1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
#include "DHT.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <array>
#include <cstring>
#include <random>
#include "DHT_test_util.hh"
#include "crypto_core.h"
#include "crypto_core_test_util.hh"
#include "logger.h"
#include "mem_test_util.hh"
#include "mono_time.h"
#include "network.h"
#include "network_test_util.hh"
#include "test_util.hh"
namespace {
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::PrintToString;
using ::testing::UnorderedElementsAre;
using SecretKey = std::array<uint8_t, CRYPTO_SECRET_KEY_SIZE>;
struct KeyPair {
PublicKey pk;
SecretKey sk;
explicit KeyPair(const Random *rng) { crypto_new_keypair(rng, pk.data(), sk.data()); }
};
TEST(IdClosest, KeyIsClosestToItself)
{
Test_Random rng;
PublicKey pk0 = random_pk(rng);
PublicKey pk1;
do {
// Get a random key that's not the same as pk0.
pk1 = random_pk(rng);
} while (pk0 == pk1);
EXPECT_EQ(id_closest(pk0.data(), pk0.data(), pk1.data()), 1);
}
TEST(IdClosest, IdenticalKeysAreSameDistance)
{
Test_Random rng;
PublicKey pk0 = random_pk(rng);
PublicKey pk1 = random_pk(rng);
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk1.data()), 0);
}
TEST(IdClosest, DistanceIsCommutative)
{
Test_Random rng;
PublicKey pk0 = random_pk(rng);
PublicKey pk1 = random_pk(rng);
PublicKey pk2 = random_pk(rng);
ASSERT_NE(pk1, pk2); // RNG can't produce the same random key twice
// Two non-equal keys can't have the same distance from any given key.
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 1) {
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 2);
}
if (id_closest(pk0.data(), pk1.data(), pk2.data()) == 2) {
EXPECT_EQ(id_closest(pk0.data(), pk2.data(), pk1.data()), 1);
}
}
TEST(IdClosest, SmallXorDistanceIsCloser)
{
PublicKey const pk0 = {0xaa};
PublicKey const pk1 = {0xa0};
PublicKey const pk2 = {0x0a};
EXPECT_EQ(id_closest(pk0.data(), pk1.data(), pk2.data()), 1);
}
TEST(IdClosest, DistinctKeysCannotHaveTheSameDistance)
{
PublicKey const pk0 = {0x06};
PublicKey const pk1 = {0x00};
PublicKey pk2 = {0x00};
for (uint8_t i = 1; i < 0xff; ++i) {
pk2[0] = i;
EXPECT_NE(id_closest(pk0.data(), pk1.data(), pk2.data()), 0);
}
}
TEST(AddToList, OverridesKeysWithCloserKeys)
{
PublicKey const self_pk = {0xaa};
PublicKey const keys[] = {
{0xa0}, // closest
{0x0a}, //
{0x0b}, //
{0x0c}, //
{0x0d}, //
{0xa1}, // closer than the 4 keys above
};
std::array<Node_format, 4> nodes{};
IP_Port ip_port = {0};
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[0].data(), &ip_port, self_pk.data()));
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ip_port, self_pk.data()));
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ip_port, self_pk.data()));
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[3].data(), &ip_port, self_pk.data()));
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
EXPECT_EQ(to_array(nodes[1].public_key), keys[1]);
EXPECT_EQ(to_array(nodes[2].public_key), keys[2]);
EXPECT_EQ(to_array(nodes[3].public_key), keys[3]);
// key 4 is less close than keys 0-3
EXPECT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ip_port, self_pk.data()));
// 5 is closer than all except key 0
EXPECT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ip_port, self_pk.data()));
EXPECT_EQ(to_array(nodes[0].public_key), keys[0]);
EXPECT_EQ(to_array(nodes[1].public_key), keys[5]);
EXPECT_EQ(to_array(nodes[2].public_key), keys[1]);
EXPECT_EQ(to_array(nodes[3].public_key), keys[2]);
}
Node_format fill(Node_format v, PublicKey const &pk, IP_Port const &ip_port)
{
std::copy(pk.begin(), pk.end(), v.public_key);
v.ip_port = ip_port;
return v;
}
TEST(AddToList, AddsFirstKeysInOrder)
{
Test_Random rng;
// Make cmp_key the furthest away from 00000... as possible, so all initial inserts succeed.
