player>)

This function returns a list of roles a particular player plays in a given assertion.

=cut

sub get_roles {
    my $self = shift;
    my $a = shift;
    my $p = shift; # the player

    my ($ps, $rs) = ($a->[PLAYERS], $a->[ROLES]);
    
    my @rs;
    for (my $i = 0; $i < @$ps; $i++) {
	next unless $ps->[$i] eq $p;
	push @rs, $rs->[$i];
    }
    return @rs;
}

=pod

=item B<get_role_s>

I<@role_ids> = @{ get_role_s (I<$tm>, I<$assertion>) }

This function extracts a reference to the list of role identifiers.

=cut

sub get_role_s {
    my $self = shift;
    my $a = shift;
    return $a->[ROLES];
}

=pod

=back


=head2 Auxiliary Functions

=over

=item B<absolutize>

I<$assertion> = absolutize (I<$tm>, I<$assertion>)

This method takes one assertion and makes sure that all identifiers in it (for the type, the scope
and all the role and players) are made absolute for the context map. It returns this very assertion.
It will not touch canonicalized assertions.

=cut

sub absolutize {
    my $self = shift;
    my $a    = shift;

    return $a if $a->[CANON];                                                                 # skip it if we are already canonicalized
#warn "in abosl ".Dumper $a;
    $a->[TYPE]    =            tids ($self,         $a->[TYPE])    if $a->[TYPE];
    $a->[SCOPE]   =            tids ($self,         $a->[SCOPE])   if $a->[SCOPE];

    map { $_ =                 tids ($self, $_) } @{$a->[ROLES]}   if $a->[ROLES];            # things which are references, we will keep
    map { $_ = ref ($_) ? $_ : tids ($self, $_) } @{$a->[PLAYERS]} if $a->[PLAYERS];          # the others are treated as ids (could be literal references!)
#warn "after abosl ".Dumper $a;
    return $a;
}

=pod

=item B<canonicalize>

I<$assertion> = canonicalize (I<$tm>, I<$assertion>)

This method takes an assertion and reorders the roles (together with their respective players) in a
consistent way. It also makes sure that the KIND is defined (defaults to C<ASSOC>), that the type is
defined (defaults to C<THING>) and that all references are made absolute LIDs. Finally, the field
C<CANON> is set to 1 to indicate that the assertion is canonicalized.

The function will not do anything if the assertion is already canonicalized.  The component C<CANON>
is set to C<1> if the assertion has been canonicalized.

Conveniently, the function returns the same assertion, albeit a maybe modified one.

TODO: remove map parameter, it is no longer necessary

=cut

sub canonicalize {
    my $self = shift;
    my $s    = shift;
#warn "in canon ".Dumper $s;
#warn "using LIDs ".Dumper $LIDs;

    return $s if $s->[CANON];                                  # skip it if we are already canonicalized

# reorder role/players canonically
    my $rs = $s->[ROLES];
    my $ps = $s->[PLAYERS];
    my @reorder = (0..$#$ps);                                  # create 0, 1, 2, ..., how many roles
#warn @reorder;
    # sort according to roles (alphanum) and at ties according to players on position $a, $b
    @reorder = sort { $rs->[$a] cmp $rs->[$b] || $ps->[$a] cmp $ps->[$b] } @reorder;
#warn @reorder;
    $s->[ROLES]   = [ map { $rs->[$_] } @reorder ];
    $s->[PLAYERS] = [ map { $ps->[$_] } @reorder ];
# we are done (almost)
    $s->[CANON]   = 1;

#warn "in canon return ".Dumper $s;
    return $s;
}

# =pod

# =item B<mklabel>

# I<$hash> = mklabel (I<$assertion>);

# For internal optimization all characteristics have an additional HASH component which can be used to
# maintain indices. This function takes a assertion and computes an MD5 hash and sets the C<HASH>
# component if that is not yet defined.

# Such a hash only makes sense if the assertion is canonicalized, otherwise an exception is raised.

# Example:

#     my $a = Assertion->new (lid => 'urn:x-rho:important');
#     print "this uniquely (well) identifies the assertion ". mklabel ($a);

# =cut

sub mklabel {
  my $a = shift;
  $log->logdie ("refuse to hash non canonicalized assertion") unless $a->[CANON];
  use Digest::MD5 qw(md5_hex);
  return md5_hex ($a->[SCOPE], $a->[TYPE], @{$a->[ROLES]}, map { ref ($_) ? join ("", @$_) : $_ } @{$a->[PLAYERS]});  # recompute the hash if necessary
#                                                                           ^^^^^^^^^^^^^^                            # this is a literal value
#                                                                                            ^^                       # this is for a normal identifier
}

=pod

=back

=head1 TAXONOMICS AND SUBSUMPTION

The following methods provide useful basic, ontological functionality around transitive subclassing
between classes and instance/type relationships.

