1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
#include "test_util.hh"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <array>
#include "crypto_core.h"
#include "crypto_core_test_util.hh"
namespace {
using ::testing::Each;
using ::testing::Eq;
TEST(CryptoCoreTestUtil, RandomBytesDoesNotTouchZeroSizeArray)
{
const Test_Random rng;
std::array<uint8_t, 32> bytes{};
for (uint32_t i = 0; i < 100; ++i) {
random_bytes(rng, bytes.data(), 0);
ASSERT_THAT(bytes, Each(Eq(0x00)));
}
}
TEST(CryptoCoreTestUtil, RandomBytesFillsEntireArray)
{
const Test_Random rng;
std::array<uint8_t, 32> bytes{};
for (uint32_t size = 1; size < bytes.size(); ++size) {
bool const success = [&]() {
// Try a few times. There ought to be a non-zero byte in our randomness at
// some point.
for (uint32_t i = 0; i < 100; ++i) {
random_bytes(rng, bytes.data(), bytes.size());
if (bytes[size - 1] != 0x00) {
return true;
}
}
return false;
}();
ASSERT_TRUE(success);
}
}
TEST(CryptoCoreTestUtil, RandomBytesDoesNotBufferOverrun)
{
const Test_Random rng;
std::array<uint8_t, 32> bytes{};
// Try a few times. It should never overrun.
for (uint32_t i = 0; i < 100; ++i) {
for (uint32_t diff = 1; diff < sizeof(uint64_t); ++diff) {
bytes = {};
random_bytes(rng, bytes.data(), bytes.size() - diff);
// All bytes not in the range we want to write should be 0.
ASSERT_THAT(std::vector<uint8_t>(bytes.begin() + (bytes.size() - diff), bytes.end()),
Each(Eq(0x00)));
}
}
}
} // namespace
|