File: fuzz_support.cc

package info (click to toggle)
libtoxcore 0.2.20-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,124 kB
  • sloc: ansic: 75,034; cpp: 4,933; sh: 1,115; python: 651; makefile: 329; perl: 39
file content (452 lines) | stat: -rw-r--r-- 16,242 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/* SPDX-License-Identifier: GPL-3.0-or-later
 * Copyright © 2021-2022 The TokTok team.
 */

#include "fuzz_support.hh"

#include <arpa/inet.h>
#include <sys/socket.h>

#include <algorithm>
#include <cassert>
#include <cerrno>
#include <climits>
#include <cstdio>
#include <cstring>
#include <memory>

#include "../../toxcore/crypto_core.h"
#include "../../toxcore/network.h"
#include "../../toxcore/tox_private.h"
#include "func_conversion.hh"

// TODO(iphydf): Put this somewhere shared.
struct Network_Addr {
    struct sockaddr_storage addr;
    size_t size;
};

System::System(std::unique_ptr<Tox_System> in_sys, std::unique_ptr<Memory> in_mem,
    std::unique_ptr<Network> in_ns, std::unique_ptr<Random> in_rng)
    : sys(std::move(in_sys))
    , mem(std::move(in_mem))
    , ns(std::move(in_ns))
    , rng(std::move(in_rng))
{
}
System::System(System &&) = default;

System::~System() { }

static int recv_common(Fuzz_Data &input, uint8_t *buf, size_t buf_len)
{
    if (input.size() < 2) {
        errno = ENOMEM;
        return -1;
    }

    CONSUME_OR_ABORT(const uint8_t *fuzz_len_bytes, input, 2);
    const std::size_t fuzz_len = (fuzz_len_bytes[0] << 8) | fuzz_len_bytes[1];

    if (fuzz_len == 0xffff) {
        errno = EWOULDBLOCK;
        if (Fuzz_Data::DEBUG) {
            std::printf("recvfrom: no data for tox1\n");
        }
        return -1;
    }

    if (Fuzz_Data::DEBUG) {
        std::printf(
            "recvfrom: %zu (%02x, %02x) for tox1\n", fuzz_len, input.data()[-2], input.data()[-1]);
    }
    const size_t res = std::min(buf_len, std::min(fuzz_len, input.size()));

    CONSUME_OR_ABORT(const uint8_t *data, input, res);
    std::copy(data, data + res, buf);

    return res;
}

static void *report_alloc(const char *name, const char *func, std::size_t size, void *ptr)
{
    if (Fuzz_Data::DEBUG) {
        printf("%s: %s(%zu): %s\n", name, func, size, ptr == nullptr ? "false" : "true");
    }
    return ptr;
}

template <typename F, F Func, typename... Args>
static void *alloc_common(const char *func, std::size_t size, Fuzz_Data &data, Args... args)
{
    CONSUME1_OR_RETURN_VAL(
        const bool, want_alloc, data, report_alloc("tox1", func, size, Func(args...)));
    if (!want_alloc) {
        return nullptr;
    }
    return report_alloc("tox1", func, size, Func(args...));
}

static constexpr Memory_Funcs fuzz_memory_funcs = {
    /* .malloc = */
    ![](Fuzz_System *self, uint32_t size) {
        return alloc_common<decltype(std::malloc), std::malloc>("malloc", size, self->data, size);
    },
    /* .calloc = */
    ![](Fuzz_System *self, uint32_t nmemb, uint32_t size) {
        return alloc_common<decltype(std::calloc), std::calloc>(
            "calloc", nmemb * size, self->data, nmemb, size);
    },
    /* .realloc = */
    ![](Fuzz_System *self, void *ptr, uint32_t size) {
        return alloc_common<decltype(std::realloc), std::realloc>(
            "realloc", size, self->data, ptr, size);
    },
    /* .free = */
    ![](Fuzz_System *self, void *ptr) { std::free(ptr); },
};

static constexpr Network_Funcs fuzz_network_funcs = {
    /* .close = */ ![](Fuzz_System *self, Socket sock) { return 0; },
    /* .accept = */ ![](Fuzz_System *self, Socket sock) { return Socket{1337}; },
    /* .bind = */ ![](Fuzz_System *self, Socket sock, const Network_Addr *addr) { return 0; },
    /* .listen = */ ![](Fuzz_System *self, Socket sock, int backlog) { return 0; },
    /* .recvbuf = */
    ![](Fuzz_System *self, Socket sock) {
        assert(sock.value == 42 || sock.value == 1337);
        const size_t count = random_u16(self->rng.get());
        return static_cast<int>(std::min(count, self->data.size()));
    },
    /* .recv = */
    ![](Fuzz_System *self, Socket sock, uint8_t *buf, size_t len) {
        assert(sock.value == 42 || sock.value == 1337);
        // Receive data from the fuzzer.
        return recv_common(self->data, buf, len);
    },
    /* .recvfrom = */
    ![](Fuzz_System *self, Socket sock, uint8_t *buf, size_t len, Network_Addr *addr) {
        assert(sock.value == 42 || sock.value == 1337);

        addr->addr = sockaddr_storage{};
        // Dummy Addr
        addr->addr.ss_family = AF_INET;