B<NOTE>: Everything is a subclass of C<thing> (changed in v1.35).

B<NOTE>: Everything is an instance of C<thing>.

B<NOTE>: See L<TM::PSI> for predefined things.

=head2 Boolean Methods

=over

=item B<is_subclass>

I<$bool> = I<$tm>->is_subclass (I<$superclass_id>, I<$subclass_id>)

This function returns C<1> if the first parameter is a (transitive) superclass of the second,
i.e. there is an assertion of type I<is-subclass-of> in the context map. It also returns C<1> if the
superclass is a $TM::PSI::THING or if subclass and superclass are the same (reflexive).

=cut

sub is_subclass {
    my $self  = shift;
    my $class = shift;
    my $super = shift;

    return 1 if $class eq $super;                                            # we always assume that A subclasses A

    my ($ISA, $US, $THING, $SUBCLASSES, $SUBCLASS, $SUPERCLASS, $INSTANCE, $CLASS) =
	('isa', 'us', 'thing', 'is-subclass-of', 'subclass', 'superclass', 'instance', 'class');

#warn "is_subclass?: class $class   super $super , thing $THING, $SUBCLASSES, $SUPERCLASS";
    return 1 if $super eq $THING;                                            # everything subclasses thing
# but not if the class is one of the predefined things, yes, there is a method to this madness
    return 0 if $class eq $ISA;
    return 0 if $class eq $US;
    return 0 if $class eq $THING;                                            # thing would only subclass itself and that is covered above
    return 0 if $class eq $SUBCLASSES;
    return 0 if $class eq $SUBCLASS;
    return 0 if $class eq $SUPERCLASS;
    return 0 if $class eq $INSTANCE;
    return 0 if $class eq $CLASS;
#    # see whether there is an assertion that we have a direct subclasses relationship between the two

# This would be an optimization, but this does not go through match
#    return 1 if $self->is_asserted (Assertion->new (scope   => $US,                          # TODO OPTIMIZE
#						    type    => $SUBCLASSES, 
#						    roles   => [ $SUBCLASS, $SUPERCLASS ],
#						    players => [ $class,    $super ])
#				    );
    # if we still do not have a decision, we will check all super types of $class and see (recursively) whether we can establish is-subclass-of
    return 1 if grep ($self->is_subclass ($_, $super),                       # check all of the intermediate type whether there is a transitive relation
		      map { $self->get_x_players ($_, $SUPERCLASS) }         # find the superclass player there => intermediate type
		      grep(defined $_,$self->match_forall (type       => $SUBCLASSES,
							   subclass   => $class))
		      );
    return 0;                                                                # ok, we give up now
}

=pod

=item B<is_a>

I<$bool> = I<$tm>->is_a (I<$something_lid>, I<$class_lid>)

This method returns C<1> if the thing referenced by the first parameter is an instance of the class
referenced by the second. The method honors transitive subclassing.

=cut

sub is_a {
    my $self    = shift;
    my $thingie = shift;
    my $type    = shift;                                                         # ok, what class are looking at?

    my ($ISA, $CLASS, $THING) = ('isa', 'class', 'thing');

#warn "isa thingie $thingie class $type";

    return 1 if $type eq $THING and                                              # is the class == 'thing' and
                $self->{mid2iid}->{$thingie};                                    # and does the thingie exist?

    my ($m) = $self->retrieve ($thingie);
    return 1 if $m and                                                           # is it an assertion ? and...
	        $self->is_subclass ($m->[TYPE], $type);                          # is the assertion type a subclass?

    return 1 if grep ($self->is_subclass ($_, $type),                            # check all of the intermediate type whether there is a transitive relation
		         map { $self->get_players ($_, $CLASS) }                 # find the class player there => intermediate type
		             $self->match_forall (type => $ISA, instance => $thingie)
		      );
    return 0;
}

=pod

=back

=head2 List Methods

=over

=item B<subclasses>, B<subclassesT>

I<@lids> = I<$tm>->subclasses  (I<$lid>, ...)

I<@lids> = I<$tm>->subclassesT (I<$lid>, ...)

