File: game.py

package info (click to toggle)
libtuxcap 1.4.0.dfsg2-2.1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,176 kB
  • sloc: cpp: 43,203; ansic: 3,095; python: 774; objc: 242; makefile: 100; xml: 87
file content (876 lines) | stat: -rw-r--r-- 21,269 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
# normal imports
import random, math

###########################################
# Application initialization data
###########################################
appIni = {	"mCompanyName"		: "Farbs",
		"mFullCompanyName"	: "Farbs",
		"mProdName"		: "Petal Hero Prototype",
		"mProductVersion"	: "1.0",
		"mTitle"			: "TuxCap: Petal Hero (Prototype) v1.0",
		"mRegKey"			: "TuxCap\\Pythondemo2",
		"mWidth"			: 800,
		"mHeight"			: 600,
		"mAutoEnable3D"	: 0,
                "mTest3D"		: 1,
		"mVSyncUpdates"	: 1,
                "mWindowIconBMP": "unicron_baby.bmp",
                "mWaitForVSync"      : 1}

doExit = 0 # flag specifying whether or not the game should continue to run (not a hook)
res = None
PC = None
PCR = None

hero = None
planes = []
playerShots = []
enemyShots = []
explosions = []
bestTime = 0
gameTime = 0
firstRun = 1
font = None
squadCount = 0
level = 0

canvasImage = None
backgroundImage = None
skyImage = None

mousex = 0
mousey = 0

nextPlaneTime = 0.0
time = 0.0

PLANEMODE_DELAY		= 0
PLANEMODE_ACTIVE	= 1
PLANEMODE_DONE		= 2

def vToA( x, y, a ):
	"""calculate angle from a 2D vector and default value"""
	if y == 0:
		# dangerous special case (avoids div by 0 in dx/dy)
		if x > 0:
			return math.pi * 0.5
		elif x < 0:
			return -math.pi * 0.5
		else:
			# don't change angle... previous is probably best
			return a
	else:
		# safe to use atan technique
		a = math.atan( x / y )
		if y < 0:
			# inverted
			a += math.pi
		return a

class Hero:
	"""Player 'plane class"""
	image = None
	
	def __init__( self, x, y ):
		self.x = x
		self.y = y
		self.left = 0
		self.right = 0
		self.up = 0
		self.down = 0
		self.radius = PCR.imageWidth( self.image ) * 0.5
		self.lives = 3
		self.lifeTimer = 0
		self.a = 0
		self.dx = 0
		self.dy = 0
	
	def fire( self ):
		global playerShots
		if len( playerShots ) < 6:
			playerShots.append( Shot( self.x + math.cos( self.a ) * 10.0, self.y - math.sin( self.a ) * 10.0, math.sin( self.a ) * 10.0 + self.dx, math.cos( self.a ) * 10.0 + self.dy, 0 ) )
			playerShots.append( Shot( self.x - math.cos( self.a ) * 10.0, self.y + math.sin( self.a ) * 10.0, math.sin( self.a ) * 10.0 + self.dx, math.cos( self.a ) * 10.0 + self.dy, 0 ) )
			# recoil
			#self.dx -= math.sin( self.a ) * 2
			#self.dy -= math.cos( self.a ) * 2
	
	def hit( self, x, y ):
		"""Accept a hit, return whether still alive or not"""
		# ignore if recently hit
		if self.lifeTimer < 0:
			return 1
		
		# test for lives remaining
		if self.lives != 0:
			# damage
			self.lives -= 1
			self.lifeTimer = -100
			# bounce
			n = normScale( x - self.x, y - self.y )
			s = -5.0
			self.dx += n * s * ( x - self.x )
			self.dy += n * s * ( y - self.y )
			return 1
		else:
			# death
			return 0
			
	def update( self, delta ):
		# move
		# calc angle
		self.a = vToA( mousex - self.x, mousey - self.y, self.a )
		
