1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/* SPDX-License-Identifier: GPL-3.0-or-later
* Copyright © 2021-2022 The TokTok team.
*/
#ifndef C_TOXCORE_TESTING_FUZZING_FUZZ_SUPPORT_H
#define C_TOXCORE_TESTING_FUZZING_FUZZ_SUPPORT_H
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <memory>
#include <unordered_map>
#include <utility>
#include <vector>
#include "../../toxcore/tox.h"
#include "../../toxcore/tox_private.h"
struct Fuzz_Data {
static constexpr bool DEBUG = false;
static constexpr std::size_t TRACE_TRAP = -1; // 579;
private:
const uint8_t *data_;
const uint8_t *base_;
std::size_t size_;
public:
Fuzz_Data(const uint8_t *input_data, std::size_t input_size)
: data_(input_data)
, base_(input_data)
, size_(input_size)
{
}
Fuzz_Data &operator=(const Fuzz_Data &rhs) = delete;
Fuzz_Data(const Fuzz_Data &rhs) = delete;
struct Consumer {
const char *func;
Fuzz_Data &fd;
operator bool()
{
// Special case because memcpy causes UB for bool (which can't be
// anything other than 0 or 1).
const bool val = fd.data_[0];
if (DEBUG) {
std::printf("consume@%zu(%s): bool %s\n", fd.pos(), func, val ? "true" : "false");
}
++fd.data_;
--fd.size_;
return val;
}
template <typename T>
operator T()
{
const uint8_t *bytes = fd.consume(func, sizeof(T));
T val;
std::memcpy(&val, bytes, sizeof(T));
return val;
}
};
Consumer consume1(const char *func) { return Consumer{func, *this}; }
std::size_t size() const { return size_; }
std::size_t pos() const { return data_ - base_; }
const uint8_t *data() const { return data_; }
bool empty() const { return size_ == 0; }
const uint8_t *consume(const char *func, std::size_t count)
{
const uint8_t *val = data_;
if (DEBUG) {
if (pos() == TRACE_TRAP) {
__asm__("int $3");
}
if (count == 1) {
std::printf("consume@%zu(%s): %d (0x%02x)\n", pos(), func, val[0], val[0]);
} else if (count != 0) {
std::printf("consume@%zu(%s): %02x..%02x[%zu]\n", pos(), func, val[0],
val[count - 1], count);
}
}
data_ += count;
size_ -= count;
return val;
}
};
/** @brief Consumes 1 byte of the fuzzer input or returns if no data available.
*
* This advances the fuzzer input data by 1 byte and consumes that byte in the
* declaration.
*
* @example
* @code
* CONSUME1_OR_RETURN(const uint8_t, one_byte, input);
* @endcode
*/
#define CONSUME1_OR_RETURN(TYPE, NAME, INPUT) \
if (INPUT.size() < sizeof(TYPE)) { \
return; \
} \
TYPE NAME = INPUT.consume1(__func__)
/** @brief Consumes 1 byte of the fuzzer input or returns a value if no data
* available.
*
* This advances the fuzzer input data by 1 byte and consumes that byte in the
* declaration.
*
* @example
* @code
* CONSUME1_OR_RETURN_VAL(const uint8_t one_byte, input, nullptr);
* @endcode
*/
#define CONSUME1_OR_RETURN_VAL(TYPE, NAME, INPUT, VAL) \
if (INPUT.size() < sizeof(TYPE)) { \
return VAL; \
} \
TYPE NAME = INPUT.consume1(__func__)
/** @brief Consumes SIZE bytes of the fuzzer input or returns if not enough data available.
*
* This advances the fuzzer input data by SIZE byte and consumes those bytes in
* the declaration. If less than SIZE bytes are available in the fuzzer input,
* this macro returns from the enclosing function.
*
* @example
* @code
* CONSUME_OR_RETURN(const uint8_t *ten_bytes, input, 10);
* @endcode
*/
#define CONSUME_OR_RETURN(DECL, INPUT, SIZE) \
if (INPUT.size() < SIZE) { \
return; \
} \
DECL = INPUT.consume(__func__, SIZE)
#define CONSUME_OR_RETURN_VAL(DECL, INPUT, SIZE, VAL) \
if (INPUT.size() < SIZE) { \
return VAL; \
} \
DECL = INPUT.consume(__func__, SIZE)
#define CONSUME_OR_ABORT(DECL, INPUT, SIZE) \
if (INPUT.size() < SIZE) { \
abort(); \
} \
DECL = INPUT.consume(__func__, SIZE)
using Fuzz_Target = void (*)(Fuzz_Data &input);
template <Fuzz_Target... Args>
struct Fuzz_Target_Selector;
template <Fuzz_Target Arg, Fuzz_Target... Args>
struct Fuzz_Target_Selector<Arg, Args...> {
static void select(uint8_t selector, Fuzz_Data &input)
{
if (selector == sizeof...(Args)) {
return Arg(input);
}
return Fuzz_Target_Selector<Args...>::select(selector, input);
}
};
template <>
struct Fuzz_Target_Selector<> {
static void select(uint8_t selector, Fuzz_Data &input)
{
// The selector selected no function, so we do nothing and rely on the
// fuzzer to come up with a better selector.
}
};
template <Fuzz_Target... Args>
void fuzz_select_target(const uint8_t *data, std::size_t size)
{
Fuzz_Data input{data, size};
CONSUME1_OR_RETURN(const uint8_t, selector, input);
return Fuzz_Target_Selector<Args...>::select(selector, input);
}
struct Memory;
struct Network;
struct Random;
struct System {
/** @brief Deterministic system clock for this instance.
*
* Different instances can evolve independently. The time is initialised
* with a large number, because otherwise many zero-initialised "empty"
* friends inside toxcore will be "not timed out" for a long time, messing
* up some logic. Tox moderately depends on the clock being fairly high up
* (not close to 0).
*
* We make it a nice large round number so we can recognise it when debugging.
*/
uint64_t clock = 1000000000;
std::unique_ptr<Tox_System> sys;
std::unique_ptr<Memory> mem;
std::unique_ptr<Network> ns;
std::unique_ptr<Random> rng;
System(std::unique_ptr<Tox_System> sys, std::unique_ptr<Memory> mem,
std::unique_ptr<Network> ns, std::unique_ptr<Random> rng);
System(System &&);
// Not inline because sizeof of the above 2 structs is not known everywhere.
~System();
/**
* During bootstrap, move the time forward a decent amount, because friend
* finding and bootstrapping takes significant (around 10 seconds) wall
* clock time that should be advanced more quickly in the test.
*/
static constexpr uint8_t BOOTSTRAP_ITERATION_INTERVAL = 200;
/**
* Less than BOOTSTRAP_ITERATION_INTERVAL because otherwise we'll spam
* onion announce packets.
*/
static constexpr uint8_t MESSAGE_ITERATION_INTERVAL = 20;
/**
* Move the clock forward at least 20ms so at least some amount of
* time passes on each iteration.
*/
static constexpr uint8_t MIN_ITERATION_INTERVAL = 20;
};
/**
* A Tox_System implementation that consumes fuzzer input to produce network
* inputs and random numbers. Once it runs out of fuzzer input, network receive
* functions return no more data and the random numbers are always zero.
*/
struct Fuzz_System : System {
Fuzz_Data &data;
explicit Fuzz_System(Fuzz_Data &input);
};
/**
* A Tox_System implementation that consumes no fuzzer input but still has a
* working and deterministic RNG. Network receive functions always fail, send
* always succeeds.
*/
struct Null_System : System {
uint64_t seed = 4; // chosen by fair dice roll. guaranteed to be random.
Null_System();
};
/**
* A Tox_System implementation that records all I/O but does not actually
* perform any real I/O. Everything inside this system is hermetic in-process
* and fully deterministic.
*
* Note: take care not to initialise two systems with the same seed, since
* that's the only thing distinguishing the system's behaviour. Two toxes
* initialised with the same seed will be identical (same keys, etc.).
*/
struct Record_System : System {
static constexpr bool DEBUG = Fuzz_Data::DEBUG;
/** @brief State shared between all tox instances. */
struct Global {
/** @brief Bound UDP ports and their system instance.
*
* This implements an in-process network where instances can send
* packets to other instances by inserting them into the receiver's
* recvq using the receive function.
*
* We need to keep track of ports associated with recv queues because
* toxcore sends packets to itself sometimes when doing onion routing
* with only 2 nodes in the network.
*/
std::unordered_map<uint16_t, Record_System *> bound;
};
Global &global_;
uint64_t seed_; //!< Current PRNG state.
const char *name_; //!< Tox system name ("tox1"/"tox2") for logging.
std::deque<std::pair<uint16_t, std::vector<uint8_t>>> recvq;
uint16_t port = 0; //!< Sending port for this system instance.
Record_System(Global &global, uint64_t seed, const char *name);
Record_System(const Record_System &) = delete;
Record_System operator=(const Record_System &) = delete;
/** @brief Deposit a network packet in this instance's recvq.
*/
void receive(uint16_t send_port, const uint8_t *buf, size_t len);
void push(bool byte)
{
if (DEBUG) {
if (recording_.size() == Fuzz_Data::TRACE_TRAP) {
__asm__("int $3");
}
std::printf(
"%s: produce@%zu(bool %s)\n", name_, recording_.size(), byte ? "true" : "false");
}
recording_.push_back(byte);
}
void push(uint8_t byte)
{
if (DEBUG) {
if (recording_.size() == Fuzz_Data::TRACE_TRAP) {
__asm__("int $3");
}
std::printf("%s: produce@%zu(%u (0x%02x))\n", name_, recording_.size(), byte, byte);
}
recording_.push_back(byte);
}
void push(const uint8_t *bytes, std::size_t size)
{
if (DEBUG) {
if (recording_.size() == Fuzz_Data::TRACE_TRAP) {
__asm__("int $3");
}
std::printf("%s: produce@%zu(%02x..%02x[%zu])\n", name_, recording_.size(), bytes[0],
bytes[size - 1], size);
}
recording_.insert(recording_.end(), bytes, bytes + size);
}
template <std::size_t N>
void push(const char (&bytes)[N])
{
push(reinterpret_cast<const uint8_t *>(bytes), N - 1);
}
const std::vector<uint8_t> &recording() const { return recording_; }
std::vector<uint8_t> take_recording() const { return std::move(recording_); }
private:
std::vector<uint8_t> recording_;
};
/** @brief Enable debug logging.
*
* This should not be enabled in fuzzer code while fuzzing, as console I/O slows
* everything down drastically. It's useful while developing the fuzzer and the
* protodump program.
*/
extern const bool DEBUG;
inline constexpr char tox_log_level_name(Tox_Log_Level level)
{
switch (level) {
case TOX_LOG_LEVEL_TRACE:
return 'T';
case TOX_LOG_LEVEL_DEBUG:
return 'D';
case TOX_LOG_LEVEL_INFO:
return 'I';
case TOX_LOG_LEVEL_WARNING:
return 'W';
case TOX_LOG_LEVEL_ERROR:
return 'E';
}
return '?';
}
#endif // C_TOXCORE_TESTING_FUZZING_FUZZ_SUPPORT_H
|