File: crypto_test.c

package info (click to toggle)
libtoxcore 0.2.20-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,124 kB
  • sloc: ansic: 75,034; cpp: 4,933; sh: 1,115; python: 651; makefile: 329; perl: 39
file content (372 lines) | stat: -rw-r--r-- 13,077 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

#include "../testing/misc_tools.h"
#include "../toxcore/crypto_core.h"
#include "../toxcore/net_crypto.h"
#include "check_compat.h"

static void rand_bytes(const Random *rng, uint8_t *b, size_t blen)
{
    for (size_t i = 0; i < blen; i++) {
        b[i] = random_u08(rng);
    }
}

// These test vectors are from libsodium's test suite

static const uint8_t alicesk[32] = {
    0x77, 0x07, 0x6d, 0x0a, 0x73, 0x18, 0xa5, 0x7d,
    0x3c, 0x16, 0xc1, 0x72, 0x51, 0xb2, 0x66, 0x45,
    0xdf, 0x4c, 0x2f, 0x87, 0xeb, 0xc0, 0x99, 0x2a,
    0xb1, 0x77, 0xfb, 0xa5, 0x1d, 0xb9, 0x2c, 0x2a
};

static const uint8_t bobpk[32] = {
    0xde, 0x9e, 0xdb, 0x7d, 0x7b, 0x7d, 0xc1, 0xb4,
    0xd3, 0x5b, 0x61, 0xc2, 0xec, 0xe4, 0x35, 0x37,
    0x3f, 0x83, 0x43, 0xc8, 0x5b, 0x78, 0x67, 0x4d,
    0xad, 0xfc, 0x7e, 0x14, 0x6f, 0x88, 0x2b, 0x4f
};

static const uint8_t test_nonce[24] = {
    0x69, 0x69, 0x6e, 0xe9, 0x55, 0xb6, 0x2b, 0x73,
    0xcd, 0x62, 0xbd, 0xa8, 0x75, 0xfc, 0x73, 0xd6,
    0x82, 0x19, 0xe0, 0x03, 0x6b, 0x7a, 0x0b, 0x37
};

static const uint8_t test_m[131] = {
    0xbe, 0x07, 0x5f, 0xc5, 0x3c, 0x81, 0xf2, 0xd5,
    0xcf, 0x14, 0x13, 0x16, 0xeb, 0xeb, 0x0c, 0x7b,
    0x52, 0x28, 0xc5, 0x2a, 0x4c, 0x62, 0xcb, 0xd4,
    0x4b, 0x66, 0x84, 0x9b, 0x64, 0x24, 0x4f, 0xfc,
    0xe5, 0xec, 0xba, 0xaf, 0x33, 0xbd, 0x75, 0x1a,
    0x1a, 0xc7, 0x28, 0xd4, 0x5e, 0x6c, 0x61, 0x29,
    0x6c, 0xdc, 0x3c, 0x01, 0x23, 0x35, 0x61, 0xf4,
    0x1d, 0xb6, 0x6c, 0xce, 0x31, 0x4a, 0xdb, 0x31,
    0x0e, 0x3b, 0xe8, 0x25, 0x0c, 0x46, 0xf0, 0x6d,
    0xce, 0xea, 0x3a, 0x7f, 0xa1, 0x34, 0x80, 0x57,
    0xe2, 0xf6, 0x55, 0x6a, 0xd6, 0xb1, 0x31, 0x8a,
    0x02, 0x4a, 0x83, 0x8f, 0x21, 0xaf, 0x1f, 0xde,
    0x04, 0x89, 0x77, 0xeb, 0x48, 0xf5, 0x9f, 0xfd,
    0x49, 0x24, 0xca, 0x1c, 0x60, 0x90, 0x2e, 0x52,
    0xf0, 0xa0, 0x89, 0xbc, 0x76, 0x89, 0x70, 0x40,
    0xe0, 0x82, 0xf9, 0x37, 0x76, 0x38, 0x48, 0x64,
    0x5e, 0x07, 0x05
};