		# drag
		d = pow( 0.98, delta )
		self.dx *= d
		self.dy *= d
		
		# thrust
		s = 0.1
		self.dx += math.sin( self.a ) * s
		self.dy += math.cos( self.a ) * s
		
		# move
		self.x += self.dx * delta
		self.y += self.dy * delta
	
		# bound the 'plane
		if self.x < self.radius:
			self.x = self.radius
		if self.x > 800 - self.radius:
			self.x = 800 - self.radius
		if self.y < self.radius:
			self.y = self.radius
		if self.y > 600 - self.radius:
			self.y = 600 - self.radius
		
		# extra life check
		if self.lives < 3:
			self.lifeTimer += delta
			if self.lifeTimer > 500:
				self.lives += 1
				self.lifeTimer -= 500

	def draw( self ):
		# draw the 'plane sprite
		if self.lifeTimer < 0:
			# damaged
			if ( self.lifeTimer % 5.0 ) < 2.5:
				PC.drawImageRot( self.damageImage, self.x - self.radius, self.y - self.radius, math.pi + self.a )
		else:
			PC.drawImageRot( self.image, self.x - self.radius, self.y - self.radius, math.pi + self.a )
		
		# draw cursor
		PC.setColour( 0, 0, 0, 255 )
		PC.fillRect( mousex - 1, mousey - 1, 3, 3 )
		
class Plane:
	"""Enemy aeroplane class"""
	image = None
	
	def __init__( self, xi, yi, xa, ya, xb, yb, dxi, dyi, dxa, dya, dxb, dyb, pathTime, delay, fireTime, type ):
		self.type = type
		self.radius = PCR.imageWidth( self.image ) * 0.5
		areaWidth = 800 + self.radius * 2
		areaHeight = 600 + self.radius * 2
		
		self.xi = xi * areaWidth - self.radius
		self.yi = yi * areaHeight - self.radius
		self.xa = xa * areaWidth - self.radius
		self.ya = ya * areaHeight - self.radius
		self.xb = xb * areaWidth - self.radius
		self.yb = yb * areaHeight - self.radius
		self.dxi = dxi * areaWidth - self.radius
		self.dyi = dyi * areaHeight - self.radius
		self.dxa = dxa * areaWidth - self.radius
		self.dya = dya * areaHeight - self.radius
		self.dxb = dxb * areaWidth - self.radius
		self.dyb = dyb * areaHeight - self.radius
		self.pathTime = pathTime
		self.time = -delay
		self.fireTime = fireTime
		self.x = self.xi
		self.y = self.yi
		self.a = 0
		self.dx = self.dxi
		self.dy = self.dyi
		
		if delay == 0:
			self.mode = PLANEMODE_ACTIVE
		else:
			self.mode = PLANEMODE_DELAY

	def update( self, delta ):
		# increment timer
		self.time += delta
		
		# move if active
		if self.time >= 0 and self.mode != PLANEMODE_DONE:
			# set to active
			self.mode = PLANEMODE_ACTIVE

			# determine path count, time alpha and blend weight
			t = float( self.time ) / self.pathTime
			a = t%1
			c = int( t )
			b = -math.cos( a * math.pi ) * 0.5 + 0.5

			# record old position
			ox = self.x
			oy = self.y
			
			# set new position based on current path and time in it
			if c == 0:
				# initial path from i to a
				self.x = ( self.xi + a*self.dxi ) * (1-b) + ( self.xa + (a-1)*self.dxa ) * b
				self.y = ( self.yi + a*self.dyi ) * (1-b) + ( self.ya + (a-1)*self.dya ) * b
			elif c % 2 == 1:
				# path from a to b
				self.x = ( self.xa + a*self.dxa ) * (1-b) + ( self.xb + (a-1)*self.dxb ) * b
				self.y = ( self.ya + a*self.dya ) * (1-b) + ( self.yb + (a-1)*self.dyb ) * b
			else:
				# path from b back to a
				self.x = ( self.xb + a*self.dxb ) * (1-b) + ( self.xa + (a-1)*self.dxa ) * b
				self.y = ( self.yb + a*self.dyb ) * (1-b) + ( self.ya + (a-1)*self.dya ) * b
			