PublicKey const cmp_pk{0xff, 0xff, 0xff, 0xff};
// Generate a bunch of other keys, sorted by distance from cmp_pk.
auto const keys
= sorted(array_of<20>(random_pk, rng), [&cmp_pk](auto const &pk1, auto const &pk2) {
return id_closest(cmp_pk.data(), pk1.data(), pk2.data()) == 1;
});
auto const ips = array_of<20>(increasing_ip_port(0, rng));
std::vector<Node_format> nodes(4);
// Add a bunch of nodes.
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[2].data(), &ips[2], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[2] << "\n"
<< " nodes_list = " << PrintToString(nodes);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[5].data(), &ips[5], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[5] << "\n"
<< " nodes_list = " << PrintToString(nodes);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[7].data(), &ips[7], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[7] << "\n"
<< " nodes_list = " << PrintToString(nodes);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[9].data(), &ips[9], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[9] << "\n"
<< " nodes_list = " << PrintToString(nodes);
// They should all appear in order.
EXPECT_THAT(nodes,
ElementsAre( //
fill(Node_format{}, keys[2], ips[2]), //
fill(Node_format{}, keys[5], ips[5]), //
fill(Node_format{}, keys[7], ips[7]), //
fill(Node_format{}, keys[9], ips[9])));
// Adding another node that's further away will not happen.
ASSERT_FALSE(add_to_list(nodes.data(), nodes.size(), keys[10].data(), &ips[10], cmp_pk.data()))
<< "incorrectly inserted\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[10] << "\n"
<< " nodes_list = " << PrintToString(nodes);
// Now shuffle each time we add a node, which should work fine.
std::mt19937 mt_rng;
// Adding one that's closer will happen.
std::shuffle(nodes.begin(), nodes.end(), mt_rng);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[8].data(), &ips[8], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[8] << "\n"
<< " nodes_list = " << PrintToString(nodes);
EXPECT_THAT(nodes,
UnorderedElementsAre( //
fill(Node_format{}, keys[2], ips[2]), //
fill(Node_format{}, keys[5], ips[5]), //
fill(Node_format{}, keys[7], ips[7]), //
fill(Node_format{}, keys[8], ips[8])));
// Adding one that's closer than almost all of them will happen.
std::shuffle(nodes.begin(), nodes.end(), mt_rng);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[4].data(), &ips[4], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[4] << "\n"
<< " nodes_list = " << PrintToString(nodes);
EXPECT_THAT(nodes,
UnorderedElementsAre( //
fill(Node_format{}, keys[2], ips[2]), //
fill(Node_format{}, keys[4], ips[4]), //
fill(Node_format{}, keys[5], ips[5]), //
fill(Node_format{}, keys[7], ips[7])));
// Adding one that's closer than all of them will happen.
std::shuffle(nodes.begin(), nodes.end(), mt_rng);
ASSERT_TRUE(add_to_list(nodes.data(), nodes.size(), keys[1].data(), &ips[1], cmp_pk.data()))
<< "failed to insert\n"
<< " cmp_pk = " << cmp_pk << "\n"
<< " pk = " << keys[1] << "\n"
<< " nodes_list = " << PrintToString(nodes);
EXPECT_THAT(nodes,
UnorderedElementsAre( //
fill(Node_format{}, keys[1], ips[1]), //
fill(Node_format{}, keys[2], ips[2]), //
fill(Node_format{}, keys[4], ips[4]), //
fill(Node_format{}, keys[5], ips[5])));
}
TEST(AddToList, KeepsKeysInOrder)
{
Test_Random rng;
// Any random cmp_pk should work, as well as the smallest or (approximately) largest pk.
for (PublicKey const cmp_pk : {random_pk(rng), PublicKey{0x00}, PublicKey{0xff, 0xff}}) {
auto const by_distance = [&cmp_pk](auto const &node1, auto const &node2) {
return id_closest(cmp_pk.data(), node1.public_key, node2.public_key) == 1;
};
// Generate a bunch of other keys, not sorted.
auto const nodes = vector_of(16, random_node_format, rng);
std::vector<Node_format> node_list(4);
// Add all of them.
for (Node_format const &node : nodes) {
add_to_list(
node_list.data(), node_list.size(), node.public_key, &node.ip_port, cmp_pk.data());
// Nodes should always be sorted.