static const uint8_t test_c[147] = {
    0xf3, 0xff, 0xc7, 0x70, 0x3f, 0x94, 0x00, 0xe5,
    0x2a, 0x7d, 0xfb, 0x4b, 0x3d, 0x33, 0x05, 0xd9,
    0x8e, 0x99, 0x3b, 0x9f, 0x48, 0x68, 0x12, 0x73,
    0xc2, 0x96, 0x50, 0xba, 0x32, 0xfc, 0x76, 0xce,
    0x48, 0x33, 0x2e, 0xa7, 0x16, 0x4d, 0x96, 0xa4,
    0x47, 0x6f, 0xb8, 0xc5, 0x31, 0xa1, 0x18, 0x6a,
    0xc0, 0xdf, 0xc1, 0x7c, 0x98, 0xdc, 0xe8, 0x7b,
    0x4d, 0xa7, 0xf0, 0x11, 0xec, 0x48, 0xc9, 0x72,
    0x71, 0xd2, 0xc2, 0x0f, 0x9b, 0x92, 0x8f, 0xe2,
    0x27, 0x0d, 0x6f, 0xb8, 0x63, 0xd5, 0x17, 0x38,
    0xb4, 0x8e, 0xee, 0xe3, 0x14, 0xa7, 0xcc, 0x8a,
    0xb9, 0x32, 0x16, 0x45, 0x48, 0xe5, 0x26, 0xae,
    0x90, 0x22, 0x43, 0x68, 0x51, 0x7a, 0xcf, 0xea,
    0xbd, 0x6b, 0xb3, 0x73, 0x2b, 0xc0, 0xe9, 0xda,
    0x99, 0x83, 0x2b, 0x61, 0xca, 0x01, 0xb6, 0xde,
    0x56, 0x24, 0x4a, 0x9e, 0x88, 0xd5, 0xf9, 0xb3,
    0x79, 0x73, 0xf6, 0x22, 0xa4, 0x3d, 0x14, 0xa6,
    0x59, 0x9b, 0x1f, 0x65, 0x4c, 0xb4, 0x5a, 0x74,
    0xe3, 0x55, 0xa5
};

static void test_known(void)
{
    uint8_t c[147];
    uint8_t m[131];

    ck_assert_msg(sizeof(c) == sizeof(m) + CRYPTO_MAC_SIZE * sizeof(uint8_t),
                  "cyphertext should be CRYPTO_MAC_SIZE bytes longer than plaintext");
    ck_assert_msg(sizeof(test_c) == sizeof(c), "sanity check failed");
    ck_assert_msg(sizeof(test_m) == sizeof(m), "sanity check failed");

    const uint16_t clen = encrypt_data(bobpk, alicesk, test_nonce, test_m, sizeof(test_m) / sizeof(uint8_t), c);

    ck_assert_msg(memcmp(test_c, c, sizeof(c)) == 0, "cyphertext doesn't match test vector");
    ck_assert_msg(clen == sizeof(c) / sizeof(uint8_t), "wrong ciphertext length");

    const uint16_t mlen = decrypt_data(bobpk, alicesk, test_nonce, test_c, sizeof(test_c) / sizeof(uint8_t), m);

    ck_assert_msg(memcmp(test_m, m, sizeof(m)) == 0, "decrypted text doesn't match test vector");
    ck_assert_msg(mlen == sizeof(m) / sizeof(uint8_t), "wrong plaintext length");
}

static void test_fast_known(void)
{
    uint8_t k[CRYPTO_SHARED_KEY_SIZE];
    uint8_t c[147];
    uint8_t m[131];

    encrypt_precompute(bobpk, alicesk, k);

    ck_assert_msg(sizeof(c) == sizeof(m) + CRYPTO_MAC_SIZE * sizeof(uint8_t),
                  "cyphertext should be CRYPTO_MAC_SIZE bytes longer than plaintext");
    ck_assert_msg(sizeof(test_c) == sizeof(c), "sanity check failed");
    ck_assert_msg(sizeof(test_m) == sizeof(m), "sanity check failed");