C<subclasses> returns all B<direct> subclasses of the toplet identified by C<$lid>. If the toplet does
not exist, the list will be empty. C<subclassesT> is a variant which honors the transitive
subclassing (so if A is a subclass of B and B is a subclass of C, then A is also a subclass of C).

Duplicates are suppressed.

=cut

sub subclasses {
    my $self = shift;

    my ($SUBCLASSES) = ('is-subclass-of');
    my @sc = map { $_->[PLAYERS]->[0] }
             map { $self->match_forall (type => $SUBCLASSES, superclass => $_) }
             @_;
    my %dup;
    return map { $dup{$_}++ ? () : $_ } @sc;
}

sub subclassesT {
    my $self = shift;

    my @sc = map { $self->subclasses ($_) } @_;
    push @sc, @_, map { $self->subclassesT ($_) } @sc; # laziness equals recursion
    my %dup;
    return map { $dup{$_}++ ? () : $_ } @sc; 
}

=pod

=item B<superclasses>, B<superclassesT>

I<@lids> = I<$tm>->superclasses  (I<$lid>, ...)

I<@lids> = I<$tm>->superclassesT (I<$lid>, ...)

The method C<superclasses> returns all direct superclasses of the toplet identified by C<$lid>. If
the toplet does not exist, the list will be empty. C<superclassesT> is a variant which honors
transitive subclassing.

Duplicates are suppressed.

=cut

sub superclasses {
    my $self = shift;

    my ($SUBCLASSES) = ('is-subclass-of');
    my @sc = map { $_->[PLAYERS]->[1] }
             map { $self->match_forall (type => $SUBCLASSES, subclass => $_) }
             @_;
    my %dup;
    return map { $dup{$_}++ ? () : $_ } @sc;
}

sub superclassesT {
    my $self = shift;

    my @sc = map { $self->superclasses ($_) } @_;
    push @sc, @_, map { $self->superclassesT ($_) } @sc; # laziness equals recursion
    my %dup;
    return map { $dup{$_}++ ? () : $_ } @sc; 
}

=pod

=item B<types>, B<typesT>

I<@lids> = I<$tm>->types  (I<$lid>, ...)

I<@lids> = I<$tm>->typesT (I<$lid>, ...)

The method C<types> returns all direct classes of the toplet identified by C<$lid>. If the toplet does
not exist, the list will be empty. C<typesT> is a variant which honors transitive subclassing (so if
I<a> is an instance of type I<A> and I<A> is a subclass of I<B>, then I<a> is also an instance of
I<B>).

Duplicates will be suppressed.

=cut

sub types {
    my $self = shift;
    my $ISA  = ('isa');
    my $a;
    my @types = map { ($a = $self->retrieve ($_))
		      ? $a->[TYPE]
		      : ( map { $_->[PLAYERS]->[0] }  $self->match_forall (type => $ISA, instance => $_) )
		     }
                @_;
    my %dup;
    return map { $dup{$_}++ ? () : $_ } @types;
}

sub typesT {
    my $self = shift;

    my @types = map { $self->types ($_) } @_;
    push @types, map { $self->superclassesT ($_) } @types;
    my %dup;
    return map { $dup{$_}++ ? () : $_ } @types;
}


=pod

=item B<instances>, B<instancesT>

I<@lids> = I<$tm>->instances  (I<$lid>, ...)

I<@lids> = I<$tm>->instancesT (I<$lid>, ...)

These methods return the direct (C<instances>) and also indirect (C<instancesT>) instances of the
toplet identified by C<$lid>.

Duplicates are suppressed.

=cut

sub instances {
    my $self = shift;

#    warn Dumper [ caller ] unless @_;

    my ($ISA, $THING) = ('isa', 'thing');

    my @instances = map {
	           $_ eq $THING
		       ? map { $_->[TM->LID] } $self->toplets
		       : 
		       (map { $_->[LID ] }         $self->match_forall (type => $_)),                 # all assocs of this type
		       (map { $_->[PLAYERS]->[1] } $self->match_forall (type => $ISA, class => $_))   # all direct instances
                  } @_;
}

sub instancesT {
    my $self = shift;

    my @instances = map { $self->instances ($_) }
                    map { $self->subclassesT ($_) } 
                    @_;
    my %dup;
    return map { $dup{$_}++ ? () : $_ } @instances;
}

=pod

=back

=head2 Filters

Quite often one needs to walk through a list of things to determine whether they are instances (or
types, subtypes or supertypes) of some concept. This list of functions lets you do that: you pass in
a list (reference) and the function behaves as filter, returning a list reference.

