File: DHT_test.cc

package info (click to toggle)
libtoxcore 0.2.20-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,124 kB
  • sloc: ansic: 75,034; cpp: 4,933; sh: 1,115; python: 651; makefile: 329; perl: 39
file content (379 lines) | stat: -rw-r--r-- 13,156 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#include "DHT.h"

#include <gmock/gmock.h>
#include <gtest/gtest.h>

#include <algorithm>
#include <array>
#include <cstring>
#include <random>

#include "DHT_test_util.hh"
#include "crypto_core.h"
#include "crypto_core_test_util.hh"
#include "logger.h"
#include "mem_test_util.hh"
#include "mono_time.h"
#include "network.h"
#include "network_test_util.hh"
#include "test_util.hh"

namespace {

using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::PrintToString;
using ::testing::UnorderedElementsAre;

using SecretKey = std::array<uint8_t, CRYPTO_SECRET_KEY_SIZE>;

struct KeyPair {
    PublicKey pk;
    SecretKey sk;

    explicit KeyPair(const Random *rng) { crypto_new_keypair(rng, pk.data(), sk.data()); }
};

TEST(IdClosest, KeyIsClosestToItself)
{
    Test_Random rng;

    PublicKey pk0 = random_pk(rng);
    PublicKey pk1;
    do {
        // Get a random key that's not the same as pk0.
        pk1 = random_pk(rng);
    } while (pk0 == pk1);

    EXPECT_EQ(id_closest(pk0.data(), pk0.data(), pk1.data()), 1);
}

TEST(IdClosest, IdenticalKeysAreSameDistance)
{
    Test_Random rng;

    PublicKey pk0 = random_pk(rng);
    PublicKey pk1 = random_pk(rng);

    EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk1.data()), 0);
}

TEST(IdClosest, DistanceIsCommutative)
{
    Test_Random rng;

    PublicKey pk0 = random_pk(rng);
    PublicKey pk1 = random_pk(rng);
    PublicKey pk2 = random_pk(rng);

    ASSERT_NE(pk1, pk2);  // RNG can't produce the same random key twice

    // Two non-equal keys can't have the same distance from any given key.
    EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);

    if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 1) {
        EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 2);
    }

    if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 2) {
        EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 1);
    }
}

TEST(IdClosest, SmallXorDistanceIsCloser)
{
    PublicKey const pk0 = {0xaa};
    PublicKey const pk1 = {0xa0};
    PublicKey const pk2 = {0x0a};

    EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 1);
}

TEST(IdClosest, DistinctKeysCannotHaveTheSameDistance)
{
    PublicKey const pk0 = {0x06};
    PublicKey const pk1 = {0x00};
    PublicKey pk2 = {0x00};

    for (uint8_t i = 1; i < 0xff; ++i) {
        pk2[0] = i;
        EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
    }
}

TEST(AddToList, OverridesKeysWithCloserKeys)
{
    PublicKey const self_pk = {0xaa};
    PublicKey const keys[] = {
        {0xa0},  // closest
        {0x0a},  //
        {0x0b},  //
        {0x0c},  //
        {0x0d},  //
        {0xa1},  // closer than the 4 keys above
    };

    std::array<Node_format, 4> nodes{};

    IP_Port ip_port = {0};
    EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[0].data(), &ip_port, self_pk.data()));
    EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ip_port, self_pk.data()));
    EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ip_port, self_pk.data()));
    EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[3].data(), &ip_port, self_pk.data()));

    EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
    EXPECT_EQ(to_array(nodes[1].public_key), keys[1]);
    EXPECT_EQ(to_array(nodes[2].public_key), keys[2]);
    EXPECT_EQ(to_array(nodes[3].public_key), keys[3]);

    // key 4 is less close than keys 0-3
    EXPECT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ip_port, self_pk.data()));
    // 5 is closer than all except key 0
    EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ip_port, self_pk.data()));

    EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
    EXPECT_EQ(to_array(nodes[1].public_key), keys[5]);
    EXPECT_EQ(to_array(nodes[2].public_key), keys[1]);
    EXPECT_EQ(to_array(nodes[3].public_key), keys[2]);
}

Node_format fill(Node_format v, PublicKey const &pk, IP_Port const &ip_port)
{
    std::copy(pk.begin(), pk.end(), v.public_key);
    v.ip_port = ip_port;
    return v;
}

TEST(AddToList, AddsFirstKeysInOrder)
{
    Test_Random rng;