        // We want an AF_INET address with dummy values
        sockaddr_in *addr_in = reinterpret_cast<sockaddr_in *>(&addr->addr);
        addr_in->sin_port = htons(33446);
        addr_in->sin_addr.s_addr = htonl(0x7f000002);  // 127.0.0.2
        addr->size = sizeof(struct sockaddr);

        return recv_common(self->data, buf, len);
    },
    /* .send = */
    ![](Fuzz_System *self, Socket sock, const uint8_t *buf, size_t len) {
        assert(sock.value == 42 || sock.value == 1337);
        // Always succeed.
        return static_cast<int>(len);
    },
    /* .sendto = */
    ![](Fuzz_System *self, Socket sock, const uint8_t *buf, size_t len, const Network_Addr *addr) {
        assert(sock.value == 42 || sock.value == 1337);
        // Always succeed.
        return static_cast<int>(len);
    },
    /* .socket = */ ![](Fuzz_System *self, int domain, int type, int proto) { return Socket{42}; },
    /* .socket_nonblock = */ ![](Fuzz_System *self, Socket sock, bool nonblock) { return 0; },
    /* .getsockopt = */
    ![](Fuzz_System *self, Socket sock, int level, int optname, void *optval, size_t *optlen) {
        std::memset(optval, 0, *optlen);
        return 0;
    },
    /* .setsockopt = */
    ![](Fuzz_System *self, Socket sock, int level, int optname, const void *optval, size_t optlen) {
        return 0;
    },
};

static constexpr Random_Funcs fuzz_random_funcs = {
    /* .random_bytes = */
    ![](Fuzz_System *self, uint8_t *bytes, size_t length) {
        // Amount of data is limited
        const size_t bytes_read = std::min(length, self->data.size());
        // Initialize everything to make MSAN and others happy
        std::memset(bytes, 0, length);
        CONSUME_OR_ABORT(const uint8_t *data, self->data, bytes_read);
        std::copy(data, data + bytes_read, bytes);
        if (Fuzz_Data::DEBUG) {
            if (length == 1) {
                std::printf("rng: %d (0x%02x)\n", bytes[0], bytes[0]);
            } else {
                std::printf("rng: %02x..%02x[%zu]\n", bytes[0], bytes[length - 1], length);
            }
        }
    },
    /* .random_uniform = */
    ![](Fuzz_System *self, uint32_t upper_bound) {
        uint32_t randnum = 0;
        if (upper_bound > 0) {
            self->rng->funcs->random_bytes(
                self, reinterpret_cast<uint8_t *>(&randnum), sizeof(randnum));
            randnum %= upper_bound;
        }
        return randnum;
    },
};

Fuzz_System::Fuzz_System(Fuzz_Data &input)
    : System{
        std::make_unique<Tox_System>(),
        std::make_unique<Memory>(Memory{&fuzz_memory_funcs, this}),
        std::make_unique<Network>(Network{&fuzz_network_funcs, this}),
        std::make_unique<Random>(Random{&fuzz_random_funcs, this}),
    }
    , data(input)
{
    sys->mono_time_callback = [](void *self) { return static_cast<Fuzz_System *>(self)->clock; };
    sys->mono_time_user_data = this;
    sys->mem = mem.get();
    sys->ns = ns.get();
    sys->rng = rng.get();
}

static constexpr Memory_Funcs null_memory_funcs = {
    /* .malloc = */
    ![](Null_System *self, uint32_t size) { return std::malloc(size); },
    /* .calloc = */
    ![](Null_System *self, uint32_t nmemb, uint32_t size) { return std::calloc(nmemb, size); },
    /* .realloc = */
    ![](Null_System *self, void *ptr, uint32_t size) { return std::realloc(ptr, size); },
    /* .free = */
    ![](Null_System *self, void *ptr) { std::free(ptr); },
};