=over

=item B<are_instances>

I<@id> = I<$tm>->are_instances (I<$class_id>, I<@list_of_ids>)

Returns all those ids where the topic is an instance of the class provided.

=cut

sub are_instances {
    my $self  = shift;
    my $class = shift;                                                           # ok, what class are we looking at?

    my ($THING, $ISA, $CLASS) = ('thing', 'isa', 'class');

    my @rs;
    foreach my $thing (@_) {                                                     # we work through all the things we got
#warn "checking $thing";
	push @rs, $thing and next                                                # we happily take one if
	    if $class eq $THING and                                              #     is the class = 'thing' ? and
               $self->midlet ($thing);                                           #     then does the thing exist in the map ?

	my $m = $self->retrieve ($thing);
	push @rs, $thing and next                                                # we happily take one if
	    if $m and                                                            #    it is an assertion ? and...
	       ($class eq $THING                                                 #    either it is the class a THING (we did not explicitly store _that_)
                or
                $self->is_subclass ($m->[TYPE], $class)                          #    or is the assertion type a subclass?
	        );

	push @rs, $thing and next                                                # we happily take one if
	    if grep ($self->is_subclass ($_, $class),                            # finall we check all of the intermediate type whether there is a transitive relation
		     map { $self->get_players ($_, $CLASS) }                     # then we find the 'class' value
                           $self->match_forall (type => $ISA, instance => $thing));
        # nothing                                                                # otherwise we do not push
    }
    return @rs;
}

=pod

=item B<are_types> (Warning: placeholder only)

I<@ids> = I<$tm>->are_types (I<$instance_id>, I<@list_of_ids>)

Returns all those ids where the topic is a type of the instance provided.

=cut

sub are_types {
    $log->logwarn ("# not implemented function");
    return 0;
}

=pod

=item B<are_supertypes> (Warning: placeholder only)

I<@ids> = I<$tm>->are_supertypes (I<$class_id>, I<@list_of_ids>)

Returns all those ids where the topic is a supertype of the class provided.

=cut

sub are_supertypes {
    $log->logwarn ("# not implemented function");
    return 0;
}

=pod

=item B<are_subtypes> (Warning: placeholder only)

I<@ids> = I<$tm>->are_subtypes (I<$class_id>, I<@list_of_ids>)

Returns all those ids where the topic is a subtype of the class provided.

=cut

sub are_subtypes {
    $log->logwarn ("# not implemented function");
    return 0;
}

=pod

=back

=head1 REIFICATION

=over

=item B<is_reified>

(I<$tid>) = I<$tm>->is_reified (I<$assertion>)

(I<$tid>) = I<$tm>->is_reified (I<$url>)

In the case that the handed-in assertion is internally reified in the map, this method will return
the internal identifier of the reifying toplet. Or C<undef> if there is none.

In the case that the handed-in URL is used as subject address of a toplet, this method will return
the internal identifier of the reifying toplet. Or C<undef> if there is none.

=cut

sub _is_reified {
    my $self = shift;
    my $a    = shift;

    my $mid2iid = $self->{mid2iid};                                                               # shortcut
    $a = $a->[TM->LID] if ref ($a) eq 'Assertion';                                                # for assertions we take the LID

    return grep { $mid2iid->{$_}->[TM->ADDRESS] eq $a }                                           # brute force
           grep { $mid2iid->{$_}->[TM->ADDRESS] }
           keys %{$mid2iid};
}

sub is_reified {
    return _is_reified (@_);
}

=pod

=item B<reifies>

I<$url>       = I<$tm>->reifies (I<$tid>)

I<$assertion> = I<$tm>->reifies (I<$tid>)

Given a toplet identifier, this method returns either the internally reified assertion, an
externally reified object via its URL, or C<undef> if that toplet does not reify at all.

=cut

sub reifies {
    my $self = shift;
    my $tid  = shift;

    my $add = $self->{mid2iid}->{$tid}->[TM->ADDRESS] if $self->{mid2iid}->{$tid};
    return undef unless $add;
    return $add =~ /^[A-F0-9]{32}$/i ? $self->{assertions}->{$add} : $add;
}

=pod

=back

=head1 VARIANTS (aka "The Warts")

No comment.

=over

=item B<variants>

I<$tm>->variants (I<$id>, I<$variant>)

I<$tm>->variants (I<$id>)

With this method you can get/set a variant tree for B<any> topic. According to the standard only
basenames (aka topic names) can have variants, but, hey, this is such an ugly beast (I am
digressing). According to this data model you can have variants for B<all> toplets/maplets. You only
need their id.