			# record estimated velocity ( I'm too lazy for calculus )
			self.dx = ( self.x - ox ) / delta
			self.dy = ( self.y - oy ) / delta
			
			# fire if appropriate
			global enemyShots
			if self.fireTime != 0 and int( ( self.time - delta + self.fireTime / 2.0 ) / self.fireTime ) != int( ( self.time + self.fireTime / 2.0 ) / self.fireTime ):
				n = normScale( self.dx, self.dy )
				if n != 0:
					enemyShots.append( Shot( self.x, self.y, self.dx * n * 4, self.dy * n * 4, 0 ) )
			
			# record current angle
			self.a = dToA( self.dx, self.dy )

	def draw( self ):
		# draw the 'plane sprite if it's active
		if self.mode == PLANEMODE_ACTIVE:
			PC.setColourize( 1 )
			levelAlpha = min( gameTime / 6000.0, 1 )
			PC.setColour( ( 50 + int( 205 * levelAlpha ) )/ 2 , 50, ( 255 - int( 205 * levelAlpha ) ) /2, 255 )
			PC.drawImageRot( self.image, self.x - self.radius, self.y - self.radius, self.a )
			PC.setColourize( 0 )
		
class Shot:
	"""Bullet class"""
	image = None
	
	def __init__( self, x, y, dx, dy, type ):
		self.x = x
		self.y = y
		self.dx = dx
		self.dy = dy
		if dx == 0 and dy == 0:
			self.dy = 1
		self.type = type
		self.radius = PCR.imageWidth( self.image ) * 0.5
		self.done = 0

	def update( self, delta ):
		# move
		self.x += self.dx * delta
		self.y += self.dy * delta
		if self.x < 0 - self.radius or self.x > 800 + self.radius or self.y < 0 - self.radius or self.y > 600 + self.radius:
			self.done = 1

	def draw( self ):
		PC.setColourize( 1 )
		PC.setColour( 0, 0, 0, 255 )
		PC.drawImageF( self.image, self.x - self.radius, self.y - self.radius )
		PC.setColourize( 0 )
	
class Explosion:
	"""Dodgy particle class"""
	image = None
	
	def __init__( self, x, y ):
		self.x = x
		self.y = y
		self.radius = PCR.imageWidth( self.image ) * 0.5
		self.done = 0
		self.lifespan = 100
		self.age = 0

	def update( self, delta ):
		# age
		self.age += delta
		if self.age > self.lifespan:
			self.done = 1

	def draw( self ):
		PC.setColourize( 1 )
		PC.setColour( 255, 255, 255, int( 255 * pow( 1 - self.age / self.lifespan, 1 ) ) )
		s = 150
		PC.drawImageScaled( self.image, self.x - s / 2, self.y - s / 2, s, s )
		PC.setColourize( 0 )

class SquadType:
	"""Basic variables defining a squad type"""
	def __init__( self, difficulty ):
		# assumes random number generator is already seeded and ready for use
		d = difficulty + 1 # shorthand
		
		# set base values
		self.squadSize = int( 1 + random.random() * difficulty )
		self.checkpointTime = 800 / difficulty * ( 1 + random.random() )
		self.spawnTime = 800 / difficulty * ( 1 + random.random() )
		self.fireTime = 400 / difficulty * ( 1 + random.random() )
		
		# choose one value to make more extreme
		switch = int( random.random() * 4 )
		if switch == 0:
			self.squadSize = difficulty * 4
		if switch == 1:
			self.checkpointTime = 100.0 / difficulty
		if switch == 2:
			self.spawnTime = 200 - 150 / difficulty
		if switch == 3:
			self.fireTime = 100 / difficulty
		
		# other values
		self.mirror = int( random.random() * 2 )
		if self.mirror:
			self.spawnTime *= 2
		switch = random.random() * 10
		if switch < 5:
			self.spawnLoc = 0 # front
		elif switch < 8:
			self.spawnLoc = 1 # sides
		else:
			self.spawnLoc = 2 # behind
	
def loadBase():
	# import res module
	import PycapRes
	global PCR
	PCR = PycapRes
	
	# load images
	global canvasImage, backgroundImage, skyImage, explosionImage, tune
	Hero.image = PCR.loadImage( "..\\images\\hero" )
	Hero.damageImage = PCR.loadImage( "..\\images\\heroDamage" )
	Plane.image = PCR.loadImage( "..\\images\\dragonfly" )
	Shot.image = PCR.loadImage( "..\\images\\smallShot" )
	canvasImage = PCR.loadImage( "..\\images\\bigcanvas" )
	backgroundImage = PCR.loadImage( "..\\images\\backgroundbig" )
	skyImage = PCR.loadImage( "..\\images\\sky" )
	Explosion.image = PCR.loadImage( "..\\images\\explosion" )
        tune = PCR.loadTune("..\\music\\m.Mid")
	
	# load font
	global font
	font = PCR.loadFont( "..\\fonts\\Andy28Bold.txt" )


def init():
	# load the pycap module
	import Pycap
	global PC
	PC = Pycap

        global KEYDOWN , KEYESC, KEYLEFT, KEYRIGHT, KEYUP, KEYSHIFT
 
        KEYDOWN = PC.getKeyCode("DOWN")
        KEYUP = PC.getKeyCode("UP")
        KEYLEFT = PC.getKeyCode("LEFT")
        KEYRIGHT = PC.getKeyCode("RIGHT")
        KEYESC = PC.getKeyCode("ESCAPE")
        KEYSHIFT = PC.getKeyCode("RSHIFT")
	
	# hide the mouse
	PC.showMouse( 0 )
	
	# add the player 'plane
	global hero
	hero = Hero( 400, 300 )
	
	# get ready to spawn some stuff
	global nextPlaneTime
	global time
	global squadCount
	nextPlaneTime = 300.0
	time = 0
	squadCount = 0
	
	# set initial random seed
	random.seed(level+345345)
	
	global planes
	global playerShots
	global enemyShots
	planes = []
	playerShots = []
	enemyShots = []
	
	# load the savegame file & current high score
	# skip loading if we're re-initializing
	global bestTime
	global firstRun
	if firstRun:
		try:
			saveFile = open( "lib.py", "r" )
			bestTime = float( saveFile.read() )
			saveFile.close()
		except:
			pass
		firstRun = 0

	# set current game timer
	global gameTime
	gameTime = 0

        PC.playTune(tune)

def fini():
	# attempt to write best time to file
	try:
		saveFile = open( "lib.py", "w" )
		saveFile.write( str( bestTime ) )
		saveFile.close()
	except:
		pass

def keydown( key ):
	if key == KEYESC:
		global doExit
		doExit = 1
	elif key == KEYLEFT:
		hero.left = 1
	elif key == KEYRIGHT:
		hero.right = 1
	elif key == KEYUP:
		hero.up = 1
	elif key == KEYDOWN:
		hero.down = 1
	elif key == KEYSHIFT:
		hero.fire()

def keyup( key ):
	if key == KEYLEFT:
		hero.left = 0
	elif key == KEYRIGHT:
		hero.right = 0
	elif key == KEYUP:
		hero.up = 0
	elif key == KEYDOWN:
		hero.down = 0
def mouseDown( x, y, i ):
	hero.fire()
	global mousex, mousey
	mousex = x
	mousey = y
def mouseMove( x, y ):
	global mousex, mousey
	mousex = x
	mousey = y
def exitGame():
	return doExit;
	
def spawnSquadron( time ):
	# generate squad control data
	# number to spawn
	i = int( math.pow( random.random(), 6 ) * 9 + 1 )
	# mirror this?
	m = int( random.random() + 0.2 )
	# time stagger
	if int( random.random() + 0.5 ):
		timeStagger = random.random() * 30.0 + 10.0
	else:
		timeStagger = 0
	# time between checkpoints
	airTime = random.random() * 500.0 + 150.0
	# entry points, including optional stagger
	entry = random.random()
	if int( random.random() + 0.5 ):
		entryAlt = random.random()
	else:
		entryAlt = entry
	# checkpoint speeds, including optional stagger
	dxi = random.random() * random.random() * 4.0 - 2.0
	if int( random.random() + 0.2 ):
		dxia = random.random() * random.random() * 4.0 - 2.0
	else:
		dxia = dxi
	dyi = random.random() * random.random() * 4.0 - 2.0
	if int( random.random() + 0.2 ):
		dyia = random.random() * random.random() * 4.0 - 2.0
	else:
		dyia = dyi
	dxa = random.random() * random.random() * 2.0 - 1.0
	if int( random.random() + 0.2 ):
		dxaa = random.random() * random.random() * 2.0 - 1.0
	else:
		dxaa = dxa
	dya = random.random() * random.random() * 2.0 - 1.0
	if int( random.random() + 0.2 ):
		dyaa = random.random() * random.random() * 2.0 - 1.0
	else:
		dyaa = dya
	dxb = random.random() * random.random() * 2.0 - 1.0
	if int( random.random() + 0.2 ):
		dxba = random.random() * random.random() * 2.0 - 1.0
	else:
		dxba = dxb
	dyb = random.random() * random.random() * 2.0 - 1.0
	if int( random.random() + 0.2 ):
		dyba = random.random() * random.random() * 2.0 - 1.0
	else:
		dyba = dyb
		
	# pick an entry side & set up for it
	side = random.random()
	if side < 0.2:
		# left
		dxi = abs( dxi )
		dxia = abs( dxia )
		xi = 0
		xia = 0
		yi = entry
		yia = entryAlt
	elif side < 0.4:
		# right
		dxi = -abs( dxi )
		dxia = -abs( dxia )
		xi = 1
		xia = 1
		yi = entry
		yia = entryAlt
	elif side < 0.95:
		# top
		dyi = abs( dyi )
		dyia = abs( dyia )
		xi = entry
		xia = entryAlt
		yi = 0
		yia = 0
	else:
		# bottom
		dyi = -abs( dyi )
		dyia = -abs( dyia )
		xi = entry
		xia = entryAlt
		yi = 1
		yia = 1
	
	# pick loop path points & optionally stagger
	xa = random.random() * 0.4 + 0.3
	if random.random() < 0.5:
		xaa = random.random() *  0.4 + 0.3
	else:
		xaa = xa
	ya = random.random() *  0.4 + 0.1
	if random.random() < 0.5:
		yaa = random.random() *  0.4 + 0.1
	else:
		yaa = xa
	xb = random.random() *  0.4 + 0.3
	if random.random() < 0.5:
		xba = random.random() *  0.4 + 0.3
	else:
		xba = xb
	yb = random.random() *  0.4 + 0.1
	if random.random() < 0.5:
		yba = random.random() *  0.4 + 0.1
	else:
		yba = xb
	
	# rate of fire, if any
	if random.random() < 0.5:
		fireRate = random.random() * 200 + 100
	else:
		fireRate = 0

	# test some overrides
	fireRate = 100 / ( 0.5 + level * 1.0 )

	# program planes
	global planes
	delay = 0
	for p in range( i ):
		a = float( p ) / i
		na = 1 - a
		# add a plane
		planes.append( Plane( 	a * xi + na * xia,
								a * yi + na * yia,
								a * xa + na * xaa,
								a * ya + na * yaa,
								a * xb + na * xba,
								a * yb + na * yba,
								a * dxi + na * dxia,
								a * dyi + na * dyia,
								a * dxa + na * dxaa,
								a * dya + na * dyaa,
								a * dxb + na * dxba,
								a * dyb + na * dyba,
								airTime,
								delay,
								fireRate,
								0 ) )
		if m:
			# add mirrored plane
			planes.append( Plane( 	1 - a * xi - na * xia,
									a * yi + na * yia,
									1 - a * xa - na * xaa,
									a * ya + na * yaa,
									1 - a * xb - na * xba,
									a * yb + na * yba,
									-( a * dxi + na * dxia ),
									a * dyi + na * dyia,
									-( a * dxa + na * dxaa ),
									a * dya + na * dyaa,
									-( a * dxb + na * dxba ),
									a * dyb + na * dyba,
									airTime,
									delay,
									fireRate,
									0 ) )
		delay += timeStagger

def dToA( dx, dy ):
	"""Translates a vector to an angle"""
	# check dangerous special case
	if dy == 0:
		if dx > 0:
			return math.pi / 2
		else:
			return 3 * math.pi / 2
	
	# safe cases
	a = math.atan( dx / dy )
	if dy > 0:
		a += math.pi
	
	# return output rolled into 0..2pi
	return a % ( 2 * math.pi )
	
def hitTest( a, b ):
	"""Circular collision test. Assumes x, y, and radius members on both objects."""
	r = a.radius + b.radius
	x = abs( a.x - b.x )
	y = abs( a.y - b.y )
	if x <= r and y <= r and x*x + y*y <= r*r:
		return 1
	return 0

def normScale( x, y ):
	"""Scale to apply to an xy vector to normalize it, or 0 if it's a 0 vector"""
	if x == 0 and y == 0:
		return 0
	else:
		return 1.0 / pow( x*x + y*y, 0.5 )

def update( delta ):
	# update timers
	global gameTime
	global bestTime
	global level
	global explosions
	gameTime += delta
	if gameTime > bestTime:
		bestTime = gameTime
	
	# spawn new enemy planes
	global nextPlaneTime
	global time
	time += delta
	nextPlaneTime -= delta
	if gameTime < 6000:
		if nextPlaneTime <= 0:
			nextPlaneTime = random.random() * random.random() * random.random() * 1600 / ( gameTime * 0.0001 + 1 ) + 100
			global squadCount
			squadCount += 1
			if squadCount % 10 == 0:
				nextPlaneTime += 500.0
			spawnSquadron( time )
	
	# tick the player 'plane
	hero.update( delta )
	
	# update explosions, removing those that're done
	doneList = []
	for e in explosions:
		e.update( delta )
		if e.done:
			doneList.append( e )
	for e in doneList:
		explosions.remove( e )
	
	# update bullets, removing those that're done
	doneList = []
	for s in playerShots:
		s.update( delta * 0.5 )
		if s.done:
			doneList.append( s )
	for s in doneList:
		playerShots.remove( s )
		
	doneList = []
	for s in enemyShots:
		s.update( delta * 0.5 )
		if s.done:
			doneList.append( s )
	for s in doneList:
		enemyShots.remove( s )
		
	# update enemy 'planes
	doneList = []
	for p in planes:
		p.update( delta * 0.5 )
		if p.mode == PLANEMODE_DONE:
			doneList.append( p )
	
	# remove dead or finished planes
	for d in doneList:
		planes.remove( d )
		
	# test for player-shot collisions
	global doExit
	for s in enemyShots:
		if hitTest( s, hero ):
			# hit the hero plane
			if not hero.hit( s.x, s.y ):
				# player death
				init()
			else:
				# particle
				explosions.append( Explosion( hero.x, hero.y ) )
	
	# test for player-plane collisions
	for p in planes:
		if hitTest( p, hero ):
			# hit the hero plane
			if not hero.hit( p.x, p.y ):
				# player death
				init()
				# break out early
				PC.markDirty()
				return
			else:
				# particle
				explosions.append( Explosion( hero.x, hero.y ) )

	
	# test for playerShot-plane collisions
	deadPlanes = []
	deadShots = []
	for s in playerShots:
		for p in planes:
			if hitTest( s, p ):
				# remove
				if deadPlanes.count( p ) == 0:
					deadPlanes.append( p )
				if deadShots.count( s ) == 0:
					deadShots.append( s )
				# particle
				explosions.append( Explosion( p.x, p.y ) )
	for p in deadPlanes:
		planes.remove( p )
	for s in deadShots:
		playerShots.remove( s )
	
	# call the draw function
	PC.markDirty()
	
	# test for level win
	if gameTime >= 6000 and len( planes ) == 0:
		level += 1
		# next level
		init()
		# break out early
		PC.markDirty()
		return


def draw():
	global time
	# levelAlpha: distance through the level
	levelAlpha = min( gameTime / 6000.0, 1 )
	
	# draw the background
	# clear
	PC.setColour( 255, 255, 255, 255 )
	PC.fillRect( 0, 0, 800, 600 )
	
	# prep for layers
	PC.setColour( 50 + int( 205 * levelAlpha ) , 100, 255 - int( 205 * levelAlpha ), 255 )
	PC.setColourize( 1 )

	# draw sky
	scroll = time % 800
	PC.drawImageF( skyImage, scroll - 800, 0 )
        if PC.getIs3DAccelerated():
                PC.drawImageF( skyImage, scroll, 0 )
        else:
                PC.drawImageF( skyImage, scroll - 2, 0 )

	# foreground
	PC.drawImage( backgroundImage, 0, 0 )
	PC.setColourize( 0 )

	# explosions
	for e in explosions:
		e.draw()

	# draw shots
	for s in enemyShots:
		s.draw()
	for s in playerShots:
		s.draw()

	# draw enemy 'planes
	for p in planes:
		p.draw()
		
	# draw the player 'plane
	hero.draw()
	
	# draw the HUD elements
	# time
	PC.setColour( 255, 255, 255, 255 )
	time = max( 0, 6000 - gameTime )
	string = "Time Left: " + timeString( time )
	PC.setFont( font )
	PC.drawString( string, 25, PCR.fontAscent( font ) )

	# current level
	string = "Level: " + str( level )
	PC.drawString( string, 775 - PCR.stringWidth( string, font ), PCR.fontAscent( font ) )
	
	# lives remaining
	if hero.lives > 0:
		string = "Lives: "
		width = PCR.stringWidth( string, font )
		x = 400 - width * 0.5 - hero.radius * 4
		PC.drawString( string, x, 575 )
		
		# draw life counter
		for i in range( hero.lives ):
			PC.drawImageF( hero.image, x + width + hero.radius * ( 2 * i ), 575 - hero.radius * 2 )
			
	else:
		# flashing warning
		if ( gameTime % 10.0 ) < 5.0:
			string = "NO LIVES LEFT!"
			PC.drawString( string, 400 - PCR.stringWidth( string, font ) * 0.5, 575 )
			
	# draw the canvas overlay
	PC.setColourize( 1 )
	PC.setColour( 0, 0, 0, 255 )
	PC.drawImage( canvasImage, 0, 0 )
	PC.setColourize( 0 )
	
def timeString( time ):
	minutes = int( time * 0.01 ) / 60
	seconds = int( time * 0.01 ) - 60 * minutes
	minutesString = str( minutes )
	secondsString = str( seconds )
	# add seconds padding if necessary
	if len( secondsString ) == 1:
		secondsString = "0" + str( seconds )
	return minutesString + ":" + secondsString