static constexpr Network_Funcs null_network_funcs = {
    /* .close = */ ![](Null_System *self, Socket sock) { return 0; },
    /* .accept = */ ![](Null_System *self, Socket sock) { return Socket{1337}; },
    /* .bind = */ ![](Null_System *self, Socket sock, const Network_Addr *addr) { return 0; },
    /* .listen = */ ![](Null_System *self, Socket sock, int backlog) { return 0; },
    /* .recvbuf = */ ![](Null_System *self, Socket sock) { return 0; },
    /* .recv = */
    ![](Null_System *self, Socket sock, uint8_t *buf, size_t len) {
        // Always fail.
        errno = ENOMEM;
        return -1;
    },
    /* .recvfrom = */
    ![](Null_System *self, Socket sock, uint8_t *buf, size_t len, Network_Addr *addr) {
        // Always fail.
        errno = ENOMEM;
        return -1;
    },
    /* .send = */
    ![](Null_System *self, Socket sock, const uint8_t *buf, size_t len) {
        // Always succeed.
        return static_cast<int>(len);
    },
    /* .sendto = */
    ![](Null_System *self, Socket sock, const uint8_t *buf, size_t len, const Network_Addr *addr) {
        // Always succeed.
        return static_cast<int>(len);
    },
    /* .socket = */ ![](Null_System *self, int domain, int type, int proto) { return Socket{42}; },
    /* .socket_nonblock = */ ![](Null_System *self, Socket sock, bool nonblock) { return 0; },
    /* .getsockopt = */
    ![](Null_System *self, Socket sock, int level, int optname, void *optval, size_t *optlen) {
        std::memset(optval, 0, *optlen);
        return 0;
    },
    /* .setsockopt = */
    ![](Null_System *self, Socket sock, int level, int optname, const void *optval, size_t optlen) {
        return 0;
    },
};

static uint64_t simple_rng(uint64_t &seed)
{
    // https://nuclear.llnl.gov/CNP/rng/rngman/node4.html
    seed = 2862933555777941757LL * seed + 3037000493LL;
    return seed;
}

static constexpr Random_Funcs null_random_funcs = {
    /* .random_bytes = */
    ![](Null_System *self, uint8_t *bytes, size_t length) {
        for (size_t i = 0; i < length; ++i) {
            bytes[i] = simple_rng(self->seed) & 0xff;
        }
    },
    /* .random_uniform = */
    ![](Null_System *self, uint32_t upper_bound) {
        return static_cast<uint32_t>(simple_rng(self->seed)) % upper_bound;
    },
};

Null_System::Null_System()
    : System{
        std::make_unique<Tox_System>(),
        std::make_unique<Memory>(Memory{&null_memory_funcs, this}),
        std::make_unique<Network>(Network{&null_network_funcs, this}),
        std::make_unique<Random>(Random{&null_random_funcs, this}),
    }
{
    sys->mono_time_callback = [](void *self) { return static_cast<Null_System *>(self)->clock; };
    sys->mono_time_user_data = this;
    sys->mem = mem.get();
    sys->ns = ns.get();
    sys->rng = rng.get();
}

static uint16_t get_port(const Network_Addr *addr)
{
    if (addr->addr.ss_family == AF_INET6) {
        return reinterpret_cast<const sockaddr_in6 *>(&addr->addr)->sin6_port;
    } else {
        assert(addr->addr.ss_family == AF_INET);
        return reinterpret_cast<const sockaddr_in *>(&addr->addr)->sin_port;
    }
}

static constexpr Memory_Funcs record_memory_funcs = {
    /* .malloc = */
    ![](Record_System *self, uint32_t size) {
        self->push(true);
        return report_alloc(self->name_, "malloc", size, std::malloc(size));
    },
    /* .calloc = */
    ![](Record_System *self, uint32_t nmemb, uint32_t size) {
        self->push(true);
        return report_alloc(self->name_, "calloc", nmemb * size, std::calloc(nmemb, size));
    },
    /* .realloc = */
    ![](Record_System *self, void *ptr, uint32_t size) {
        self->push(true);
        return report_alloc(self->name_, "realloc", size, std::realloc(ptr, size));
    },
    /* .free = */
    ![](Record_System *self, void *ptr) { std::free(ptr); },
};