The structure is like this:

  $VAR1 = {
    'tm:param1' => {
      'variants' => {
        'tm:param3' => {
          'variants' => undef,
          'value' => 'name for param3'
        }
      },
      'value' => 'name for param1'
    },
    'tm:param2' => {
      'variants' => undef,
      'value' => 'name for param2'
    }
  };

The parameters are the keys (there can only be one, which is a useful, cough, restriction of the
standard) and the data is the value. Obviously, one key value (i.e. parameter) can only exists once.

Caveat: This is not very well tested (read: not tested at all).

=cut

sub variants {
    my $self = shift;
    my $id   = shift;
    my $var  = shift;

    $self->{last_mod} = Time::HiRes::time if $var;
    return $var ? $self->{variants}->{$id} = $var : $self->{variants}->{$id};
}


=pod 

=back

=head1 LOGGING

The L<TM> module hosts (since 1.29) the Log4Perl object C<$TM::log>. It is initialized with some
reasonable defaults, but an using application can access it, tweak it, or overwrite it completely.

=head1 SEE ALSO

L<TM::PSI>, L<Log::Log4perl>

=head1 COPYRIGHT AND LICENSE

Copyright 200[1-8] by Robert Barta, E<lt>drrho@cpan.orgE<gt>

This library is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

=cut

#-- this we do when all structures have been defined
_prime_infrastructure();                                                                # initialize
# NOTE: BEGIN does not work, because we have to define all 

sub _prime_infrastructure {                                                             # generate a fragmentary TM structure for the infrastructure
    foreach my $h ($TM::PSI::core,
		   $TM::PSI::topicmaps_inc,
		   $TM::PSI::tmql_inc,
		   $TM::PSI::astma_inc) {
	foreach my $k (keys %{ $h->{mid2iid} }) {
	    $infrastructure->{mid2iid}->{$k} = [ $k, undef, $h->{mid2iid}->{$k} ];      # and manifest them as toplets
	}

	map { $infrastructure->{assertions}->{ $_->[TM->LID] } = $_ }                   # manifest assertions
	map { $_->[TM->LID] = mklabel ($_);                                             #   after computing the hash LID
	      $_ }
	map { canonicalize ( undef, $_ ) }                                              #   after canonicalizing them
	map { $_->[TM->KIND]  = TM->ASSOC;                                              #   adding defaults
	      $_->[TM->SCOPE] = TM::PSI::US; 
	      $_ }
	map { Assertion->new (type    => $_->[0],                                       #   which is built here
			      roles   => $_->[1],                                       #     with the roles list
			      players => $_->[2])}                                      #     with the players list
	@{ $h->{assertions} };
    }
}


1;

__END__

	    if (! $mid2iid->{$k2}) {                                           # we had no entry here => simply...
		$mid2iid->{$k2} = $v;                                          # ...add what the other has
	    } else {                                                           # same internal identifier? danger lurking...
#warn Dumper $v, $mid2iid->{$k};
		if (!$v->[1]) {                                      # new had undef there, leave what we have
		} elsif (!$mid2iid->{$k2}->[1]) {                    # old had nothing, =>
		    $mid2iid->{$k2}->[1] = $v->[1];        # copy it
		} elsif ($mid2iid->{$k}->[1] eq $v->[1]) { # old had something and new has something and they are the same
		    # leave it
		} else {                                   # not good, subject addresses differ
		    $log->logdie ("using the same internal identifier (including baseuri) '$k', but having different subject addresses (".$mid2iid->{$k}->[1].",".$v->[TM->ADDRESS].") is just weird");
		}
		push @{$mid2iid->{$k}->[TM->INDICATORS]}, 
		     @{$v->[TM->INDICATORS]};              # simply add all the subject indication stuff
	    }

#     if (my $index = $self->{indices}->{match}) {                                            # there exists a dedicated index
# 	my $key   = "$skeys:" . join ('.', @svals);
# 	if (my $lids  = $index->is_cached ($key)) {                                         # if result was cached, lets take the list of lids
# 	    return map { $self->{assertions}->{$_} } @$lids;                                # and return fully fledged
# 	} else {                                                                            # not defined means not cache => recompute
# 	    my @as = _dispatch_forall ($self, \%query, $skeys, @svals);                     # do it the hard way
# 	    $index->do_cache ($key, [ map { $_->[LID] } @as ]);                             # save it for later
# 	    return @as;
# 	}
#     } else {                                                                                # no cache, let's do the ochsentour
# 	return _dispatch_forall ($self, \%query, $skeys, @svals);
#     }