    const uint16_t clen = encrypt_data_symmetric(k, test_nonce, test_m, sizeof(test_m) / sizeof(uint8_t), c);

    ck_assert_msg(memcmp(test_c, c, sizeof(c)) == 0, "cyphertext doesn't match test vector");
    ck_assert_msg(clen == sizeof(c) / sizeof(uint8_t), "wrong ciphertext length");

    const uint16_t mlen = decrypt_data_symmetric(k, test_nonce, test_c, sizeof(test_c) / sizeof(uint8_t), m);

    ck_assert_msg(memcmp(test_m, m, sizeof(m)) == 0, "decrypted text doesn't match test vector");
    ck_assert_msg(mlen == sizeof(m) / sizeof(uint8_t), "wrong plaintext length");
}

static void test_endtoend(void)
{
    const Random *rng = os_random();
    ck_assert(rng != nullptr);

    // Test 100 random messages and keypairs
    for (uint8_t testno = 0; testno < 100; testno++) {
        uint8_t pk1[CRYPTO_PUBLIC_KEY_SIZE];
        uint8_t sk1[CRYPTO_SECRET_KEY_SIZE];
        uint8_t pk2[CRYPTO_PUBLIC_KEY_SIZE];
        uint8_t sk2[CRYPTO_SECRET_KEY_SIZE];
        uint8_t k1[CRYPTO_SHARED_KEY_SIZE];
        uint8_t k2[CRYPTO_SHARED_KEY_SIZE];

        uint8_t n[CRYPTO_NONCE_SIZE];

        enum { M_SIZE = 50 };
        uint8_t m[M_SIZE];
        uint8_t c1[sizeof(m) + CRYPTO_MAC_SIZE];
        uint8_t c2[sizeof(m) + CRYPTO_MAC_SIZE];
        uint8_t c3[sizeof(m) + CRYPTO_MAC_SIZE];
        uint8_t c4[sizeof(m) + CRYPTO_MAC_SIZE];
        uint8_t m1[sizeof(m)];
        uint8_t m2[sizeof(m)];
        uint8_t m3[sizeof(m)];
        uint8_t m4[sizeof(m)];

        //Generate random message (random length from 10 to 50)
        const uint16_t mlen = (random_u32(rng) % (M_SIZE - 10)) + 10;
        rand_bytes(rng, m, mlen);
        rand_bytes(rng, n, CRYPTO_NONCE_SIZE);

        //Generate keypairs
        crypto_new_keypair(rng, pk1, sk1);
        crypto_new_keypair(rng, pk2, sk2);

        //Precompute shared keys
        encrypt_precompute(pk2, sk1, k1);
        encrypt_precompute(pk1, sk2, k2);

        ck_assert_msg(memcmp(k1, k2, CRYPTO_SHARED_KEY_SIZE) == 0, "encrypt_precompute: bad");

        //Encrypt all four ways
        const uint16_t c1len = encrypt_data(pk2, sk1, n, m, mlen, c1);
        const uint16_t c2len = encrypt_data(pk1, sk2, n, m, mlen, c2);
        const uint16_t c3len = encrypt_data_symmetric(k1, n, m, mlen, c3);
        const uint16_t c4len = encrypt_data_symmetric(k2, n, m, mlen, c4);

        ck_assert_msg(c1len == c2len && c1len == c3len && c1len == c4len, "cyphertext lengths differ");
        ck_assert_msg(c1len == mlen + (uint16_t)CRYPTO_MAC_SIZE, "wrong cyphertext length");
        ck_assert_msg(memcmp(c1, c2, c1len) == 0 && memcmp(c1, c3, c1len) == 0
                      && memcmp(c1, c4, c1len) == 0, "crypertexts differ");