    // Make cmp_key the furthest away from 00000... as possible, so all initial inserts succeed.
    PublicKey const cmp_pk{0xff, 0xff, 0xff, 0xff};

    // Generate a bunch of other keys, sorted by distance from cmp_pk.
    auto const keys
        = sorted(array_of<20>(random_pk, rng), [&cmp_pk](auto const &pk1, auto const &pk2) {
              return id_closest(cmp_pk.data(), pk1.data(), pk2.data()) == 1;
          });
    auto const ips = array_of<20>(increasing_ip_port(0, rng));

    std::vector<Node_format> nodes(4);

    // Add a bunch of nodes.
    ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ips[2], cmp_pk.data()))
        << "failed to insert\n"
        << "  cmp_pk = " << cmp_pk << "\n"
        << "  pk     = " << keys[2] << "\n"
        << "  nodes_list = " << PrintToString(nodes);
    ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ips[5], cmp_pk.data()))
        << "failed to insert\n"
        << "  cmp_pk = " << cmp_pk << "\n"
        << "  pk     = " << keys[5] << "\n"
        << "  nodes_list = " << PrintToString(nodes);
    ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[7].data(), &ips[7], cmp_pk.data()))
        << "failed to insert\n"
        << "  cmp_pk = " << cmp_pk << "\n"
        << "  pk     = " << keys[7] << "\n"
        << "  nodes_list = " << PrintToString(nodes);
    ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[9].data(), &ips[9], cmp_pk.data()))
        << "failed to insert\n"
        << "  cmp_pk = " << cmp_pk << "\n"
        << "  pk     = " << keys[9] << "\n"
        << "  nodes_list = " << PrintToString(nodes);

    // They should all appear in order.
    EXPECT_THAT(nodes,
        ElementsAre(  //
            fill(Node_format{}, keys[2], ips[2]),  //
            fill(Node_format{}, keys[5], ips[5]),  //
            fill(Node_format{}, keys[7], ips[7]),  //
            fill(Node_format{}, keys[9], ips[9])));

    // Adding another node that's further away will not happen.
    ASSERT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[10].data(), &ips[10], cmp_pk.data()))
        << "incorrectly inserted\n"
        << "  cmp_pk = " << cmp_pk << "\n"
        << "  pk     = " << keys[10] << "\n"
        << "  nodes_list = " << PrintToString(nodes);

    // Now shuffle each time we add a node, which should work fine.
    std::mt19937 mt_rng;

    // Adding one that's closer will happen.
    std::shuffle(nodes.begin(), nodes.end(), mt_rng);
    ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[8].data(), &ips[8], cmp_pk.data()))
        << "failed to insert\n"
        << "  cmp_pk = " << cmp_pk << "\n"
        << "  pk     = " << keys[8] << "\n"
        << "  nodes_list = " << PrintToString(nodes);

    EXPECT_THAT(nodes,
        UnorderedElementsAre(  //
            fill(Node_format{}, keys[2], ips[2]),  //
            fill(Node_format{}, keys[5], ips[5]),  //
            fill(Node_format{}, keys[7], ips[7]),  //
            fill(Node_format{}, keys[8], ips[8])));

    // Adding one that's closer than almost all of them will happen.
    std::shuffle(nodes.begin(), nodes.end(), mt_rng);
    ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ips[4], cmp_pk.data()))
        << "failed to insert\n"
        << "  cmp_pk = " << cmp_pk << "\n"
        << "  pk     = " << keys[4] << "\n"
        << "  nodes_list = " << PrintToString(nodes);

    EXPECT_THAT(nodes,
        UnorderedElementsAre(  //
            fill(Node_format{}, keys[2], ips[2]),  //
            fill(Node_format{}, keys[4], ips[4]),  //
            fill(Node_format{}, keys[5], ips[5]),  //
            fill(Node_format{}, keys[7], ips[7])));

    // Adding one that's closer than all of them will happen.
    std::shuffle(nodes.begin(), nodes.end(), mt_rng);
    ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ips[1], cmp_pk.data()))
        << "failed to insert\n"
        << "  cmp_pk = " << cmp_pk << "\n"
        << "  pk     = " << keys[1] << "\n"
        << "  nodes_list = " << PrintToString(nodes);

    EXPECT_THAT(nodes,
        UnorderedElementsAre(  //
            fill(Node_format{}, keys[1], ips[1]),  //
            fill(Node_format{}, keys[2], ips[2]),  //
            fill(Node_format{}, keys[4], ips[4]),  //
            fill(Node_format{}, keys[5], ips[5])));
}