EXPECT_THAT(node_list, Eq(sorted(node_list, by_distance)));
}
}
}
TEST(Request, CreateAndParse)
{
Test_Random rng;
// Peers.
const KeyPair sender(rng);
const KeyPair receiver(rng);
const uint8_t sent_pkt_id = CRYPTO_PACKET_FRIEND_REQ;
// Encoded packet.
std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> packet;
// Received components.
PublicKey pk;
std::array<uint8_t, MAX_CRYPTO_REQUEST_SIZE> incoming;
uint8_t recvd_pkt_id;
// Request data: maximum payload is 918 bytes, so create a payload 1 byte larger than max.
std::vector<uint8_t> outgoing(919);
random_bytes(rng, outgoing.data(), outgoing.size());
EXPECT_LT(create_request(rng, sender.pk.data(), sender.sk.data(), packet.data(),
receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id),
0);
// Pop one element so the payload is 918 bytes. Packing should now succeed.
outgoing.pop_back();
const int max_sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
ASSERT_GT(max_sent_length, 0); // success.
// Check that handle_request rejects packets larger than the maximum created packet size.
EXPECT_LT(handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(), incoming.data(),
&recvd_pkt_id, packet.data(), max_sent_length + 1),
0);
// Now try all possible packet sizes from max (918) to 0.
while (!outgoing.empty()) {
// Pack:
const int sent_length = create_request(rng, sender.pk.data(), sender.sk.data(),
packet.data(), receiver.pk.data(), outgoing.data(), outgoing.size(), sent_pkt_id);
ASSERT_GT(sent_length, 0);
// Unpack:
const int recvd_length = handle_request(receiver.pk.data(), receiver.sk.data(), pk.data(),
incoming.data(), &recvd_pkt_id, packet.data(), sent_length);
ASSERT_GE(recvd_length, 0);
EXPECT_EQ(
std::vector<uint8_t>(incoming.begin(), incoming.begin() + recvd_length), outgoing);
outgoing.pop_back();
}
}
TEST(AnnounceNodes, SetAndTest)
{
Test_Random rng;
Test_Memory mem;
Test_Network ns;
Logger *log = logger_new();
ASSERT_NE(log, nullptr);
Mono_Time *mono_time = mono_time_new(mem, nullptr, nullptr);
ASSERT_NE(mono_time, nullptr);
Ptr<Networking_Core> net(new_networking_no_udp(log, mem, ns));
ASSERT_NE(net, nullptr);
Ptr<DHT> dht(new_dht(log, mem, rng, ns, mono_time, net.get(), true, true));
ASSERT_NE(dht, nullptr);
uint8_t pk_data[CRYPTO_PUBLIC_KEY_SIZE];
memcpy(pk_data, dht_get_self_public_key(dht.get()), sizeof(pk_data));
PublicKey self_pk(to_array(pk_data));
PublicKey pk1 = random_pk(rng);
ASSERT_NE(pk1, self_pk);
// Test with maximally close key to self
pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1] = ~pk_data[CRYPTO_PUBLIC_KEY_SIZE - 1];
PublicKey pk2(to_array(pk_data));
ASSERT_NE(pk2, pk1);
IP_Port ip_port = {0};
ip_port.ip.family = net_family_ipv4();
set_announce_node(dht.get(), pk1.data());
set_announce_node(dht.get(), pk2.data());
EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk1.data()));
EXPECT_TRUE(addto_lists(dht.get(), &ip_port, pk2.data()));
Node_format nodes[MAX_SENT_NODES];
EXPECT_EQ(
0, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true));
set_announce_node(dht.get(), pk1.data());
set_announce_node(dht.get(), pk2.data());
EXPECT_EQ(
2, get_close_nodes(dht.get(), self_pk.data(), nodes, net_family_unspec(), true, true));
mono_time_free(mem, mono_time);
logger_kill(log);
}
} // namespace
|