File: bn_mp_prime_miller_rabin.c

package info (click to toggle)
libtommath 1.1.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 5,268 kB
  • sloc: ansic: 17,976; perl: 699; makefile: 329; sh: 219; asm: 30
file content (103 lines) | stat: -rw-r--r-- 2,487 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#include "tommath_private.h"
#ifdef BN_MP_PRIME_MILLER_RABIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Miller-Rabin test of "a" to the base of "b" as described in
 * HAC pp. 139 Algorithm 4.24
 *
 * Sets result to 0 if definitely composite or 1 if probably prime.
 * Randomly the chance of error is no more than 1/4 and often
 * very much lower.
 */
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
{
   mp_int  n1, y, r;
   int     s, j, err;

   /* default */
   *result = MP_NO;

   /* ensure b > 1 */
   if (mp_cmp_d(b, 1uL) != MP_GT) {
      return MP_VAL;
   }

   /* get n1 = a - 1 */
   if ((err = mp_init_copy(&n1, a)) != MP_OKAY) {
      return err;
   }
   if ((err = mp_sub_d(&n1, 1uL, &n1)) != MP_OKAY) {
      goto LBL_N1;
   }

   /* set 2**s * r = n1 */
   if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) {
      goto LBL_N1;
   }

   /* count the number of least significant bits
    * which are zero
    */
   s = mp_cnt_lsb(&r);

   /* now divide n - 1 by 2**s */
   if ((err = mp_div_2d(&r, s, &r, NULL)) != MP_OKAY) {
      goto LBL_R;
   }

   /* compute y = b**r mod a */
   if ((err = mp_init(&y)) != MP_OKAY) {
      goto LBL_R;
   }
   if ((err = mp_exptmod(b, &r, a, &y)) != MP_OKAY) {
      goto LBL_Y;
   }

   /* if y != 1 and y != n1 do */
   if ((mp_cmp_d(&y, 1uL) != MP_EQ) && (mp_cmp(&y, &n1) != MP_EQ)) {
      j = 1;
      /* while j <= s-1 and y != n1 */
      while ((j <= (s - 1)) && (mp_cmp(&y, &n1) != MP_EQ)) {
         if ((err = mp_sqrmod(&y, a, &y)) != MP_OKAY) {
            goto LBL_Y;
         }

         /* if y == 1 then composite */
         if (mp_cmp_d(&y, 1uL) == MP_EQ) {
            goto LBL_Y;
         }

         ++j;
      }

      /* if y != n1 then composite */
      if (mp_cmp(&y, &n1) != MP_EQ) {
         goto LBL_Y;
      }
   }

   /* probably prime now */
   *result = MP_YES;
LBL_Y:
   mp_clear(&y);
LBL_R:
   mp_clear(&r);
LBL_N1:
   mp_clear(&n1);
   return err;
}
#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */