File: FNevChebP.html

package info (click to toggle)
libtsp 3r0-1
  • links: PTS
  • area: non-free
  • in suites: potato, woody
  • size: 5,096 kB
  • ctags: 1,798
  • sloc: ansic: 14,464; sh: 1,217; makefile: 182
file content (64 lines) | stat: -rw-r--r-- 1,352 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
<HTML>
<HEAD>
<TITLE>TSP (libtsp/FN) - FNevChebP</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFACD">
<H2>FNevChebP</H2>
<HR>
<H4>Routine</H4>
<DL>
<DT>
double FNevChebP (double x, const float c[], int N)
</DL>
<H4>Purpose</H4>
<DL>
<DT>
Evaluate a series expansion in Chebyshev polynomials
</DL>
<H4>Description</H4>
The series expansion in Chebyshev polynomials is defined as
<P>
<PRE>
            N-1
     Y(x) = SUM c(i) T(i,x) ,
            i=0
</PRE>
<P>
where N is the number of terms in the expansion, c(i) is the coefficient for
the i'th Chebyshev polynomial, and T(i,x) is the i'th order Chebyshev
polynomial evaluated at x.
<P>
The Chebyshev polynomials satisfy the recursion
<PRE>
  T(i,x) = 2x T(i-1,x) - T(i-2,x),
</PRE>
with the initial conditions T(0,x)=1 and T(1,x)=x.  This routine evaluates
the expansion using a backward recursion.
<H4>Parameters</H4>
<DL>
<DT>
&lt;-  double FNevChebP
<DD>
Resultant value
<DT>
 -&gt; double x
<DD>
Input value
<DT>
 -&gt; const float c[]
<DD>
Array of coefficient values.  c[i] is the coefficient of the i'th order
Chebyshev polynomial.
<DT>
 -&gt; int N
<DD>
Number of coefficients
</DL>
<H4>Author / revision</H4>
P. Kabal  Copyright (C) 1997
/ Revision 1.11  1997/10/14
<P>
<HR>
Main Index <A HREF="../libtsp.html">libtsp</A>
</BODY>
</HTML>