1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
<HTML>
<HEAD>
<TITLE>TSP (libtsp/MA) - MAfTpSolve</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFACD">
<H2>MAfTpSolve</H2>
<HR>
<H4>Routine</H4>
<DL>
<DT>
int MAfTpSolve (const float R[], const float g[], float c[], int N)
</DL>
<H4>Purpose</H4>
<DL>
<DT>
Solve a Toeplitz set of equations
</DL>
<H4>Description</H4>
This routine solves the set of matrix equations
<P>
<PRE>
R c = g
</PRE>
<P>
where R is an N by N symmetric Toeplitz matrix and c and g are N element
column vectors. The Toeplitz matrix R has elements which are equal along the
diagonals, i.e. R(i,j)=r(abs(i-j)).
<P>
This routine uses Levinson's method to calculate the solution. In the
case that either numerical instability or an inappropriate set of matrix
coefficients results in a matrix which is not positive definite or singular,
an error code is returned.
<P>
This routine uses
<PRE>
2N-1 divides, and
2N^2-3N multiplies and adds.
</PRE>
<P>
<DL>
<DT>
Reference:
<DD>
E. A. Robinson, "Multichannel time series analysis with digital computer
programs", Holden-Day, 1967, p. 44.
</DL>
<H4>Parameters</H4>
<DL>
<DT>
<- int MAfTpSolve
<DD>
Error flag, zero for no error. The return value is set to 1 if the
matrix not positive definite.
<DT>
-> const float R[]
<DD>
Vector specifying the first column of the Toeplitz matrix
<DT>
-> const float g[]
<DD>
Righthand side vector
<DT>
<- float c[]
<DD>
Solution vector
<DT>
-> int N
<DD>
Number of equations
</DL>
<H4>Author / revision</H4>
P. Kabal Copyright (C) 1996
/ Revision 1.4 1996/05/31
<H4>See Also</H4>
<A HREF="MAfChSolve.html">MAfChSolve</A>
<P>
<HR>
Main Index <A HREF="../libtsp.html">libtsp</A>
</BODY>
</HTML>
|