        //Decrypt all four ways
        const uint16_t m1len = decrypt_data(pk2, sk1, n, c1, c1len, m1);
        const uint16_t m2len = decrypt_data(pk1, sk2, n, c1, c1len, m2);
        const uint16_t m3len = decrypt_data_symmetric(k1, n, c1, c1len, m3);
        const uint16_t m4len = decrypt_data_symmetric(k2, n, c1, c1len, m4);

        ck_assert_msg(m1len == m2len && m1len == m3len && m1len == m4len, "decrypted text lengths differ");
        ck_assert_msg(m1len == mlen, "wrong decrypted text length");
        ck_assert_msg(memcmp(m1, m2, mlen) == 0 && memcmp(m1, m3, mlen) == 0
                      && memcmp(m1, m4, mlen) == 0, "decrypted texts differ");
        ck_assert_msg(memcmp(m1, m, mlen) == 0, "wrong decrypted text");
    }
}

static void test_large_data(void)
{
    const Random *rng = os_random();
    ck_assert(rng != nullptr);
    uint8_t k[CRYPTO_SHARED_KEY_SIZE];
    uint8_t n[CRYPTO_NONCE_SIZE];

    const size_t m1_size = MAX_CRYPTO_PACKET_SIZE - CRYPTO_MAC_SIZE;
    uint8_t *m1 = (uint8_t *)malloc(m1_size);
    uint8_t *c1 = (uint8_t *)malloc(m1_size + CRYPTO_MAC_SIZE);
    uint8_t *m1prime = (uint8_t *)malloc(m1_size);

    const size_t m2_size = MAX_CRYPTO_PACKET_SIZE - CRYPTO_MAC_SIZE;
    uint8_t *m2 = (uint8_t *)malloc(m2_size);
    uint8_t *c2 = (uint8_t *)malloc(m2_size + CRYPTO_MAC_SIZE);

    ck_assert(m1 != nullptr && c1 != nullptr && m1prime != nullptr && m2 != nullptr && c2 != nullptr);

    //Generate random messages
    rand_bytes(rng, m1, m1_size);
    rand_bytes(rng, m2, m2_size);
    rand_bytes(rng, n, CRYPTO_NONCE_SIZE);

    //Generate key
    rand_bytes(rng, k, CRYPTO_SHARED_KEY_SIZE);

    const uint16_t c1len = encrypt_data_symmetric(k, n, m1, m1_size, c1);
    const uint16_t c2len = encrypt_data_symmetric(k, n, m2, m2_size, c2);

    ck_assert_msg(c1len == m1_size + CRYPTO_MAC_SIZE, "could not encrypt");
    ck_assert_msg(c2len == m2_size + CRYPTO_MAC_SIZE, "could not encrypt");

    const uint16_t m1plen = decrypt_data_symmetric(k, n, c1, c1len, m1prime);

    ck_assert_msg(m1plen == m1_size, "decrypted text lengths differ");
    ck_assert_msg(memcmp(m1prime, m1, m1_size) == 0, "decrypted texts differ");

    free(c2);
    free(m2);
    free(m1prime);
    free(c1);
    free(m1);
}

static void test_large_data_symmetric(void)
{
    const Random *rng = os_random();
    ck_assert(rng != nullptr);
    uint8_t k[CRYPTO_SYMMETRIC_KEY_SIZE];

    uint8_t n[CRYPTO_NONCE_SIZE];

    const size_t m1_size = 16 * 16 * 16;
    uint8_t *m1 = (uint8_t *)malloc(m1_size);
    uint8_t *c1 = (uint8_t *)malloc(m1_size + CRYPTO_MAC_SIZE);
    uint8_t *m1prime = (uint8_t *)malloc(m1_size);

    ck_assert(m1 != nullptr && c1 != nullptr && m1prime != nullptr);

    //Generate random messages
    rand_bytes(rng, m1, m1_size);
    rand_bytes(rng, n, CRYPTO_NONCE_SIZE);

