File: bn_mp_sqrtmod_prime.c

package info (click to toggle)
libtommath 1.1.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 5,268 kB
  • sloc: ansic: 17,976; perl: 699; makefile: 329; sh: 219; asm: 30
file content (131 lines) | stat: -rw-r--r-- 5,106 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include "tommath_private.h"
#ifdef BN_MP_SQRTMOD_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Tonelli-Shanks algorithm
 * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 *
 */

int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
{
   int res, legendre;
   mp_int t1, C, Q, S, Z, M, T, R, two;
   mp_digit i;

   /* first handle the simple cases */
   if (mp_cmp_d(n, 0uL) == MP_EQ) {
      mp_zero(ret);
      return MP_OKAY;
   }
   if (mp_cmp_d(prime, 2uL) == MP_EQ)                            return MP_VAL; /* prime must be odd */
   if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res;
   if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */

   if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
      return res;
   }

   /* SPECIAL CASE: if prime mod 4 == 3
    * compute directly: res = n^(prime+1)/4 mod prime
    * Handbook of Applied Cryptography algorithm 3.36
    */
   if ((res = mp_mod_d(prime, 4uL, &i)) != MP_OKAY)               goto cleanup;
   if (i == 3u) {
      if ((res = mp_add_d(prime, 1uL, &t1)) != MP_OKAY)           goto cleanup;
      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
      res = MP_OKAY;
      goto cleanup;
   }

   /* NOW: Tonelli-Shanks algorithm */

   /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
   if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
   if ((res = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY)                 goto cleanup;
   /* Q = prime - 1 */
   mp_zero(&S);
   /* S = 0 */
   while (mp_iseven(&Q) != MP_NO) {
      if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
      /* Q = Q / 2 */
      if ((res = mp_add_d(&S, 1uL, &S)) != MP_OKAY)               goto cleanup;
      /* S = S + 1 */
   }

   /* find a Z such that the Legendre symbol (Z|prime) == -1 */
   if ((res = mp_set_int(&Z, 2uL)) != MP_OKAY)                    goto cleanup;
   /* Z = 2 */
   while (1) {
      if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
      if (legendre == -1) break;
      if ((res = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY)               goto cleanup;
      /* Z = Z + 1 */
   }

   if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
   /* C = Z ^ Q mod prime */
   if ((res = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY)                goto cleanup;
   if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
   /* t1 = (Q + 1) / 2 */
   if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
   /* R = n ^ ((Q + 1) / 2) mod prime */
   if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
   /* T = n ^ Q mod prime */
   if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
   /* M = S */
   if ((res = mp_set_int(&two, 2uL)) != MP_OKAY)                 goto cleanup;

   res = MP_VAL;
   while (1) {
      if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
      i = 0;
      while (1) {
         if (mp_cmp_d(&t1, 1uL) == MP_EQ) break;
         if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
         i++;
      }
      if (i == 0u) {
         if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
         res = MP_OKAY;
         goto cleanup;
      }
      if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
      if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY)             goto cleanup;
      if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
      /* t1 = 2 ^ (M - i - 1) */
      if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
      /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
      if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
      /* C = (t1 * t1) mod prime */
      if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
      /* R = (R * t1) mod prime */
      if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
      /* T = (T * C) mod prime */
      mp_set(&M, i);
      /* M = i */
   }

cleanup:
   mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
   return res;
}

#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */