File: panon.c

package info (click to toggle)
libtrace3 3.0.22-0.2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,452 kB
  • sloc: ansic: 24,574; sh: 11,372; cpp: 1,811; makefile: 460; yacc: 96; lex: 50
file content (239 lines) | stat: -rw-r--r-- 8,618 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

// $Id$

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "panon.h"

static uint8_t m_key[16];
static uint8_t m_pad[16];

#define CACHEBITS 20
#define CACHESIZE (1 << CACHEBITS)

//static uint32_t enc_cache[CACHESIZE];

static uint32_t *enc_cache = 0;
static uint32_t fullcache[2][2];



void panon_init_cache(void) {
        if (enc_cache == 0) { 
                enc_cache = (uint32_t *)malloc(CACHESIZE * sizeof(uint32_t));
        }
        memset(enc_cache,0,(CACHESIZE * sizeof(uint32_t)));
        fullcache[0][0] = 0;
        fullcache[0][1] = 0;
        fullcache[1][0] = 0;
        fullcache[1][1] = 0;
}
static void cache_update(uint32_t scan) {
        uint8_t rin_output[16];
        uint8_t rin_input[16];
        uint32_t orig_addr = 0;
        uint32_t result = 0;
        uint32_t first4bytes_pad, first4bytes_input;
        int pos;

        memcpy(rin_input, m_pad, 16);
        first4bytes_pad = (((uint32_t) m_pad[0]) << 24) + 
                (((uint32_t) m_pad[1]) << 16 ) + 
                (((uint32_t) m_pad[2]) << 8) + 
                (uint32_t) m_pad[3];


        memcpy(rin_input, m_pad, 16);
        orig_addr = (scan << (32 - CACHEBITS));
        result = 0;
        for (pos = 0; pos < CACHEBITS; pos++) {

                if (pos == 0) {
                        first4bytes_input = first4bytes_pad;
                } else {
                        first4bytes_input = 
                                ((orig_addr >> (32 - pos)) << (32 - pos)) |
                                ((first4bytes_pad << pos) >> pos);
                }
                rin_input[0] = (uint8_t) (first4bytes_input >> 24);
                rin_input[1] = (uint8_t) ((first4bytes_input << 8) >> 24);
                rin_input[2] = (uint8_t) ((first4bytes_input << 16) >> 24);
                rin_input[3] = (uint8_t) ((first4bytes_input << 24) >> 24);

                blockEncrypt(rin_input, 128, rin_output);

                result |= (rin_output[0] >> 7) << (31 - pos);
        }
        enc_cache[scan] = (result >> (32 - CACHEBITS));

}
static uint32_t lookup_cache(uint32_t orig_addr) {
        uint32_t lookup_addr = (orig_addr >> (32 - CACHEBITS));
        if (enc_cache[lookup_addr] == 0) {
                cache_update(lookup_addr);
        }
        return enc_cache[lookup_addr];
}

void panon_init(const char * key) {
        // initialise the 128-bit secret key
        memcpy(m_key, key, 16);
        // initialise the Rijndael cipher
        rijndael_init(ECB, Encrypt, (const UINT8*)key, Key16Bytes,0);
        blockEncrypt((const UINT8*)key + 16, 128, m_pad);
        panon_init_cache();
}
void panon_init_decrypt(const uint8_t * key) {
        memcpy(m_key, key, 16);
        rijndael_init(ECB, Decrypt, key, Key16Bytes,0);
        blockEncrypt(key + 16, 128, m_pad);
}

uint32_t pp_anonymize(const uint32_t orig_addr) {
        uint8_t rin_output[16];
        uint8_t rin_input[16];

        uint32_t result = 0;
        uint32_t first4bytes_pad, first4bytes_input;
        int pos;

        memcpy(rin_input, m_pad, 16);
        first4bytes_pad = (((uint32_t) m_pad[0]) << 24) + 
                (((uint32_t) m_pad[1]) << 16 ) + 
                (((uint32_t) m_pad[2]) << 8) + 
                (uint32_t) m_pad[3];

        // For each prefix with length 0 to 31, generate a bit using the 
        // rijndael cipher, which is used as a pseudorandom function here. 
        // The bits generated in every round are combined into a pseudorandom 
        // one-time-pad.

        for (pos = 0; pos <= 31; pos++) {
                // Padding: The most significant pos bits are taken from orig_addr.
                // The other 128-pos bits are taken from m_pad. The variables 
                // first4bytes_pad and first4bytes_input are used to handle the annoying
                // byte order problem

                if (pos == 0) {
                        first4bytes_input = first4bytes_pad;
                } else {
                        first4bytes_input = ((orig_addr >> (32 - pos)) << (32 - pos)) |
                                ((first4bytes_pad << pos) >> pos);
                }
                rin_input[0] = (uint8_t) (first4bytes_input >> 24);
                rin_input[1] = (uint8_t) ((first4bytes_input << 8) >> 24);
                rin_input[2] = (uint8_t) ((first4bytes_input << 16) >> 24);
                rin_input[3] = (uint8_t) ((first4bytes_input << 24) >> 24);

                // Encryption: The rijndael cipher is used as a pseudorandom function.
                // During each round, only the first bit of rin_output is used.
                blockEncrypt(rin_input, 128, rin_output);

                // Combination: the bits are combined into a pseudorandom one-time-pad.
                result |= (rin_output[0] >> 7) << (31 - pos);
        }

        return result ^ orig_addr;
}


uint32_t cpp_anonymize(const uint32_t orig_addr) {
        uint8_t rin_output[16];
        uint8_t rin_input[16];
        
        //uint32_t firstnbits;

        uint32_t result = 0;
        uint32_t first4bytes_pad, first4bytes_input;
        int pos;


        if (fullcache[0][0] == orig_addr) {
                return fullcache[0][1];
        } else if (fullcache[1][0] == orig_addr) {
                uint32_t tmp = fullcache[1][1];
                // move to "top" of "cache"
                fullcache[1][0] = fullcache[0][0];
                fullcache[1][1] = fullcache[0][1];
                fullcache[0][0] = orig_addr;
                fullcache[0][1] = tmp;
                return tmp;
        }
        
        memcpy(rin_input, m_pad, 16);
        first4bytes_pad = (((uint32_t) m_pad[0]) << 24) + 
                (((uint32_t) m_pad[1]) << 16 ) + 
                (((uint32_t) m_pad[2]) << 8) + 
                (uint32_t) m_pad[3];

        // Look up the first CACHESIZE bits from enc_cache and start the 
        // result with this, then proceed

        //firstnbits = (uint32_t) orig_addr >> (32 - CACHEBITS);
        //result = (enc_cache[firstnbits] << (32 - CACHEBITS));


        result = (lookup_cache(orig_addr) << (32 - CACHEBITS));
        // For each prefix with length CACHEBITS to 31, generate a bit using the 
        // rijndael cipher, which is used as a pseudorandom function here. 
        // The bits generated in every round are combined into a pseudorandom 
        // one-time-pad.

        for (pos = CACHEBITS ; pos <= 31; pos++) {
                // Padding: The most significant pos bits are taken from orig_addr.
                // The other 128-pos bits are taken from m_pad. The variables 
                // first4bytes_pad and first4bytes_input are used to handle the annoying
                // byte order problem

                if (pos == 0) {
                        first4bytes_input = first4bytes_pad;
                } else {
                        first4bytes_input = ((orig_addr >> (32 - pos)) << (32 - pos)) |
                                ((first4bytes_pad << pos) >> pos);
                }
                rin_input[0] = (uint8_t) (first4bytes_input >> 24);
                rin_input[1] = (uint8_t) ((first4bytes_input << 8) >> 24);
                rin_input[2] = (uint8_t) ((first4bytes_input << 16) >> 24);
                rin_input[3] = (uint8_t) ((first4bytes_input << 24) >> 24);

                // Encryption: The rijndael cipher is used as a pseudorandom function.
                // During each round, only the first bit of rin_output is used.
                blockEncrypt(rin_input, 128, rin_output);

                // Combination: the bits are combined into a pseudorandom one-time-pad.
                result |= (rin_output[0] >> 7) << (31 - pos);
        }
        
        fullcache[1][0] = fullcache[0][0];
        fullcache[1][1] = fullcache[0][1];
        fullcache[0][0] = orig_addr;
        fullcache[0][1] = result ^ orig_addr;
        
        return result ^ orig_addr;
}

uint32_t anonymize(const uint32_t orig_addr) {
        uint8_t rin_output[16]; 
        uint8_t rin_input[16]; 

        uint32_t result = 0;

        memcpy(rin_input, m_pad, 16);

        rin_input[0] = (uint8_t) (orig_addr >> 24);
        rin_input[1] = (uint8_t) ((orig_addr << 8) >> 24);
        rin_input[2] = (uint8_t) ((orig_addr << 16) >> 24);
        rin_input[3] = (uint8_t) ((orig_addr << 24) >> 24);

        blockEncrypt(rin_input, 128, rin_output);

        result = 0;
        result += (rin_output[0] <<24);
        result += (rin_output[1] <<16);
        result += (rin_output[2] <<8);
        result += (rin_output[3]);
        return result;
}