    //Generate key
    new_symmetric_key(rng, k);

    const uint16_t c1len = encrypt_data_symmetric(k, n, m1, m1_size, c1);
    ck_assert_msg(c1len == m1_size + CRYPTO_MAC_SIZE, "could not encrypt data");

    const uint16_t m1plen = decrypt_data_symmetric(k, n, c1, c1len, m1prime);

    ck_assert_msg(m1plen == m1_size, "decrypted text lengths differ");
    ck_assert_msg(memcmp(m1prime, m1, m1_size) == 0, "decrypted texts differ");

    free(m1prime);
    free(c1);
    free(m1);
}

static void test_very_large_data(void)
{
    const Random *rng = os_random();
    ck_assert(rng != nullptr);

    const uint8_t nonce[CRYPTO_NONCE_SIZE] = {0};
    uint8_t pk[CRYPTO_PUBLIC_KEY_SIZE];
    uint8_t sk[CRYPTO_SECRET_KEY_SIZE];
    crypto_new_keypair(rng, pk, sk);

    // 100 MiB of data (all zeroes, doesn't matter what's inside).
    const uint32_t plain_size = 100 * 1024 * 1024;
    uint8_t *plain = (uint8_t *)malloc(plain_size);
    uint8_t *encrypted = (uint8_t *)malloc(plain_size + CRYPTO_MAC_SIZE);

    ck_assert(plain != nullptr);
    ck_assert(encrypted != nullptr);

    encrypt_data(pk, sk, nonce, plain, plain_size, encrypted);

    free(encrypted);
    free(plain);
}

static void increment_nonce_number_cmp(uint8_t *nonce, uint32_t num)
{
    uint32_t num1 = 0;
    memcpy(&num1, nonce + (CRYPTO_NONCE_SIZE - sizeof(num1)), sizeof(num1));
    num1 = net_ntohl(num1);
    uint32_t num2 = num + num1;

    if (num2 < num1) {
        for (uint16_t i = CRYPTO_NONCE_SIZE - sizeof(num1); i != 0; --i) {
            ++nonce[i - 1];

            if (nonce[i - 1] != 0) {
                break;
            }
        }
    }

    num2 = net_htonl(num2);
    memcpy(nonce + (CRYPTO_NONCE_SIZE - sizeof(num2)), &num2, sizeof(num2));
}

static void test_increment_nonce(void)
{
    const Random *rng = os_random();
    ck_assert(rng != nullptr);

    uint8_t n[CRYPTO_NONCE_SIZE];

    for (uint32_t i = 0; i < CRYPTO_NONCE_SIZE; ++i) {
        n[i] = random_u08(rng);
    }

    uint8_t n1[CRYPTO_NONCE_SIZE];

    memcpy(n1, n, CRYPTO_NONCE_SIZE);

    for (uint32_t i = 0; i < (1 << 18); ++i) {
        increment_nonce_number_cmp(n, 1);
        increment_nonce(n1);
        ck_assert_msg(memcmp(n, n1, CRYPTO_NONCE_SIZE) == 0, "Bad increment_nonce function");
    }

    for (uint32_t i = 0; i < (1 << 18); ++i) {
        const uint32_t r = random_u32(rng);
        increment_nonce_number_cmp(n, r);
        increment_nonce_number(n1, r);
        ck_assert_msg(memcmp(n, n1, CRYPTO_NONCE_SIZE) == 0, "Bad increment_nonce_number function");
    }
}

static void test_memzero(void)
{
    uint8_t src[sizeof(test_c)];
    memcpy(src, test_c, sizeof(test_c));

    crypto_memzero(src, sizeof(src));

    for (size_t i = 0; i < sizeof(src); i++) {
        ck_assert_msg(src[i] == 0, "Memory is not zeroed");
    }
}

int main(void)
{
    setvbuf(stdout, nullptr, _IONBF, 0);

    test_known();
    test_fast_known();
    test_endtoend(); /* waiting up to 15 seconds */
    test_large_data();
    test_large_data_symmetric();
    test_very_large_data();
    test_increment_nonce();
    test_memzero();

    return 0;
}