TEST(AddToList, KeepsKeysInOrder)
{
    Test_Random rng;

    // Any random cmp_pk should work, as well as the smallest or (approximately) largest pk.
    for (PublicKey const cmp_pk : {random_pk(rng), PublicKey{0x00}, PublicKey{0xff, 0xff}}) {
        auto const by_distance = [&cmp_pk](auto const &node1, auto const &node2) {
            return id_closest(cmp_pk.data(), node1.public_key, node2.public_key) == 1;
        };

        // Generate a bunch of other keys, not sorted.
        auto const nodes = vector_of(16, random_node_format, rng);

        std::vector<Node_format> node_list(4);

        // Add all of them.
        for (Node_format const &node : nodes) {
            add_to_list(
                node_list.data(), node_list.size(), node.public_key, &node.ip_port, cmp_pk.data());
            // Nodes should always be sorted.
            EXPECT_THAT(node_list, Eq(sorted(node_list, by_distance)));
        }
    }
}

TEST(Request, CreateAndParse)
{
    Test_Random rng;

    // Peers.
    const KeyPair sender(rng);
    const KeyPair receiver(rng);
    const uint8_t sent_pkt_id = CRYPTO_PACKET_FRIEND_REQ;

    // Encoded packet.
    std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> packet;

    // Received components.
    PublicKey pk;
    std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> incoming;
    uint8_t recvd_pkt_id;

    // Request data: maximum payload is 918 bytes, so create a payload 1 byte larger than max.
    std::vector<uint8_t> outgoing(919);
    random_bytes(rng, outgoing.data(), outgoing.size());

    EXPECT_LT(create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(),
                  receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id),
        0);

    // Pop one element so the payload is 918 bytes. Packing should now succeed.
    outgoing.pop_back();

    const int max_sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
        packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
    ASSERT_GT(max_sent_length, 0);  // success.

    // Check that handle_request rejects packets larger than the maximum created packet size.
    EXPECT_LT(handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(), incoming.data(),
                  &recvd_pkt_id, packet.data(), max_sent_length + 1),
        0);

    // Now try all possible packet sizes from max (918) to 0.
    while (!outgoing.empty()) {
        // Pack:
        const int sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
            packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
        ASSERT_GT(sent_length, 0);

        // Unpack:
        const int recvd_length = handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(),
            incoming.data(), &recvd_pkt_id, packet.data(), sent_length);
        ASSERT_GE(recvd_length, 0);

        EXPECT_EQ(
            std::vector<uint8_t>(incoming.begin(), incoming.begin() + recvd_length), outgoing);

        outgoing.pop_back();
    }
}

TEST(AnnounceNodes, SetAndTest)
{
    Test_Random rng;
    Test_Memory mem;
    Test_Network ns;

    Logger *log = logger_new();
    ASSERT_NE(log, nullptr);
    Mono_Time *mono_time = mono_time_new(mem, nullptr, nullptr);
    ASSERT_NE(mono_time, nullptr);
    Ptr<Networking_Core> net(new_networking_no_udp(log, mem, ns));
    ASSERT_NE(net, nullptr);
    Ptr<DHT> dht(new_dht(log, mem, rng, ns, mono_time, net.get(), true, true));
    ASSERT_NE(dht, nullptr);

    uint8_t pk_data[CRYPTO_PUBLIC_KEY_SIZE];
    memcpy(pk_data, dht_get_self_public_key(dht.get()), sizeof(pk_data));
    PublicKey self_pk(to_array(pk_data));

    PublicKey pk1 = random_pk(rng);
    ASSERT_NE(pk1, self_pk);

    // Test with maximally close key to self
    pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1] = ~pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1];
    PublicKey pk2(to_array(pk_data));
    ASSERT_NE(pk2, pk1);

    IP_Port ip_port = {0};
    ip_port.ip.family = net_family_ipv4();

    set_announce_node(dht.get(), pk1.data());
    set_announce_node(dht.get(), pk2.data());

    EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk1.data()));
    EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk2.data()));

    Node_format nodes[MAX_SENT_NODES];
    EXPECT_EQ(
        0, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true));
    set_announce_node(dht.get(), pk1.data());
    set_announce_node(dht.get(), pk2.data());
    EXPECT_EQ(
        2, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true));

    mono_time_free(mem, mono_time);
    logger_kill(log);
}

}  // namespace