static constexpr Network_Funcs record_network_funcs = {
    /* .close = */ ![](Record_System *self, Socket sock) { return 0; },
    /* .accept = */ ![](Record_System *self, Socket sock) { return Socket{2}; },
    /* .bind = */
    ![](Record_System *self, Socket sock, const Network_Addr *addr) {
        const uint16_t port = get_port(addr);
        if (self->global_.bound.find(port) != self->global_.bound.end()) {
            errno = EADDRINUSE;
            return -1;
        }
        self->global_.bound.emplace(port, self);
        self->port = port;
        return 0;
    },
    /* .listen = */ ![](Record_System *self, Socket sock, int backlog) { return 0; },
    /* .recvbuf = */ ![](Record_System *self, Socket sock) { return 0; },
    /* .recv = */
    ![](Record_System *self, Socket sock, uint8_t *buf, size_t len) {
        // Always fail.
        errno = ENOMEM;
        return -1;
    },
    /* .recvfrom = */
    ![](Record_System *self, Socket sock, uint8_t *buf, size_t len, Network_Addr *addr) {
        assert(sock.value == 42);
        if (self->recvq.empty()) {
            self->push("\xff\xff");
            errno = EWOULDBLOCK;
            if (Fuzz_Data::DEBUG) {
                std::printf("%s: recvfrom: no data\n", self->name_);
            }
            return -1;
        }
        const auto [from, packet] = std::move(self->recvq.front());
        self->recvq.pop_front();
        const size_t recvlen = std::min(len, packet.size());
        std::copy(packet.begin(), packet.end(), buf);

        addr->addr = sockaddr_storage{};
        // Dummy Addr
        addr->addr.ss_family = AF_INET;

        // We want an AF_INET address with dummy values
        sockaddr_in *addr_in = reinterpret_cast<sockaddr_in *>(&addr->addr);
        addr_in->sin_port = from;
        addr_in->sin_addr.s_addr = htonl(0x7f000002);  // 127.0.0.2
        addr->size = sizeof(struct sockaddr);

        assert(recvlen > 0 && recvlen <= INT_MAX);
        self->push(uint8_t(recvlen >> 8));
        self->push(uint8_t(recvlen & 0xff));
        if (Fuzz_Data::DEBUG) {
            std::printf("%s: recvfrom: %zu (%02x, %02x)\n", self->name_, recvlen,
                self->recording().end()[-2], self->recording().end()[-1]);
        }
        self->push(buf, recvlen);
        return static_cast<int>(recvlen);
    },
    /* .send = */
    ![](Record_System *self, Socket sock, const uint8_t *buf, size_t len) {
        // Always succeed.
        return static_cast<int>(len);
    },
    /* .sendto = */
    ![](Record_System *self, Socket sock, const uint8_t *buf, size_t len,
         const Network_Addr *addr) {
        assert(sock.value == 42);
        auto backend = self->global_.bound.find(get_port(addr));
        assert(backend != self->global_.bound.end());
        backend->second->receive(self->port, buf, len);
        return static_cast<int>(len);
    },
    /* .socket = */
    ![](Record_System *self, int domain, int type, int proto) { return Socket{42}; },
    /* .socket_nonblock = */ ![](Record_System *self, Socket sock, bool nonblock) { return 0; },
    /* .getsockopt = */
    ![](Record_System *self, Socket sock, int level, int optname, void *optval, size_t *optlen) {
        std::memset(optval, 0, *optlen);
        return 0;
    },
    /* .setsockopt = */
    ![](Record_System *self, Socket sock, int level, int optname, const void *optval,
         size_t optlen) { return 0; },
};

static constexpr Random_Funcs record_random_funcs = {
    /* .random_bytes = */
    ![](Record_System *self, uint8_t *bytes, size_t length) {
        for (size_t i = 0; i < length; ++i) {
            bytes[i] = simple_rng(self->seed_) & 0xff;
            self->push(bytes[i]);
        }
        if (Fuzz_Data::DEBUG) {
            std::printf(
                "%s: rng: %02x..%02x[%zu]\n", self->name_, bytes[0], bytes[length - 1], length);
        }
    },
    /* .random_uniform = */
    fuzz_random_funcs.random_uniform,
};

Record_System::Record_System(Global &global, uint64_t seed, const char *name)
    : System{
        std::make_unique<Tox_System>(),
        std::make_unique<Memory>(Memory{&record_memory_funcs, this}),
        std::make_unique<Network>(Network{&record_network_funcs, this}),
        std::make_unique<Random>(Random{&record_random_funcs, this}),
    }
    , global_(global)
    , seed_(seed)
    , name_(name)
{
    sys->mono_time_callback = [](void *self) { return static_cast<Record_System *>(self)->clock; };
    sys->mono_time_user_data = this;
    sys->mem = mem.get();
    sys->ns = ns.get();
    sys->rng = rng.get();
}

void Record_System::receive(uint16_t send_port, const uint8_t *buf, size_t len)
{
    assert(port != 0);
    recvq.emplace_back(send_port, std::vector<uint8_t>{buf, buf + len});
}